
Project Nº: FP7-318338

Project Acronym: Optique

Project Title: Scalable End-user Access to Big Data

Instrument: Integrated Project

Scheme: Information & Communication Technologies

Deliverable D4.2
Techniques for Ontology and Mapping Bootstrapping

Due date of deliverable: (T0+24)

Actual submission date: October 31, 2014

Start date of the project: 1st November 2012 Duration: 48 months

Lead contractor for this deliverable: UOXF

Dissemination level: PU – Public

Final version

Executive Summary:
Techniques for Ontology and Mapping Bootstrapping

This document summarises deliverable D4.2 of project FP7-318338 (Optique), an Integrated Project sup-
ported by the 7th Framework Programme of the EC. Full information on this project, including the contents
of this deliverable, is available online at http://www.optique-project.eu/.

More specifically, the present deliverable describes the designed and implemented Techniques for Ontology
and Mapping (O&M) Bootstrapping corresponding to the Task T4.1.

Optique’s O&M bootstrapping module allows to perform systems installation over relational databases. It
offers several scenarios for installing the platform that combine (i) bootstrapping of ontologies and mappings
from relational schemas, (ii) importing of existing ontologies in the platform via alignment or layering. O&M
bootstrapper is tightly integrated with other Optique components and this allows to facilitate installation
with mapping editing and ontology approximation. Moreover, O&M bootstrapper can encode in mappings
information needed for provenance of query answers. We implemented the bootstrapper, integrated it in
the Optique platform, and extensively evaluated on several database schemas including the ones provided
by Statoil and Siemens. We currently work several challenging research directions that are tightly related
to T4.1: bootstrapping of complex mappings and benchmarking. We presented our results on a number of
international venues and to Statoil and Siemens users.

List of Authors

Ernesto Jiménez-Ruiz (UOXF)
Evgeny Kharlamov (UOXF)
Dmitriy Zheleznyakov (UOXF)
Ian Horrocks (UOXF)
Domenico Fabio Savo (UNIROMA1)
Valerio Santarelli (UNIROMA1)
Jose Mora (UNIROMA1)
Riccardo Rosati (UNIROMA1)
Marco Console (UNIROMA1)
Evgenij Thorstensen (UiO)
Dag Hovland (UiO)
Martin Giese (UiO)
Leif Harald Karlsen (UiO)
Daniel Lupp (UiO)
Martin Georg Skjæveland (UiO)
Johannes Trame (FOP)
Christoph Pinkel (FOP)
Thomas Hubauer (SIEMENS)
Mikhail Roshchin (SIEMENS)

2

http://www.optique-project.eu/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Internal Reviewers
Martin Rezk (FUB)
Özgür L. Özçep (TUHH)

3

Contents

1 Introduction 7

2 Related Work 10

3 Preliminaries 11
3.1 Relational database . 11
3.2 Ontologies and the Web Ontology Language (OWL) . 11

3.2.1 The OWL 2 QL profile . 12
3.3 Ontology-to-Schema (OBDA) Mappings . 13

3.3.1 Direct Mapping Specification and R2RML language . 13
3.4 Ontology-to-Ontology Alignments . 14

3.4.1 Representation of Ontology Alignments . 15
3.4.2 Semantic Consequences of the Integration . 15

3.5 Provenance . 16
3.6 Preliminaries for ontology approximation . 17

3.6.1 Basic Definitions . 17

4 Installation Scenarios 18

5 Bootstrapping Techniques 20
5.1 Running example . 20
5.2 Bootstrapping of Mappings . 21

5.2.1 Layering an Existing Ontology . 22
5.3 Bootstrapping of Ontologies . 22

5.3.1 Adding hierarchy to the ontology classes . 24
5.3.2 Dealing with multiple properties with the same name . 24
5.3.3 Annotation Schema for the Query Formulation Interface 24

5.4 Enhancing Bootstrapping with External Ontology . 25
5.4.1 Ontology Alignment . 26
5.4.2 Alignment Repair . 26

5.5 Ontology Approximation . 27
5.5.1 Global semantic approximation . 28
5.5.2 K-approximation . 29
5.5.3 Approximation in OWL 2 QL . 30
5.5.4 Computing the entailment set in OWL 2 QL . 31

5.6 Provenance in Bootstrapped Mappings . 31
5.6.1 Provenance model . 31
5.6.2 Provenance at URI level . 32
5.6.3 Provenance at triple level . 33
5.6.4 Provenance at graph level . 33

4

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

6 Post-Bootstrapping Analysis 35
6.1 Semi-Automatic Ontology Layering . 35
6.2 Validation of the boostrapped ontology and mappings . 35
6.3 Guidelines for the manual construction of an OBDA specification 36

7 Integration with the Optique Platform 37
7.1 RDB Schema Selection and Bootstrapping . 38

7.1.1 Ontology Alignment . 38
7.1.2 Ontology approximation . 38
7.1.3 Ontology an Mapping Storage . 40
7.1.4 Integrated O&M boostrapper . 40

8 Evaluation 41
8.1 Installing Optique Platform at Statoil . 41

8.1.1 The database . 41
8.1.2 Experiments . 41

8.2 Installing Optique Platform at Siemens . 41
8.2.1 Siemens Schemata and Ontologies . 42
8.2.2 Coverage of Query Terms by the Ontologies . 42

9 Ongoing Work 44
9.1 Benchmark for Ontology Alignment . 44
9.2 Benchmark for Ontology and Mapping Bootstrapping . 44
9.3 Bootstrapping of Complex Mappings . 45

9.3.1 Basic Definitions . 45
9.3.2 Finding classes based on joins . 45
9.3.3 Finding classes based on clusters of attributes . 46

Bibliography 47

Glossary 52

A R2RML direct mapping cases 53

B OM 2013: IncMap 57

C Initial guidelines for OBDA specification 70

D LogMap: OM 2013 paper 76

E LogMap: OM 2014 paper 85

F ISWC 2014: Conservativity in Ontology Alignments 95

G ISWC 2014: Repair in Ontology Alignments 112

H ISWC 2014: Ontology Approximation 129

I DL 2013: Ontology Approximation 146

J Empirical Evaluation of the Ontology Approximation Module 159

K Optique demo: ISWC 2013 paper 162

5

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

L Optique demo: 2014 (submitted) 167

M ISWC 2014: Ontology Alignment for Query Answering 172

6

Chapter 1

Introduction

Building an ontology and connecting it to the data sources via mappings is a costly process, especially for
large and complex databases. To aid this process, tools that can extract a preliminary ontology and mappings
from the source schema play a critical role.

In order to ease the production of initial versions of the ontology and mappings, the Optique platform
includes a O&M bootstrapping component that takes a set of database schemata as the input, and returns
an ontology and a set of mappings that connect the terms occurring in the ontology to the schema elements.

The purpose of this document is to describe the designed and implemented Techniques for Ontology and
Mapping (O&M) Bootstrapping corresponding to the Task T4.1 of WP4.

Challenges of the Work package. Within Optique, WP4 deals with the problems related to the man-
agement of the OBDA specification. The specification of an Ontology-Based Data Access (OBDA) system
[14, 59] is a triple ∐︀𝒪,𝒮,ℳ̃︀, where 𝒪 is an ontology, providing a conceptual specification of the domain of
interest, 𝒮 is an intensional specification (schema) of a set of data sources, andℳ is a set of mapping asser-
tions, i.e., expressions that specify the relationship between the ontology and the data sources, by means of
queries over the ontology that are put in correspondence with queries over the data sources. OBDA systems
crucially depend on the existence of suitable ontologies and mappings. Developing them from scratch in a
Big Data scenario is likely to be expensive, thus, practical OBDA systems should support a (semi-)automatic
creation of an initial ontology and set of mappings [35, 44].

Challenges of the Task. Task T4.1 has the goal of developing techniques and methodologies to facilitate
the rapid deployment of the platform in new applications and application domains. Concretelly, this will
lead to the development of the desired initial ontology and mappings.

Summary of Task Results. The Optique system, within its O&M Management system (see architecture
in Figure 1.1), includes an O&M bootstrapping module that allows to perform systems installation over
relational databases. O&M bootstrapper offers several scenarios for installing the platform that combine
(i) bootstrapping of ontologies and mappings from relational schemas, (ii) importing of existing ontologies
into the platform via alignment or layering. O&M bootstrapper is tightly integrated with other Optique
components and this allows to facilitate installation with mapping editing and ontology approximation.
Moreover, O&M bootstrapper can encode in mappings information needed for the provenance of query
answers. We implemented the bootstrapper, integrated it in the Optique platform, and extensively evaluated
on several database schemas including the ones provided by Statoil and Siemens. We currently work several
challenging research directions that are tightly related to T4.1: bootstrapping of complex mappings and
benchmarking. We presented our results on a number of international venues and to Statoil and Siemens
users.

List of Achievement in Year 2.

7

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

External
visualisation

engines

Workbench
visualisation

engine

Configuration
 of modules

LDAP
authentification

Integrated via
Information Workbench

Information Workbench frontend API
(E.g., widget development, Java, REST)

 Application,
 Internal Data
 Layer

Presentation
Layer

Query Formulation
Processing

Components

Ontology and Mapping
Management Interface

Ontology editing
Interface: Protégé

Query
driven

ontology
construction

Ontology & Mapping Manager's
Processing Components

O&M matching,
alignment system

O&M
evolution and
transformation

engine

O&M
analyser,
reasoner

O&M revision,
control, editing

O&M
bootstrapper

Front end:
mainly Web-basedComponent

Group of components

Optique solution
External solution

Components Colouring Convention

API

Application
receiving answers

OWL API
Sesame API

Shared
triple
store

- ontology
- mappings
- configuration
- queries
- answers
- history
- lexical
 information
- etc.

Ontology Processing

Ontology
modularization

Ontology reasoner 1
Ontology reasoner 2

...

Figure 1.1: Ontology and Mapping Management component of the Optique OBDA system

• O&M components of Year 1 implementation were improved and extended:

– ontology alignment is improved with safety verification,

– W3C test cases for the O&M bootstrapper were implemented,

– the O&M bootstrapper is tightly integrated with the mapping editor,

– installation GUI and wizards were improved,

• extensive experiments and evaluation of O&M bootstrapper were conducted on relational schemas from
use-cases and other schemas,

• new techniques for bootstrapping of direct mappings, called layering, were developed, implemented,
and integrated into the Optique platform,

• preliminary techniques for bootstrapping of complex mappings, i.e., involving select, project, and join
relational operators were developed,

• preliminary techniques for embedding provenance in bootstrapped mappings were developed,

• work on benchmarking O&M bootstrapping approaches has been started.

8

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Compliance with T4.1 Task Description and Relationship with Other Tasks and Work pack-
ages. Results of both Optique years in T4.1 match the goal of this task in the development of techniques to
facilitate the rapid development of the platform in the new applications and application domains, in particu-
lar, in the development of an initial ontology and mappings. Techniques and software components developed
within T4.1 are tightly connected with other tasks within WP4 and other work packages. In particular, the
ontology approximation module developed within T4.2 as well as the mapping editor are integral parts of
the bootstrapping workflows. Implementation and evaluation required in T4.4 was conducted in accordance
with the task. The alignment component of the bootstrapper allows to integrate in the platform domain
ontologies that are specifically developed for the purpose of query formulation and thus provides a bridge
between T4.1 and WP3. The layering component allows to facilitate query driven ontology construction of
WP3: one can extract semantic terms from users queries, layer them to the schema underlying the platform
installation, and then integrate the terms in the platforms via ontology alignment.

Structure of the Deliverable. Chapter 2 presents some related work and motivates our decisions in the
development of O&M bootstrapping techniques. Chapter 3 gives preliminaries and notation that we use in
the deliverable. In Chapter 4 we presents main scenarios for platform installation. Chapter 5 presents our
O&M bootstrapping techniques, which in particular support the above installation scenarios. More precisely,
we start with a running example in Section 5.1, present mapping bootstrapping techniques in Section 5.2
present ontology bootstrapping techniques in Section 5.3, show how bootstrapped ontologies can be enhanced
with external ones in Section 5.4, how to approximate ontologies in Section 5.5, how to integrate provenance
in bootstrapped mappings in Section 5.6. Chapter 6 discusses hot to do analyse ontologies and mappings
after they were bootstrapped. Chapter 7 discusses how the installation module is integrated in the platform.
Chapter 8 explains how we conducted evaluation of the module. Finally, Chapter 9 reports on our ongoing
work on benchmarking and bootstrapping of complex mappings.

9

Chapter 2

Related Work

In the literature one can find a broad range of approaches to bootstrap an ontology and mappings from a
relational database schema. The interested reader may have a look at the following surveys [67, 72]. These
approaches can be classified with respect to different aspects such as:(i) level of automation (i.e. manual,
semi-automatic, automatic), (ii) type of mappings (i.e. complex or direct mappings), (iii) language of the
bootstrapped mappings and the ontology, (iv) reuse of external vocabularies (e.g. domain ontologies or
thesauri), and (v) purpose (e.g. OBDA, constraint validation, database integration, ontology learning).

RDFS and OWL 2 have been the most common languages for the bootstrapped ontology, although some
systems have also used DLR-Lite based languages (e.g. [50]) and extensions based on SWRL (e.g. [31, 48]).

Many systems like D2RQ [10], SquirrelRDF [1], Ontop [62] and Mastro [18] used their own native language
to define mappings before the R2RML specification [2] was completed.

The approaches in [49, 6, 50, 9, 63, 66, 60] present different solutions to create (automatic) direct mappings
between the ontology and the relational database. Some of them (e.g., [50, 66, 60]), as our approach, closely
follow the W3C “Direct Mapping of Relational Data to RDF” recommendation [3]; and only a few already
focus on R2RML mappings (e.g., [66, 60]).

Systems like IncMap [58] present a more challenging approach where a domain ontology is directly mapped
to the relational database schema in a semi-automatic process.

The approaches in [17, 16] uses ontology learning techniques to exploit the data and discover interesting
patterns that can be included to enrich the ontology.

Finally, systems like Automapper [31], Relational.OWL [25] and ROSEX [23] complement the boot-
strapped ontology with links to domain ontologies. The approach described in [63] also use background
knowledge to infer new hierarchical relationships.

Although we could have reused one of the off-the-shelf bootstrapper we advocated for a custom imple-
mentation. As described above, most existing approaches focuse on languages of mappings and ontologies
different from what we require for our OBDA solution (i.e. W3C standards). At the same time, our so-
lution allows for a more fine-grained control over the different bootstrapping components and workflows in
Optique, e.g., (i) communication with the Optique triple store to access the database schema and store
the bootstrapped ontology and mappings; (ii) communication with the Optique APIs; (iii) use of ontology
aligners to link the bootstrapped ontology with state of the art domain ontologies; (iv) use of ontology ap-
proximators to ensure that the bootstrapped is within the OWL 2 QL profile; (v) viualization and edition
of the mappings after the bootstrapping.

In addition, our bootstrapper provides three different installation scenarios (see Section 4), which involve
more or less manual intervention depending on the query requirements (i.e. the ontology may need to be
extended and/or more sophisticated R2RML mappings may be required).

10

Chapter 3

Preliminaries

In this section we give some preliminaries about the resources, specifications and techniques we use in the
deliverable.

3.1 Relational database

In this section we present some basic definitions related to relational data bases which will be used in the
following sections. A relation database is composed by several schemas and each eschema by several tables.

We treat foreign key constraints as belonging to the attributes of a table, in the sense that they are
preserved under projection and joins.

Definition 3.1.1 (Relation or Table) A relation or table 𝑅 is a set of attributes attr(𝑅) = {𝑎1, . . . , 𝑎𝑛}
together with a set of tuples over attr(𝑅). Each attribute 𝑎 has a type type(𝑎) specifying the values it permits.

Definition 3.1.2 (Projection) Let 𝑅 be a table, and 𝐴 = {𝑎1, . . . , 𝑎𝑚} a subset of attr(𝑅). The projection
of 𝑅 onto 𝐴 is the table 𝜋𝐴(𝑅) = {𝑡⋃︀𝐴 ⋃︀ 𝑡 ∈ 𝑅}, with set of attributes attr(𝜋𝐴(𝑅)) = 𝐴.

Definition 3.1.3 (Primary key) Let 𝑅 be a table. A primary key pk(𝑅) for 𝑅 is a declared subset of
attributes 𝐴 ⊆ attr(𝑅) which uniquely identifies each tuple in 𝑅.

Definition 3.1.4 (Superkeys) Let 𝑅 be a table. A set of attributes 𝐴 ⊆ attr(𝑅) is a superkey for 𝑅 if for
every pair of distinct tuples 𝑡, 𝑡′ ∈ 𝑅, we have 𝑡⋃︀𝐴 ⇑= 𝑡′⋃︀𝐴.

Definition 3.1.5 (Joins on foreign keys) We say that a table 𝑇1 references another table 𝑇2 whenever 𝑇1
contains a foreign key that references 𝑇2. We write fk(𝑇1, 𝑇2) for this attribute of 𝑇1, and refs(𝑇) for the set
of tables that reference 𝑇 .

If 𝑇1 references 𝑇2, we write 𝑇1&fk𝑇2 for the equijoin of 𝑇1 and 𝑇2 on the foreign key. Likewise, we write
𝑇1 ⋉fk 𝑇2 for the left semijoin on the foreign key, that is, the set of tuples 𝜋attr(𝑇1)

(𝑇1 &fk 𝑇2).
We also write rojfk(𝑇1, 𝑇2) for the right outer join of 𝑇1 and 𝑇2 on the foreign key.

Definition 3.1.6 (Many to Many Tables) In our setting, a relation 𝑅 is considered as a many to many
table if attr(𝑅)={𝑎1, 𝑎2}=pk(𝑅), and 𝑎1 and 𝑎2 are foreign keys.

3.2 Ontologies and the Web Ontology Language (OWL)

An ontology is usually referred to as a ‘conceptual model’ of (some aspect of) the world. It introduces the
vocabulary of classes and properties that describe various aspects of the modelled domain. It also provides
an explicit specification of the intended meaning of the vocabulary by describing the relationships between
different vocabulary terms.

11

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

The Web Ontology Language (OWL), and its revision OWL 2 [20], are well known languages for ontology
modeling in the Semantic Web. OWL ontologies are already being used in domains as diverse as bio-medicine,
geology, agriculture, defence, and energy industry.

The formal underpinning of OWL 2 is provided by description logics (DLs) [7]—knowledge representation
formalisms with well-understood formal properties. In this section, we very briefly summarise the basics of
DLs, and refer the interested reader to [7, 20, 37] for further information.

DLs allow ontology developers to describe a domain of interest in terms of individuals, atomic concepts
(usually called classes in OWL), and roles (also called properties). DLs also allow for concept descriptions
(i.e., complex concepts) to be composed of atomic concepts and roles by providing a set of concept con-
structors. The DLs underlying OWL provide for intersection (⊓), union (⊔) and complement (¬), as well as
enumerated classes (called oneOf in OWL) and restricted forms of existential (∃), universal (∀) and cardi-
nality restrictions (≥,≤,=) involving an atomic role 𝑅 or its inverse 𝑅−. A DL ontology 𝒪 consists of a set
of axioms. In the DLs underlying OWL it is possible to assert that a concept (or concept description) 𝐶 is
subsumed by (is a sub-concept of) 𝐷 (written 𝐶 ⊑ 𝐷), or is exactly equivalent to 𝐷 (written 𝐶 ≡ 𝐷). It is
also possible to assert subsumption of and equivalence between roles as well as to establish special constraints
on roles (e.g., that a role should be interpreted as a transitive or as a functional relation).

DLs are equipped with a formal semantics, which enables the development of reasoning algorithms for
answering complex queries about the domain. DLs, in fact, can be seen as decidable subsets of first-order
logic, with individuals being equivalent to constants, concepts to unary predicates, and roles to binary
predicates. As in the case of a first-order knowledge base, an interpretation ℐ is a model of an ontology
𝒪 (written ℐ ⊧ 𝒪) if ℐ satisfies all the axioms in 𝒪; 𝒪 entails an axiom 𝛼 (respectively an ontology 𝒪′),
written 𝒪 ⊧ 𝛼 (𝒪 ⊧ 𝒪′), if ℐ ⊧ 𝛼 (respectively ℐ ⊧ 𝒪′) for every model ℐ of 𝒪. Finally 𝒪 and 𝒪′ are logically
equivalent (written 𝒪 ≡ 𝒪′) if 𝒪 ⊧ 𝒪′ and 𝒪′ ⊧ 𝒪.

3.2.1 The OWL 2 QL profile

The OWL 2 QL1 profile is tailored for OBDA applications that aim at performing reasoning on top of very
large volumes of data. One of the main motivations of this profile is to query data in a relational database
using an ontology. Queries formulated over the ontology vocabulary are then translated into queries on the
database using reasoning. The expressivity of OWL 2 QL is a bit restricted so that the ontology language
underlying OWL 2 QL has the first-order (FO) rewritability property [15].

OWL 2 QL supports the following ontology axioms:

• subclass axioms

• class expression equivalence

• class expression disjointness

• inverse object properties

• property inclusion (not involving property chains)

• property equivalence

• property domain

• property range

• disjoint properties

• symmetric properties

• reflexive properties
1http://www.w3.org/TR/owl2-profiles

12

http://www.w3.org/TR/owl2-profiles

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

• irreflexive properties

• asymmetric properties

• assertions other than individual equality assertions and negative property assertions

Class expression in subclass axioms and equivalence axioms are constrained as follows:

• Subclass expression: an atomic class, existential quantification where the class is limited to Top
class, and existential quantification to a data range.

• Superclass expression: and atomic classes, intersection, existential quantification to a class, and
existential quantification to a data range.

3.3 Ontology-to-Schema (OBDA) Mappings

Via ontology-to-schema mappings (or OBDA mappings or mappings for short) one can declaratively define
how ontological terms are related to terms occurring in the relational schema. For example, mappings can
be seen as view definitions of the following form that declare how to populate classes with objects—in
OWL objects are represented with Uniform Resource Identifiers (URIs)—and to populate properties with
object-object and object-value pairs:

Class(𝑓𝑜(𝑥))¢ SQL(𝑥),
Property(𝑓𝑜(𝑥), 𝑓𝑜(𝑦))¢ SQL(𝑥, 𝑦),
Property(𝑓𝑜(𝑥), 𝑓𝑣(𝑦))¢ SQL(𝑥, 𝑦),

where SQL(𝑥) and SQL(𝑥, 𝑦) are SQL queries with respectively one and two output variables,2 and 𝑓𝑜, 𝑓𝑣
are functions that ‘cast’ values returned by SQL into respectively objects, i.e, URIs, and values.3 Classes
are populated with URIs 𝑓𝑜(𝑥) computed from the values 𝑥 returned by SQL(𝑥). Properties can relate two
objects, e.g., by stating that Bob knows John, or assign a value to an object, e.g., by stating Bob’s age is 25,
and they are respectively populated with pairs of objects 𝑓𝑜(𝑥), 𝑓𝑜(𝑦) or pairs of an object 𝑓𝑜(𝑥) and value
𝑓𝑣(𝑦) computed from the values 𝑥 and 𝑦 returned by the SQL query.

Given a database and a set of mappings over it, one can execute SQL queries in the mapping definitions
and populate the classes and properties of the mappings, thus creating a set of ontological facts. This process
is usually referred to as virtual materialisation of the ontological facts defined by the mappings.

3.3.1 Direct Mapping Specification and R2RML language

A mapping is direct if it relates a table to a concept or an attribute to a property. In the O&M boostrapper
we have closelly followed the W3C recommendation A Direct Mapping of Relational Data to RDF 4 which
specifies a direct RDF Graph representation of the relational database.

For example, the table Person(id (PK), name, age, kwows (FK)) with two rows (1, Bob, 25, 2) and (2,
John, 30, 1) would be translated into the following triples:

• <http://base_uri/People/1> rdf:type <http://base_uri/People>

• <http://base_uri/People/1> <http://base_uri/People/name> Bob

• <http://base_uri/People/1> <http://base_uri/People/age> 25

• <http://base_uri/People/1> <http://base_uri/People/knows> <http://base_uri/People/2>
2Note that mappings may involve SQL queries with more than 2 variables.
3 These functions should ensure coherent generation of URIs that respects primary and foreign keys.
4http://www.w3.org/TR/rdb-direct-mapping/

13

http://www.w3.org/TR/rdb-direct-mapping/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

• <http://base_uri/People/2> rdf:type <http://base_uri/People>

• <http://base_uri/People/2> <http://base_uri/People/name> John

• <http://base_uri/People/2> <http://base_uri/People/age> 30

• <http://base_uri/People/2> <http://base_uri/People/knows> <http://base_uri/People/1>

Direct mappings are particular cases of the mappings that can be expressed in the R2RML standard.5

R2RML is a W3C recommendation for expressing customized and expressive mappings from relational
databases to RDF datasets. Intuitively, an R2RML mappings allows to map any valid SQL query or view
(i.e. logical table) to a target vocabulary (e.g. ontology entities). R2RML mappings are RDF graphs and
are typically stored in Turtle syntax.

R2RML mappings are composed by a set of triples map. A triples map specifies a rule for translating
each row of a logical table to zero or more RDF triples. These rules are composed by a subject map (subjects
often are IRIs that are generated from the primary key columns) and zero or more predicate-object maps.

For example, the TriplesMap1 given below represents the direct R2RML mappings to translate the table
given above into RDF data.

:TriplesMap1

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "People"] ;

rr:subjectMap [

rr:template "http://base_uri/People/{id}" ;

rr:class http://base_uri/People ;

] ;

rr:predicateObjectMap [

rr:predicate http://base_uri/name ;

rr:objectMap [rr:column "name"]

] ;

rr:predicateObjectMap [

rr:predicate http://base_uri/age ;

rr:objectMap [rr:column "age"]

] ;

rr:predicateObjectMap [

rr:predicate http://base_uri/knows ;

rr:objectMap [

rr:template "http://base_uri/People/{knows}"

]

] .

On the other hand TriplesMap2 represents a more complex mapping where the logical table of the
mappings is defined by a SQL query.

:TriplesMap2

a rr:TriplesMap ;

rr:logicalTable [rr:sqlQuery "Select id FROM People WHERE age<26"] ;

rr:subjectMap [

rr:template "http://base_uri/People/{id}" ;

rr:class http://base_uri/YoungPeople ;

] .

3.4 Ontology-to-Ontology Alignments

In this section, we present the formal representation of ontology alignment and the notions of semantic
difference, alignment coherence and conservativity principle violation.

5http://www.w3.org/TR/r2rml/

14

http://www.w3.org/TR/r2rml/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

3.4.1 Representation of Ontology Alignments

Given two ontologies 𝒪1 and 𝒪2 as input an ontology alignment system computes a set of correspondences
or ontology alignments between the vocabularies of these ontologies.

Ontology alignments are conceptualised as 5-tuples of the form ∐︀𝑖𝑑, 𝑒1, 𝑒2, 𝑛, 𝜌̃︀, with 𝑖𝑑 a unique identifier,
𝑒1, 𝑒2 entities in the vocabulary or signature of the relevant input ontologies (i.e., 𝑒1 ∈ Sig(𝒪1) and 𝑒2 ∈
Sig(𝒪2)), 𝑛 a confidence measure between 0 and 1, and 𝜌 a relation between 𝑒1 and 𝑒2, typically subsumption
(i.e., 𝑒1 is more specific than 𝑒2), equivalence (i.e., 𝑒1 and 𝑒2 are synonyms) or disjointness (i.e., no individual
can be an instance of both 𝑒1 and 𝑒2) [29].

RDF Alignment [24] is the main format used in the OAEI (Ontology Alignment Evaluation Initiative)
campaign to represent mappings containing the aforementioned elements. Additionally, mappings are also
represented as OWL 2 subclass, equivalence, and disjointness axioms [20]; mapping identifiers (𝑖𝑑) and
confidence values (𝑛) are then represented as axiom annotations. Such a representation enables the reuse
of the extensive range of OWL 2 reasoning infrastructure that is currently available. Note that alternative
formal semantics for ontology mappings have been proposed in the literature (e.g., [12]).

3.4.2 Semantic Consequences of the Integration

The ontology resulting from the integration of two ontologies 𝒪1 and 𝒪2 via a set of alignments 𝒜 may entail
axioms that do not follow from 𝒪1, 𝒪2, or 𝒜 alone.

In [39] three principles were proposed to minimize the number of potentially unintended consequences,
namely: (i) consistency principle, the alignment should not lead to unsatisfiable classes in the integrated
ontology, (ii) locality principle, the alignment should link entities that have similar neighbourhoods, (iii) con-
servativity principle, the alignment should not introduce new semantic relationships between concepts from
one of the input ontologies.

In this deliverable, we focus on the consistency and conservativity principles.

Consistency principle

The consistency principle requires that the vocabulary in 𝒪𝒰 = 𝒪1 ∪ 𝒪2 ∪ 𝒜 be satisfiable, assuming the
union of input ontologies 𝒪1 ∪𝒪2 (without the alignments 𝒜) does not contain unsatisfiable concepts. Thus
𝒪𝒰 should not lead to any axiom of the form 𝐴 ⊑ �, for any 𝐴 ∈ Σ = Sig(𝒪1 ∪𝒪2).

Definition 3.4.1 (Alignment incoherence) A set of alignments 𝒜 is incoherent with respect to 𝒪1 and
𝒪2, if there exists a class 𝐴, in the signature of 𝒪1 ∪𝒪2, such that 𝒪1 ∪𝒪2 ⇑⊧ 𝐴 ⊑ � and 𝒪1 ∪𝒪2 ∪𝒜 ⊧ 𝐴 ⊑ �.

An incoherent set of alignments 𝒜 can be fixed by removing mappings from 𝒜. This process is referred
to as alignments repair (or repair for short).

Definition 3.4.2 (Alignment Repair) Let 𝒜 be an incoherent set of alignments w.r.t. 𝒪1 and 𝒪2. A set
of alignments ℛ ⊆ 𝒜 is a repair for 𝒜 w.r.t. 𝒪1 and 𝒪2 iff 𝒜 ∖ℛ is coherent w.r.t. 𝒪1 and 𝒪2.

A trivial repair is ℛ = 𝒜, since an empty set of alignments is trivially coherent (according to Definition
3.4.1). Nevertheless, the objective is to remove as few alignments as possible. Minimal repairs are typically
referred to in the literature as mapping diagnoses [52] — a term coined by Reiter [61] and introduced to the
field of ontology debugging in [65].

Conservativity Principle

The conservativity principle (general notion) states that the integrated ontology 𝒪𝒰 = 𝒪1 ∪𝒪2 ∪𝒜 should
not induce any change in the concept hierarchies of the input ontologies 𝒪1 and 𝒪2. Note that we assume
that the alignments 𝒜 are coherent with respect to 𝒪1 and 𝒪2.

15

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Definition 3.4.3 (Conservativity principle violations) A set of alignments 𝒜 violates the conservativ-
ity principle if 𝒪1 ∪𝒪2 ∪𝒜 ⊧ 𝐴 ⊑ 𝐵 with 𝐴 and 𝐵 two entities in the signature of one of the input ontologies
𝒪𝑖, and 𝒪𝑖 ⇑⊧ 𝐴 ⊑ 𝐵.

A light variant of the conservativity principle was proposed in [69] (see Appendix F). This variant requires
that the integrated ontology 𝒪𝒰 does not introduce new subsumption relationships between concepts from
one of the input ontologies, unless they were already involved in a subsumption relationship or they shared
a common descendant. The previous defintion should be extended with the conditions: (i) 𝒪𝑖 ⇑⊧ 𝐵 ⊑ 𝐴, and
(ii) there is no 𝐶 in the signature of 𝒪𝑖 s.t. 𝒪𝑖 ⊧ 𝐶 ⊑ 𝐴, and 𝒪𝑖 ⊧ 𝐶 ⊑ 𝐵.

This variant of the conservativity principle follows the assumption of disjointness proposed in [64]. That
is, if two atomic concepts 𝐴,𝐵 from one of the input ontologies are not involved in a subsumption relationship
nor share a common subconcept (excluding �) they can be considered as disjoint. Hence, the conservativity
principle can be reduced to the consistency principle, if the input ontologies are extended with sufficient
disjointness axioms without causing logical conflicts.

3.5 Provenance

Provenance has been traditionally applied in the context of art or digital libraries as means to document
the history of art objects or digital objects life cycles [32]. In our case we are concerned with provenance
in OBDA systems for the main purpose of keeping the traceability of the data provided. OBDA systems
provide access to data stored in data sources, usually databases, by generating new data that is part of an
ontological model, usually assertions in an ABox, either materialized or virtual. By keeping the provenance
relation between the newly generated data and the data used for its generation (in the data source) we can
keep the traceability of the data. The traceability of the data provides access to the characteristics of the
data that are dependent on the process used to obtain or derive this data up to its origin and context.

PROV-O PROV-O is an OWL2 ontology for the PROV Data Model [8], which allows to model provenance
information in a semantically and automatically processable way. We will refer to URIs in the PROV-
O namespace with the prefix “prov:”. At its core, PROV-O models entities that are generated by some
activity and attributed to some agent. Among the agents we can find software agents, as for example OBDA
systems. Additionally, PROV-O allows modeling the “derivation” of some entities from other entities and
the authorship of derived entities. For instance, when data is extracted from a database to derive individuals
of an ontology we can specify that an individual was derived from (prov:wasDerivedFrom) the database or a
part of it (e.g. a table) and that this individual was generated by (prov:wasGeneratedBy) the OBDA system
or a part of it (e.g. a mapping assertion).

Provenance and OBDA mappings Provenance in OBDA mappings consists on maintaining the trace-
ability provided by the provenance meta-information through the OBDA process. This means providing
meta-information about the provenance of the data produced by the OBDA system (e.g. URIs, triples).
This provenance meta-information will be related with the data sources to which the OBDA system is giving
access and abstracting. For example: A particular triple may have been produced by a particular mapping
assertion. This assertion would query a particular database and this could imply some other considerations
like trust or quality (including monetary costs). All these considerations depend on the provenance of the
information that the OBDA system produces. For clarity purposes, additionally to provenance in OBDA
mappings we can consider two related problems: provenance of OBDA mappings and OBDA mappings for
provenance data.

Provenance of OBDA mappings models the meta-information related with the provenance of a particular
resource, in this case OBDA mappings. This type of provenance is a particular application of provenance
models to a particular type of resource, in this case OBDA mappings. OBDA mappings for provenance
data are mappings that provide access from an ontological view to a particular type of data, in this case

16

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

provenance data. This type of OBDA mappings are a particular type of mappings that give access to a
particular type of information that is stored in the database, in this case provenance information, but they
are not qualitatively different from regular OBDA mappings.

3.6 Preliminaries for ontology approximation

Ontologies provide a conceptualization of a domain of interest which can be used for different objectives,
such as providing a formal description of the domain of interest for documentation purposes, or providing a
mechanism for reasoning upon the domain. For instance, they are the core element of the OBDA [14, 59]
paradigm, in which the ontology is utilized as a conceptual view, allowing user access to the underlying
data sources. With the aim to use an ontology as a formal description of the domain of interest, the use of
expressive languages proves to be useful. If instead the goal is to use the ontology for reasoning tasks which
require low computational complexity, the high expressivity of the language used to model the ontology may
be a hindrance. In this scenario, the approximation of ontologies expressed in very expressive languages
through ontologies expressed in languages which keep the computational complexity of the reasoning tasks
low is pivotal. This motivates the study of the approximation of an ontology for OBDA applications, and
thus, the study of approaches for approximating ontologies in very expressive languages with ontologies
in languages, such as OWL 2 QL, that, characterized by low reasoning complexity, are suitable for query
answering purposes.

Several approaches have recently dealt with the problem of approximating ontologies. These can roughly
be partitioned in two types: syntactic and semantic. In the former, only the syntactic form of the axioms
of the original ontology is considered, thus those axioms which do not comply with the syntax of the target
ontology language are disregarded [74, 75]. This approach generally can be performed quickly and through
simple algorithms. However, it does not, in general, guarantee soundness, i.e., to infer only correct entail-
ments, or completeness, i.e., all entailments of the original ontology that are also expressible in the target
language are preserved [56]. In the latter, the object of the approximation are the entailments of the original
ontology, and the goal is to preserve as much as possible of these entailments by means of an ontology in the
target language, guaranteeing soundness of the result. On the other hand, this approach often necessitates to
perform complex reasoning tasks over the ontology, possibly resulting significantly slower. For these reasons,
the semantic approach to ontology approximation poses a more interesting but more complex challenge.

3.6.1 Basic Definitions

Let Σ be a signature of symbols for individual (object and value) constants and predicates, i.e., concepts,
value-domains, attributes, and roles. Let Φ be the set of all OWL 2 axioms over Σ.

With a slight abuse of notation, we say that an ontology over Σ is a finite subset of Φ. and that a language
ℒ over Σ is a set of ontologies over Σ. We call ℒ-ontology any ontology 𝒪 such that 𝒪 ∈ ℒ. Moreover, we
denote by Φℒ the set of axioms ⋃𝒪∈ℒ𝒪.

We call a language ℒ closed if ℒ = 2Φℒ . It is easy to see that while OWL 2 QL is a closed language, OWL
2 is not. Indeed, OWL 2 imposes syntactic restrictions that concern the simultaneous presence of multiple
axioms in the ontology (for instance, there exist restrictions on the usage of role names appearing in role
inclusions in the presence of the role chaining constructor).

In what follows, we denote with 𝑀𝑜𝑑(𝒪) the set of models of 𝒪. Moreover, given two ontologies 𝒪 and
𝒪′, we say that 𝒪 and 𝒪′ are logically equivalent if 𝑀𝑜𝑑(𝒪) =𝑀𝑜𝑑(𝒪′).

17

Chapter 4

Installation Scenarios

As mentioned in Section 1 the ontology and mappings are the backbone of an OBDA system. Consequently,
the problem of obtaining a suitable ontology and mappings has to be addressed in any implementation of
the OBDA approach.

The Optique’s O&M module provides semi-automatic support for the creation of the ontology and map-
pings by means of different installation scenarios that are schematically depicted in Figure 4.1.

bootstrapped

bootstrapped

(a) Bootstrapping ontology and mappings

bootstrapped

bootstrapped

imported

(b) Aligning bootstrapped and imported ontology
bootstrapped

bootstrapped

imported

layered

(c) Linking imported ontology directly to database

bootstrapped

bootstrapped

imported

manual

manual

manual

(d) Manual extensions of ontology and mappings

Figure 4.1: Installation scenarios

For example, the installation process usually starts with bootstrapping, i.e., automatic extraction of an
ontology and mappings from the database (see Sections 5.2 and 5.3 for details) as depiected in Figure 4.1(a).
Due to the nature of the automatic bootstrapping process, the bootstrapped ontology closely reflects the
structure of the underlying database, and thus, it may not be ideal for query formulation support. To
overcome this issue, the O&M bootstrapper allows importing of pre-existing external domain ontologies,
whose vocabulary is preferred by the domain experts, and ‘connect’ them to the bootstrapped one via
ontology alignment (see Section 5.4 for details) as depicted in Figure 4.1(b). Another possible installation
scenario is to layer a pre-existing domain ontology directly over the database (see Section 6.1 for details), i.e.,
to ‘connect’ it to the database schema with semi-automatically generated mappings (Figure 4.1(c)). Both

18

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

importing scenarios can address the case when there are several good domain ontologies available and they
can serve as entry points to users with potentially different needs. Finally, one can manually edit and extend
both ontology and mappings (see Section 6.3 for details) as depicted in Figure 4.1(d).

The Optique platform supports ontologies expressible in the OWL 2 QL profile of OWL 2 ontology
language, which was specifically designed for efficient data access. Imported or layered ontologies that go
beyond the expressivity of OWL 2 QL are approximated using the technique described in Section 5.5, which
allows to project rich input OWL 2 ontologies into the OWL 2 QL profile.

19

Chapter 5

Bootstrapping Techniques

This chapter describes the designed techniques for the O&M boostrapper. The O&M boostrapper takes a
set of database schemata as the input, and returns an OWL ontology and a set of (direct) R2RML mappings.
Intuitively, mappings will relate tables and attributes in the schema to classes and properties in the ontology.

5.1 Running example

Figure 5.1 shows a fragment of a database schema based on the domain of the Optique project. The schema
consist of 7 tables to store information about wellbores. For example, a Wellbore is given a name, has a
content (e.g. GAS or OIL), belongs to a Well, has one Operator and is located in a Field. Additionally, the
schema also stores information about types of wellbore. The examples in the subsequent sections will be
based on this schema.

Figure 5.1: Fragment of a relational database schema

20

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

5.2 Bootstrapping of Mappings

The bootstrapping module follows the W3C direct mapping specification, as introduced in Section 3.3.1, in
order to be compliant with the W3C standards. The W3C direct mapping specification provides a set of
cases and guidelines1 to generate R2RML mappings, for example, how to deal with missing primary keys,
many-to-many tables, composite keys, etc. Appendix A summarizes the cases that we have considered in
the mapping bootstrapper. Note that some types of mappings have not been considered since they require
(directly or indirectly) knowledge about the data (i.e. use of complex logical tables) or they have been left
for the extended boostrapper (i.e. null treatment). Some other types of mappings are considered as optional
like the generation of blank nodes when the primary key is missing.

For example, consider the running example in Figure 5.1. The following three triples maps will be
associated to the many-to-many table Field_Operator. Note that, many-to-many tables are special cases
within the direct mapping directives which does not imply a direct mapping from a table to an ontology
class

:TriplesMap1

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "Field"] ;

rr:subjectMap [

rr:template "http://base_uri/Field/{id}" ;

rr:class <http://base_uri/Field> ;

] ;

rr:predicateObjectMap [

rr:predicate http://base_uri/name ;

rr:objectMap [rr:column "name"]

] .

:TriplesMap2

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "Operator"] ;

rr:subjectMap [

rr:template "http://base_uri/Operator/{id}" ;

rr:class <http://base_uri/Operator> ;

] ;

rr:predicateObjectMap [

rr:predicate http://base_uri/name ;

rr:objectMap [rr:column "name"]

] .

:TriplesMap3

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "Field_Operator"] ;

rr:subjectMap [

rr:template "http://base_uri/Field/{fieldId}" ;

rr:class <http://base_uri/Field> ;

] ;

rr:predicateObjectMap [

rr:predicate http://base_uri/hasOperator ;

rr:objectMap [

rr:template "http://base_uri/Operator/{operatorId}"

]

] .

Note that our ontology and mapping bootstrapping techniques minimises the effect of the so-called
impedance mismatch problem [59], which is caused due to the fact that databases store data values (e.g
strings, integers, etc.) while the ontology includes objects uniquely identified by URIs. We address the
problem on the level of object generating functions discussed in Section 3.3. Our function respects primary

1http://www.w3.org/TR/rdb2rdf-test-cases/

21

http://www.w3.org/TR/rdb2rdf-test-cases/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

and foreign keys and ensures that all the generated objects are unique and the same object is generated when
required. The R2RML language provides mechanisms (i.e. templates) to implement the object generating
functions. For example, the basic rule to generate the URIs of the subjects in a triples map is the following:

http://base_uri/Table_name/{pk1}/{pk2}/.../{pkn}

If the table does not contain any primery key the templare URI is created using all columns in the table:

http://base_uri/Table_name/{col1}/{col2}/.../{coln}

Note that, many-to-many tables are special cases where no new subject URIs are defined.
When dealing with foreign keys, the URI of the object in the triples map associated to the referencing

table should be generated according to the URIs of the subjects of the referenced table. e.g.:

http://base_uri/Referenced_Table/{fk_col1}/{fk_col2}/.../{fk_coln}

In our example given above, the subjects and objects of the TriplesMap3 uses the same URIs as the
subjects in TriplesMap1 and TriplesMap2, respectively.

5.2.1 Layering an Existing Ontology

The W3C direct mapping specification does not introduce specific restrictions on the used ontology. The
R2RML mappings, for example, only require to reference the vocabulary (i.e. entity URI) of an exixting
ontology. Thus, the referenced ontology entities can come from a pre-existing external ontology and/or from
the results of the (ontology) bootstrapping (see Section 5.3).

For example, consider the running example in Figure 5.1. The table 𝐹𝑖𝑒𝑙𝑑 could be mapped to the
boostrapped ontology entity http://base_uri/Field and to the entity http://sws.ifi.uio.no/vocab/

npd-v2#Field from the Norwegian Petroleum Directorate (NPD) ontology [68] as in the following mapping.

:TriplesMap4

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "Field"] ;

rr:subjectMap [

rr:template "http://base_uri/Field/{id}" ;

rr:class <http://base_uri/Field>,<http://sws.ifi.uio.no/vocab/npd-v2#Field>;

] .

The (automatic) layering of a pre-existing ontology (i.e., to ‘connect’ it to the database schema with
direct mappings), requries the discovery of lexical correspondences between table names and ontology class
names, and between attribute names and ontology property names. Section 6.1 presents a semi-automatic
process to validate these discovered mappings.

This (installation) scenario can address the case when there are several good ontologies available and
they can serve as entry points to data for users with potentially different needs.

5.3 Bootstrapping of Ontologies

The W3C direct mapping specification does not introduce specific restriction on the axioms of the boot-
strapped ontology. As discussed in Chapter 2 there are several solutions in the literature to infer axioms
from the database schema constraints. Intuitively, a basic boostrapper would do the following: (i) each
relation or table 𝑅 is translated into an OWL class; (ii) each attribute 𝑎 not involved in a foreign key
is translated into an OWL datatype property; and (iii) each foreign key is translated in an OWL object
property. Next we present our solution.

• Vocabulary extraction

22

http://base_uri/Field
http://sws.ifi.uio.no/vocab/npd-v2#Field
http://sws.ifi.uio.no/vocab/npd-v2#Field

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

– Naming conventions. As in the R2RML mappings, the use of a proper naming convention
is very important. Table and attribute names from a relational database schema are translated
into URIs which are the unique identifiers for OWL entities (i.e. classes, data properties, object
properties and instances). uri(𝑅) and uri(𝑎) denote the URI of a relation 𝑅 and an attribute 𝑎,
respectively. The URIs uri(𝑅) are created using a base URI (i.e. http://base_uri/) and the
name of the table (i.e. http://base_uri/Field), uri:Field or field for short). The URIs
uri(𝑎) are created using the base URI, the name of the table of the attribute 𝑎, and the name of
the attribute 𝑎.

– OWL classes. Each relation or table 𝑅 (apart from many-to-many tables) is translated into an
OWL class. For example, in our running example depicted in Figure 5.1, the boostrapper would
create 6 classes.

– OWL data properties. Each attribute not involved in a foreign key is translated into an OWL
data property. For example, the attribute 𝑛𝑎𝑚𝑒 in the 𝐹𝑖𝑒𝑙𝑑 table in Figure 5.1 is represented
with a data property with URI field:name.

– OWL object properties. Each foreign keys is translated into a OWL object property. For
example, the foreign key attribute 𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛 in the relation 𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 is represented with the
object property with URI wellbore:locatedIn

• Propagation of constraints

– Domain axioms. Each data and object property is associated with an OWL property do-
main axiom. For example, the property field:name representing the attribute 𝑛𝑎𝑚𝑒 in the
table 𝐹𝑖𝑒𝑙𝑑 (see Figure 5.1) is associated the class uri:Field as domain. Thus the axiom
DataPropertyDomain(field∶name uri∶Field) is added to the boostrapped ontology.

– Data Range axioms. The type of an attribute type(𝑎) will be represented as OWL data range
axiom. For example, type(𝑛𝑎𝑚𝑒) in table 𝐹𝑖𝑒𝑙𝑑 (see Figure 5.1) is represented as the ontology
axiom DataRange(field∶name xsd∶string).

– Object Range axioms. Foreign keys link one table with another, thus the range of an ob-
ject property is the destination table of the source foreign key. For example, the foreign key
𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛 in the relation 𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 (see Figure 5.1) points to the relation 𝐹𝑖𝑒𝑙𝑑, and hence the
OWL object property range axiom ObjectPropertyRange(wellbore∶locatedIn uri∶Field) is added to
the boostrapped ontology.

– Existential restriction. Non nulleable attributes 𝑎 are translated into OWL existential restric-
tions. For example, in our running example, the 𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 attributes 𝑛𝑎𝑚𝑒 and ℎ𝑎𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 are
declared as not nulleable. Hence the boostrapped ontology is extended with the following OWL ax-
ioms: uri∶Wellbore ⊑ ∃wellbore∶name.xsd∶String and uri∶Wellbore ⊑ ∃wellbore∶hasOperator.uri∶Operator.

• Dealing with many-to-many tables. Many-to-many tables requires a special attention both in the
mapping and ontology generation. These tables are required by database management systems that
only support one-to-many relationships. However, in a higher level representation such as an ontology,
these junction relationships can be avoived by adding direct relationships between the referenced tables
in the many-to-many table. Concretelly, our boostrapper enriches the ontology with the following
information:

– Object properties. Two new OWL object properties are created. One represents the rela-
tionship between the referenced table 𝑇1 to the referenced table 𝑇2, while the second property
represents the inversere relationship.

– Domain and range axioms. The new object properties are associated a domain and a range,
which are the corresponding OWL classes of the referenced tables 𝑇1 and 𝑇2 in the many-to-many
relation, respectively.

23

http://base_uri/
http://base_uri/Field
uri:Field
field
field:name
wellbore:locatedIn
field:name
uri:Field

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

– Inverse property axioms. The two new properties are explicitly declared as inverse.

For example, in the running example depicted in Figure 5.1, the many-to-many table Field_Operator
leads to the creation of the object properties ℎ𝑎𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 and 𝑖𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑂𝑓 , one inverse of the other.
The domain and range of ℎ𝑎𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 are 𝐹𝑖𝑒𝑙𝑑 and 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, repsectively. While 𝑖𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑂𝑓
has 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 as domain and 𝐹𝑖𝑒𝑙𝑑 as range.

5.3.1 Adding hierarchy to the ontology classes

The O&M bootstrapper performs a basic discovery of potential subclass relationships between the classes
in the ontology. This automatic discovery may require a manual assessment to validate the new subclass
relationships. For every pair of tables 𝑅 and 𝑇 :

(i) if pk(𝑅) = fk(𝑅,𝑇) then the OWL class axiom SubClassOf (uri(R) uri(T)) is suggested. For instance,
in the example schema given in Figure 5.1, the 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 table’s primary key is also a
foreign key pointing to the 𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 table. It turns out to be an effective heuristic in such cases to
add a class inclusion axiom between these classes (i.e. DevelopmentWellbore ⊑Wellbore).

(ii) if attr(𝑅) ⊂ attr(𝑇) then the OWL class axiom SubClassOf (uri(T) uri(R)) is suggested.

(iii) if attr(𝑅)∩attr(𝑇) is a superkey for both 𝑅 and 𝑇 then we suggest a new class uri(𝑆𝑅𝑇) and the axioms
SubClassOf (uri(R) uri(SRT)) and SubClassOf (uri(T) uri(SRT)) to be added to the ontology.

5.3.2 Dealing with multiple properties with the same name

The O&M bootstrapper associates to each attribute a unique URI. For example, cosider the schema given
in Figure 5.1, the attribute 𝑛𝑎𝑚𝑒 in the relation 𝐹𝑖𝑒𝑙𝑑 and the attribute with the same name, i.e., 𝑛𝑎𝑚𝑒,
in the relation 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 get different URIs in the bootstrapped ontology. In our experiments we observed
that in some cases the introduction of different URIs for the same attribute names was hightly redundant.
There are several candidate solution to avoid such redundancy:

Compact attribute names If the O&M bootstrapper works under the compact attribute names regime,
then for compatible (i.e. same type and name) attributes will give the same URI. Hence, in the ontology,
the domain of these attributes will be composed by a union of classes. In the case of foreign keys, the
range of the derived object properties in the ontology will also be an union of classes. Note that,
disjunction is outside the OWL 2 QL profile. Alternatively, instead of adding multiple domain and
ranges, we can create existential restriction to be attached to each domain class. For example, for the
attribute 𝑛𝑎𝑚𝑒 in Relation 𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 we could add the axiom uri∶Wellbore ⊑ ∃uri∶name.xsd∶String. This
solution can be problematic if the attribute is nulleable. In Section 5.3.3 a complementary solution
using annotation properties is also proposed.

Adding a super property A simpler solution involves the addition of a super-property that groups com-
patible properties. For example, the properties 𝑤𝑒𝑙𝑙∶𝑛𝑎𝑚𝑒, 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒∶𝑛𝑎𝑚𝑒, 𝑓𝑖𝑒𝑙𝑑∶𝑛𝑎𝑚𝑒 and 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟∶
𝑛𝑎𝑚𝑒 are grouped under the new property 𝑢𝑟𝑖∶𝑛𝑎𝑚𝑒.

5.3.3 Annotation Schema for the Query Formulation Interface

The Optique Visual Query Formulation Interface (OptiqueVQS) is driven by the information available in
the (bootstrapped) ontology. We observed in our user study about the OptiqueVQS [71], that a purely
axiom driven query interface suffers from important practical limitations, e.g., it does not allow users to set
specific data values in queries, e.g., company/operator names. To address this issue we have enriched the
ontology with annotations.2 For example, we precomputed values that are frequently used, rarely changed,

2Note that, lists of values and numerical ranges in an OWL data property range fall outside OWL 2 QL, and thus it should
be encoded as non logical axioms

24

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

and from relatively small domains; this includes names of companies and oilfield, geolocations, temporal
information, ranges of numerical values, e.g., min/max possible depth of wellbores. The OptiqueVQS has
also been extended with a module to automatically customize the query interface by displaying data values
as pre-populated dropdown lists and range sliders.

In addition, as mentioned in Section 5.3.2, multiple property domains and ranges (i.e. dijunction of
classes as domain and ranges) is not permitted in OWL 2 QL. Thus an OWL 2 QL approximator as the one
to be presented in Section 5.5 will approximate or remove these axioms. However, although this information
may not have a crucial impact in the rewriting process, it does have an important role in the OptiqueVQS,
as for the list of values and numerical ranges in an OWL data property range. Hence, in order to be able
to keep this non OWL 2 QL information, we have added annotations to the ontology about the multiple
domains and ranges.

The annotations have been defined using the following annotation schema based on OWL 2 annotations
axioms:3

• http://eu.optique.ontology/annotations#geoLocation: this annotation property is used to an-
notate class with geo-location information such as fields or wellbores.

• http://eu.optique.ontology/annotations#temporal: this annotation property is used to annotate
classes with temporal information such as events or measurements.

• http://eu.optique.ontology/annotations#data_values: this annotation property annotates data
properties with specific data range values such as company names or field names.

• http://eu.optique.ontology/annotations#range_class: this annotation property annotates ob-
ject properties with class ranges. For example, the property 𝑢𝑟𝑖∶ℎ𝑎𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is annotated with
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 as range class.

• http://eu.optique.ontology/annotations#domain_class: this property annotates properties with
domains. For example, the property 𝑢𝑟𝑖∶𝑛𝑎𝑚𝑒 is annotated with 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 and 𝐹𝑖𝑒𝑙𝑑 as domain classes.
Additionally, this annotation property will also annotate annotation axioms using 𝑟𝑎𝑛𝑔𝑒_𝑐𝑙𝑎𝑠𝑠 or
𝑑𝑎𝑡𝑎_𝑣𝑎𝑙𝑢𝑒𝑠. That is, the annotation axiom for 𝑑𝑎𝑡𝑎_𝑣𝑎𝑙𝑢𝑒𝑠 representing the list of company names
is annotated with 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 as domain class.

• http://eu.optique.ontology/annotations#min_values: this annotation property indicates the
minimum value in a range of numerical values for a data property.

• http://eu.optique.ontology/annotations#max_values: this annotation property indicates the
maximum value in a range of numerical values for a data property.

• http://eu.optique.ontology/annotations#hidden: this annotation will indicate if a data property
should be considered for visualization in the query formulation interface.

5.4 Enhancing Bootstrapping with External Ontology

The boostrapped ontology, although it has been enriched with logical axioms as described in Section 5.3,
it will still usually be too close to the source schema. It is however increasingly often the case that a high
quality ontology of (parts of) the domain already exists, that captures the domain experts’ vocabulary better
than the directly mapped ontology.

When such a high quality ontology is available, the bootstrapping component allows importing it and
using it in the bootstrapping process (i.e. alignment of the directly mapped and the imported ontologies).
Special care needs to be taken to avoid introducing unwanted consequences: for instance the bootstrapper will
avoid adding alignment axioms that would lead to inconsistencies, or faulty consequences like Well ⊑WellBore

3http://www.w3.org/TR/owl2-new-features/#Extended_Annotations

25

http://eu.optique.ontology/annotations#geoLocation
http://eu.optique.ontology/annotations#temporal
http://eu.optique.ontology/annotations#data_values
http://eu.optique.ontology/annotations#range_class
http://eu.optique.ontology/annotations#domain_class
http://eu.optique.ontology/annotations#min_values
http://eu.optique.ontology/annotations#max_values
http://eu.optique.ontology/annotations#hidden
http://www.w3.org/TR/owl2-new-features/#Extended_Annotations

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Algorithm 1: Algorithm to detect and solve conservativity principle violations
1 Input: 𝒪1, 𝒪2: input ontologies; 𝒜: (coherent) input mappings;
2 Output: 𝒜′: output mappings; ℛ≈: approximate repair; 𝑑𝑖𝑠𝑗: number of disjointness rules
3 ∐︀𝒪′1,𝒪

′

2̃︀ ∶=ModuleExtractor(𝒪1,𝒪2,𝒜)
4 ∐︀𝒫1,𝒫2̃︀ ∶= PropositionalEncoding(𝒪′1,𝒪

′

2)

5 𝑆𝐼1 ∶= StructuralIndex(𝒪′1), 𝑆𝐼2 ∶= StructuralIndex(𝒪′2)
6 𝑆𝐼𝒰 ∶= StructuralIndex(𝒪′1 ∪𝒪

′

2 ∪𝒜)

7 ∐︀𝒫𝑑
1 , 𝑑𝑖𝑠𝑗1̃︀ ∶= DisjointAxiomsExtension(𝒫1, 𝑆𝐼1, 𝑆𝐼𝒰)

8 ∐︀𝒫𝑑
2 , 𝑑𝑖𝑠𝑗2̃︀ ∶= DisjointAxiomsExtension(𝒫2, 𝑆𝐼2, 𝑆𝐼𝒰)

9 ∐︀𝒜′,ℛ≈̃︀ ∶=MappingRepair(𝒫𝑑
1 ,𝒫

𝑑
2 ,𝒜) ◇ See Algorithm 2 in [30] (Appendix G)

10 return ∐︀𝒜′,ℛ≈, 𝑑𝑖𝑠𝑗1 + 𝑑𝑖𝑠𝑗2̃︀

or Well ⊑ � that are not supported by the domain ontology. Note that these unintended consequences may
hinder the usefulness of the generated ontology alignments since they may affect the quality of the results
when performing OBDA queries over the vocabulary of the aligned ontology.4

5.4.1 Ontology Alignment

Domain ontologies may be complex ontologies describing hundred or even thousands of classes; as a re-
sult, computing alignments between the directly mapped and the imported ontologies may be infeasible
without suitable tool support. Thus, the alignment process in the O&M module relies on the LogMap sys-
tem [38, 40]. LogMap is a highly scalable ontology matching system that discovers ontology-to-ontology
alignments, e.g. class inclusionss, between the vocabularies of the input ontologies. LogMap can efficiently
match semantically rich ontologies containing hundreds of thousands of classes, and it is one of the few tools
that integrates reasoning techniques to minimise the number of unintended logical errors.

For use cases requiring very accurate alignments, LogMap also supports user interaction during the
alignment process in order to keep the number of wrong correspondences to a minimum. Thi is an important
step in the validation of the bootstrapped ontology (see Section 6.2).

LogMap obtained very good results in the last Ontology Alignment Evaluation Initiative5 (OAEI) and
it was among the top 3 (out of 23) systems participating. The OAEI is an annual international campaign
for the systematic evaluation of ontology alignment systems [5]. Appendixes D and E provide an overview
of the techniques implemented in LogMap and the results obtained in the OAEI 2013 and 2014 campaigns.

5.4.2 Alignment Repair

LogMap also implements automatic repair techniques [69, 30] (see Appendixes F and G) to avoid unintended
logical consequences (as the ones described above) after the alignment. As introduced in Section 3.4.2 these
logical errors are characterised as violations of the consistency and conservativity principles.

In this section we focus on the implemented methods to detect and repair violations of the conservativity
principle. As introduced in Section 3.4.2, following our notion of conservativity, we have reduced the problem
of detecting and solving conservativity principle violations to an alignment (incoherence) repair problem.

Algorithm 1 shows the pseudocode of the implemented method. The algorithm accepts as input two
OWL 2 ontologies, 𝒪1 and 𝒪2, and an alignment 𝒜 which are coherent6 w.r.t. 𝒪1 and 𝒪2. The problem
size is reduced by extracting two locality-based modules [22] (𝒪′1 and 𝒪′2) using the entities involved in the
alignment 𝒜 as seed signatures (line 3, Algorithm 1). The output is the number of added disjointness during
the process 𝑑𝑖𝑠𝑗, the repaired alignment 𝒜′, and an approximate repair ℛ≈ s.t. 𝒜′ = 𝒜 ∖ℛ≈. The repair ℛ≈

aims at solving most of the basic violations of 𝒜 w.r.t. 𝒪1 and 𝒪2. We next describe the techniques used in
each step.

4Section 3 in the paper in Appendix [69] presents an example about the potential negative impact of unidesired consequences.
5http://oaei.ontologymatching.org/
6Note that 𝒜 may be the result of a prior alignment (incoherence) repair process.

26

http://oaei.ontologymatching.org/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Propositional Horn Encoding. The modules 𝒪′1 and 𝒪′2 are encoded as the Horn propositional theories,
𝒫1 and 𝒫2 (line 4 in Algorithm 1). This encoding includes rules of the form 𝐴1 ∧ . . .∧𝐴𝑛 → 𝐵. For example,
the concept hierarchy provided by an OWL 2 reasoner (e.g., [55, 42]) will be encoded as 𝐴→ 𝐵 rules, while
the explicit disjointness relationships between concepts will be represented as 𝐴𝑖 ∧𝐴𝑗 → false. Note that the
input alignment 𝒜 can already be seen as a set of propositional implications.

Structural Index. The concept hierarchies provided by an OWL 2 reasoner (excluding �) and the explicit
disjointness axioms of the modules 𝒪′1 and 𝒪′2 are efficiently indexed using an interval labelling schema [4]
(line 5 in Algorithm 1). This structural index allows us to answer many entailment queries over the concept
hierarchy as an index lookup operation (i.e., without the need of an OWL 2 reasoner). For example, to
check if two propositional variables (i.e., ontological classes) are disjoint (areDisj(𝑆𝐼,𝐴,𝐵)), if they keep a
sub/super-class relationship (inSubSupRel(𝑆𝐼,𝐴,𝐵)), or if they share a descendant (shareDesc(𝑆𝐼,𝐴,𝐵)).

Disjointness Axioms Extension. In order to reduce the conservativity problem to an alignment inco-
herence repair problem, following the notion of assumption of disjointness, we need to automatically add
sufficient disjointness axioms into each module 𝒪′𝑖. However, additional disjointness axioms 𝛿 may lead to
unsatisfiable classes in 𝒪′𝑖 ∪ 𝛿.

For avoiding an extensive use of a costly OWL 2 reasoner, our method exploits the propositional encoding
and structural indexing of the input ontologies. Thus, checking for unsatisfiabilities introduced by candidate
disjointness axioms in 𝒪′𝑖∪𝛿 is restricted to the Horn propositional case. We have implemented an algorithm
to extend the propositional theories 𝒫1 and 𝒫2 with disjointness rules of the form 𝐴 ∧ 𝐵 → � (see lines
7-8 in Algorithm 1). This algorithm guarantees that, for every propositional variable 𝐴 in the extended
propositional theory 𝒫𝑑

𝑖 (with 𝑖 ∈ {1,2}), the theory 𝒫𝑑
𝑖 ∪ {𝑡𝑟𝑢𝑒 → 𝐴} is satisfiable. Note that this does not

necessarily hold when considering the OWL 2 ontology modules, 𝒪′1 and 𝒪′2, as discussed above.

Repair. Line 9 of Algorithm 1 uses the mapping (incoherence) repair algorithm presented in [38] for
the extended Horn propositional theories 𝒫𝑑

1 and 𝒫𝑑
2 , and the input mappings 𝒜. The mapping repair

process exploits the Dowling-Gallier algorithm for propositional Horn satisfiability [28] and checks, for every
propositional variable 𝐴 ∈ 𝒫𝑑

1 ∪𝒫𝑑
2 , the satisfiability of the propositional theory 𝒫𝐴 = 𝒫𝑑

1 ∪𝒫𝑑
2 ∪𝒜∪{𝑡𝑟𝑢𝑒→ 𝐴}.

Satisfiability of 𝒫𝐴 is checked in worst-case linear time in the size of 𝒫𝐴, and the number of Dowling-Gallier
calls is also linear in the number of propositional variables in 𝒫𝑑

1 ∪𝒫𝑑
2 . The algorithm records the conflicting

mappings involved in the unsatisfiability, which will be considered for the subsequent repair process. The
unsatisfiability will be fixed by removing some of the identified mappings. In case of multiple options,
mapping confidence will be used as a differentiating factor.

Algorithm 1 gives as output the number of added disjointness rules 𝑑𝑖𝑠𝑗, a set of mappings 𝒜′, and
an (approximate) repair ℛ≈ such that 𝒜′ = 𝒜 ∖ℛ≈. 𝒜′ is coherent w.r.t. 𝒫𝑑

1 and 𝒫𝑑
2 . Furthermore, the

propositional theory 𝒫1 ∪ 𝒫2 ∪𝒜′ does not contain any conservativity principle violation w.r.t. 𝒫1 and 𝒫2.
However, our incomplete encoding cannot guarantee that 𝒪′1 ∪ 𝒪′2 ∪ 𝒜′ does not contain violations w.r.t.
𝒪′1 and 𝒪′2. Nonetheless, our evaluation suggests that the number of remaining violations after repair is
typically small (See Section 5 in [69], Appendix F).

5.5 Ontology Approximation

The Optique platform supports ontologies expressible in the OWL 2 QL profile of the OWL 2 ontology
language, which was specifically designed for efficient data access. Imported or layered, OWL 2 ontologies
that cannot be captured in OWL 2 QL are automatically approximated into OWL 2 QL.

In this section we first formally provide a general, parametric, and semantically well-founded definition of
maximal sound approximation of a DL ontology. Our semantic definition captures and generalizes previous
approaches to ontology approximation [13, 19, 51, 56]. In particular, our approach builds on the preliminary
work presented in [19], which proposed a similar, although non-parameterized, notion of maximal sound
approximation.

27

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Then,we present an algorithm for computing maximal sound approximation according to the above
parametric semantics, when the source ontology language is OWL 2 and the target ontology language is
OWL 2 QL. In particular, we focus on the local semantic approximation (LSA) and the global semantic
approximation (GSA) of a source ontology. These two notions of approximation correspond to the cases
when the parameter of our semantics is, respectively, minimal and maximal. Informally, the LSA of an
ontology is obtained by considering (and reasoning over) one axiom 𝛼 of the source ontology at a time, so
this technique tries to approximate 𝛼 independently of the rest of the source ontology. On the contrary,
the GSA tries to approximate the source ontology by considering all its axioms (and reasoning over such
axioms) at the same time. As a consequence, the GSA is potentially able to approximate “better” than the
LSA, while the LSA appears in principle computationally less expensive than the GSA. Notably, in the case
of OWL 2 QL, the result of approximating an ontology according to GSA is logically equivalent to the one
obtained according to the notion of approximation given in [56], which has been shown to be very well-suited
for query answering purposes.

An empirical evaluation of our methods can be found in the Appendix J.

5.5.1 Global semantic approximation

In what follows, we illustrate our notion of approximation in a target language ℒ𝑇 of an ontology 𝒪𝑆 in a
language ℒ𝑆 .

Typically, when discussing approximation, one of the desirable properties is that of soundness. Roughly
speaking, when the object of approximation is a set of models, this property requires that the set of models
of the approximation is a superset of those of the original ontology. Another coveted characteristic of the
computed ontology is that it be the “best" approximation of the original ontology. In other words, the need of
keeping a minimal distance between the original ontology and the ontology resulting from its approximation
is commonly perceived.

On the basis of these observations, the following definition of approximation in a target language ℒ𝑇 of
a satisfiable ℒ𝑆-ontology is very natural.

Definition 5.5.1 Let 𝒪𝑆 be a satisfiable ℒ𝑆-ontology, and let Σ𝒪𝑆
be the set of predicate and constant

symbols occurring in 𝒪𝑆. An ℒ𝑇 -ontology 𝒪𝑇 over Σ𝒪𝑆
is a global semantic approximation (GSA) in ℒ𝑇

of 𝒪𝑆 if both the following statements hold:

(i) 𝑀𝑜𝑑(𝒪𝑆) ⊆𝑀𝑜𝑑(𝒪𝑇);

(ii) there is no ℒ𝑇 -ontology 𝒪′ over Σ𝒪𝑆
such that 𝑀𝑜𝑑(𝒪𝑆) ⊆𝑀𝑜𝑑(𝒪′) ⊂𝑀𝑜𝑑(𝒪𝑇).

We denote with globalApx(𝒪𝑆 ,ℒ𝑇) the set of all the GSAs in ℒ𝑇 of 𝒪𝑆.

In the above definition, statement (𝑖) imposes the soundness of the approximation, while statement (𝑖𝑖)
imposes the condition of “closeness" in the choice of the approximation.

We observe that an ℒ𝑇 -ontology which is the GSA in ℒ𝑇 of 𝒪𝑆 may not exist. This is the case when,
for each ℒ𝑇 ontology 𝒪′𝑇 satisfying statement (𝑖) of Definition 5.5.1, there always exists an ℒ𝑇 -ontology 𝒪′′𝑇
which satisfies statement (𝑖), but for which we have that 𝑀𝑜𝑑(𝒪𝑆) ⊆𝑀𝑜𝑑(𝒪′′𝑇) ⊂𝑀𝑜𝑑(𝒪′𝑇).

As shown in the paper in Appendix H a sufficient condition for the existence of the GSA in a language
ℒ𝑇 of an ontology 𝒪𝑆 is that the set of non-equivalent axioms in 𝐴𝑥𝑖𝑜𝑚𝑠(ℒ𝑇) that one can generate over Σ
is finite. In the paper it is also shown that if ℒ𝑇 is a closed language, then for each 𝒪′ and 𝒪′′ belonging to
globalApx(𝒪𝑆 ,ℒ𝑇), we have that 𝒪′ and 𝒪′′ are logically equivalent. In other words, if the target language
is closed, then, up to logical equivalence, the GSA is unique.

The notion of entailment set [56], which we introduce below, allows us to provide more constructive
conditions, equivalent to those in Definition 5.5.1.

Definition 5.5.2 Let Σ𝒪 be the set of predicate and constant symbols occurring in 𝒪, and let ℒ′ be a
language. The entailment set of 𝒪 with respect to ℒ′, denoted as ES(𝒪,ℒ′), is the set of axioms from
𝐴𝑥𝑖𝑜𝑚𝑠(ℒ′) that only contain predicates and constant symbols from Σ𝒪 and that are entailed by 𝒪.

28

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

In other words, we say that an axiom 𝛼 belongs to the entailment set of an ontology 𝒪 with respect
to a language ℒ′, if 𝛼 is an axiom in 𝐴𝑥𝑖𝑜𝑚𝑠(ℒ′) built over the signature of 𝒪 and for each interpretation
ℐ ∈𝑀𝑜𝑑(𝒪) we have that ℐ ⊧ 𝛼.

Clearly, given an ontology 𝒪 and a language ℒ′, the entailment set of 𝒪 with respect to ℒ′ is unique.
We have that, given a satisfiable ℒ𝑆-ontology 𝒪𝑆 and a satisfiable ℒ𝑇 -ontology 𝒪𝑇 , the following condi-

tions hold:

(a) 𝑀𝑜𝑑(𝒪𝑆) ⊆𝑀𝑜𝑑(𝒪𝑇) if and only if ES(𝒪𝑇 ,ℒ𝑇) ⊆ ES(𝒪𝑆 ,ℒ𝑇);

(b) there is no ℒ𝑇 -ontology 𝒪′ such that 𝑀𝑜𝑑(𝒪𝑆) ⊆ 𝑀𝑜𝑑(𝒪′) ⊂ 𝑀𝑜𝑑(𝒪𝑇) if and only if there is no
ℒ𝑇 -ontology 𝒪′′ such that ES(𝒪𝑇 ,ℒ𝑇) ⊂ ES(𝒪′′,ℒ𝑇) ⊆ ES(𝒪𝑆 ,ℒ𝑇).

Therefore, every ontology 𝒪𝑇 which is a GSA in ℒ𝑇 of an ontology 𝒪𝑆 is also an approximation in ℒ𝑇 of
𝒪𝑆 according to the paper in Appendix I, and, for some languages, this also corresponds to the approximation
in [56].

5.5.2 K-approximation

The computation of a GSA can be a very challenging task even when approximating into tractable fragments
of OWL 2 [54] because it is necessary to reason over the ontology as a whole. Consequently, we introduce a
new notion of approximation, in which we do not reason over the entire ontology but only over portions of it.
At the basis of this new notion, which we call k-approximation, is the idea of obtaining an approximation of
the original ontology by computing the global semantic approximation of each set of 𝑘 axioms of the original
ontology in isolation. Below we give a formal definition of the k-approximation.

In what follows, given an ontology 𝒪 and a positive integer 𝑘 such that 𝑘 ≤ ⋃︀𝒪⋃︀, we denote with subsetk(𝒪)
the set of all the sets of cardinality 𝑘 of axioms of 𝒪.

Definition 5.5.3 Let 𝒪𝑆 be a satisfiable ℒ𝑆-ontology and let Σ𝒪𝑆
be the set of predicate and constant symbols

occurring in 𝒪𝑆. Let 𝒰𝑘 = {𝒪𝑗
𝑖 ⋃︀ 𝒪

𝑗
𝑖 ∈ globalApx(𝒪𝑖,ℒ𝑇), such that 𝒪𝑖 ∈ subsetk(𝒪𝑆)}. An ℒ𝑇 -ontology 𝒪𝑇

over Σ𝒪𝑆
is a k-approximation in ℒ𝑇 of 𝒪𝑆 if both the following statements hold:

• ⋂
𝒪

𝑗
𝑖 ∈𝒰𝑘

𝑀𝑜𝑑(𝒪𝑗
𝑖) ⊆𝑀𝑜𝑑(𝒪𝑇);

• there is no ℒ𝑇 -ontology 𝒪′ over Σ𝒪𝑆
such that ⋂

𝒪
𝑗
𝑖 ∈𝒰𝑘

𝑀𝑜𝑑(𝒪𝑗
𝑖) ⊆𝑀𝑜𝑑(𝒪′) ⊂𝑀𝑜𝑑(𝒪𝑇).

Once again, using the notion of entailment set, we can give a constructive condition for the k-approxi-
mation. Indeed, given a satisfiable ℒ𝑆-ontology 𝒪𝑆 and a satisfiable ℒ𝑇 -ontology 𝒪𝑇 , both over Σ𝒪𝑆

, we
have that 𝒪𝑇 is a k-approximation in ℒ𝑇 of 𝒪𝑆 if and only if:

(i) ES(𝒪𝑇 ,ℒ𝑇) ⊆ ES(⋃𝒪𝑖∈subsetk (𝒪𝑆)
ES(𝒪𝑖,ℒ𝑇),ℒ𝑇);

(ii) there is no ℒ𝑇 -ontology 𝒪′ over Σ𝒪𝑆
such that:

ES(𝒪𝑇 ,ℒ𝑇) ⊂ ES(𝒪′,ℒ𝑇) ⊆ ES(⋃
𝒪𝑖∈subsetk (𝒪𝑆)

ES(𝒪𝑖,ℒ𝑇),ℒ𝑇).

Note that if 𝑘 = ⋃︀𝒪𝑆 ⋃︀, the k-approximation actually coincides with the GSA. At the other end of the
spectrum, we have the case in which 𝑘 = 1. Here we are treating each axiom 𝛼 in the original ontology in
isolation, i.e., we are considering ontologies formed by a single axiom 𝛼. We refer to this approximation as
local semantic approximation (LSA).

Example 5.5.1 Consider the following OWL 2 ontology 𝒪.

𝒪 = { 𝐴 ⊑ 𝐵 ⊔𝐶 𝐵 ⊑𝐷 𝐴 ⊑ ∃𝑅.𝐷
𝐵 ⊓𝐶 ⊑ 𝐹 𝐶 ⊑𝐷 ∃𝑅.𝐷 ⊑ 𝐸 }.

29

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

The following ontology is a GSA in OWL 2 QL of 𝒪.

𝒪𝐺𝑆𝐴 = { 𝐴 ⊑𝐷 𝐵 ⊑𝐷 𝐴 ⊑ ∃𝑅 𝐴 ⊑ ∃𝑅.𝐷
𝐴 ⊑ 𝐸 𝐶 ⊑𝐷 𝐷 ⊑ 𝐹 }.

Indeed, it is possible to show that each axiom entailed by 𝒪𝐺𝑆𝐴 is also entailed by 𝒪, and that it is im-
possible to build an OWL 2 QL ontology 𝒪′ such that ES(𝒪𝐺𝑆𝐴,𝑂𝑊𝐿 2 𝑄𝐿) ⊂ ES(𝒪′,𝑂𝑊𝐿 2 𝑄𝐿) ⊆
ES(𝒪,𝑂𝑊𝐿 2 𝑄𝐿).

Computing the LSA in OWL 2 QL of 𝒪, i.e., its 1-approximation in OWL 2 QL, we obtain the following
ontology.

𝒪𝐿𝑆𝐴 = { 𝐵 ⊑𝐷 𝐴 ⊑ ∃𝑅
𝐶 ⊑𝐷 𝐴 ⊑ ∃𝑅.𝐷 }.

The example shows that 𝑀𝑜𝑑(𝒪) ⊂ 𝑀𝑜𝑑(𝒪𝐺𝑆𝐴) ⊂ 𝑀𝑜𝑑(𝒪𝐿𝑆𝐴), which means that the ontology 𝒪𝐺𝑆𝐴

approximates 𝒪 better than 𝒪𝐿𝑆𝐴. This expected result is a consequence of the fact that reasoning over
each single axiom in 𝒪 in isolation does not allow for the extraction all the OWL 2 QL consequences of 𝒪.

5.5.3 Approximation in OWL 2 QL

The computation of the approximation as defined above can be a very challenging task even when approxi-
mating into a lower-complexity description logics such as OWL 2 QL or the languages of the DL-Lite family.
For an in-depth investigation of the problem of approximating ontologies in languages belonging to this
family of description logics, we refer the reader to the paper in the Appendix I. Instead we now focus on the
problem of approximating ontologies in OWL 2 with ontologies in OWL 2 QL.

In this scenario, some of the issues mentioned in the paper in Appendix I no longer present themselves.
Specifically, the result of the approximation in OWL 2 QL of an OWL 2 ontology is unique, in the sense
that if two ontologies 𝒪′ and 𝒪′′ are both approximations in OWL 2 QL of the same OWL 2 ontology 𝒪,
then they are logically equivalent. This is a consequence of the fact that OWL 2 QL is a closed language.
Moreover, since the set of non-equivalent OWL 2 QL axioms that one can generate over a signature Σ is
finite, the k-approximation in OWL 2 QL of an OWL 2 ontology always exists.

As stated in Theorem 3 of the paper in Appendix H, we have that the k-approximation in OWL 2 QL
of an OWL 2 ontology 𝒪𝑆 coincides with the set ⋃𝒪𝑖∈subsetk (𝒪𝑆)

ES(𝒪𝑖,𝑂𝑊𝐿 2 𝑄𝐿), i.e., the union of the
entailment sets of each subset of cardinality 𝑘 of 𝒪𝑆 with respect to OWL 2 QL.

Algorithm 2: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐾𝐴𝑝𝑥(𝒪, 𝑘)

Input: a satisfiable OWL 2 ontology 𝒪, a positive integer 𝑘 such that 𝑘 ≤ ⋃︀𝒪⋃︀
Output: an OWL 2 QL ontology 𝒪𝐴𝑝𝑥

begin
𝒪𝐴𝑝𝑥 ← ∅;
foreach ontology 𝒪𝑖 ∈ subsetk(𝒪𝑆)
𝒪𝐴𝑝𝑥 ← 𝒪𝐴𝑝𝑥 ∪ ES(𝒪𝑖,𝑂𝑊𝐿 2 𝑄𝐿);

return 𝒪𝐴𝑝𝑥;
end

Notably, we observe that for 𝑘 = ⋃︀𝒪𝑆 ⋃︀ the k-approximation 𝒪𝑇 in OWL 2 QL of 𝒪𝑆 coincides with its
entailment set in OWL 2 QL. This means that 𝒪𝑇 is also the approximation in OWL 2 QL of 𝒪𝑆 according
to the notion of approximation presented in [56]. Therefore, all the properties that hold for the semantics
in [56] also hold for the GSA. In particular, the evaluation of a conjunctive query 𝑞 without non-distinguished
variables over 𝒪𝑆 coincides with the evaluation of 𝑞 over 𝒪𝑇 (Theorem 5 in [56]).

30

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

In the paper in Appendix H Algorithm 2, for computing the k-approximation of an ℒ𝑆-ontology 𝒪𝑆 in
OWL 2 QL, is given.

The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐾𝐴𝑝𝑥 algorithm first computes every subset with size 𝑘 of the original ontology 𝒪𝑆 . Then,
it computes the ontology which is the result of the k-approximation in OWL 2 QL of the ontology in input
as the union of the entailment sets with respect to OWL 2 QL of each such subset. It is clear that the key
point of the algorithm is the computation of the entailment set.

5.5.4 Computing the entailment set in OWL 2 QL

The computation of ES(𝒪,𝑂𝑊𝐿 2 𝑄𝐿) is in general very costly, as highlighted also in [13] and [56], since
it requires the invocation of reasoning services over an OWL 2 ontology 𝒪 for checking, for every assertion
𝛼 ∈ ES(𝒪,𝑂𝑊𝐿 2 𝑄𝐿), if 𝒪 ⊧ 𝛼. This task is performed by invoking an OWL 2 oracle which can be
implemented by an OWL 2 reasoner.

A naive algorithm for computing the entailment set with respect to OWL 2 QL can be easily obtained
from the one given in [56] for DL-Lite languages. We can summarize it as follows. Let 𝒪 be an ontology and
let Σ𝒪 be the set of predicate and constant symbols occurring in 𝒪. The algorithm first computes the set Γ
of axioms in 𝐴𝑥𝑖𝑜𝑚𝑠(𝑂𝑊𝐿 2 𝑄𝐿) which can be built over Σ𝒪, and then, for each axiom 𝛼 ∈ Γ such that
𝒪 ⊧ 𝛼, adds 𝛼 to the set ES(𝒪,𝑂𝑊𝐿 2 𝑄𝐿). In practice, to check if 𝒪 ⊧ 𝛼 one can use an OWL 2 reasoner.
Since each invocation of the OWL 2 reasoner is N2ExpTime, the computation of the entailment set can be
very costly [13].

A more efficient technique for its computation is the one presented in the paper in Appendix I. The
key idea of this technique is to limit the number of invocations to the OWL 2 reasoner, by exploiting
the knowledge acquired through a preliminary exploration of the ontology. This optimization technique
is presented in Section 5 of the paper. To understand the basic idea behind this technique, consider, for
example, an ontology 𝒪 that entails the inclusions 𝐴1 ⊑ 𝐴2 and 𝑃1 ⊑ 𝑃2, where 𝐴1 and 𝐴2 are concepts
and 𝑃1 and 𝑃2 are roles. Exploiting these inclusions we can deduce the hierarchical structure involving
general concepts that can be built on these four predicates. For instance, we know that ∃𝑃2.𝐴2 ⊑ ∃𝑃2, that
∃𝑃2.𝐴1 ⊑ ∃𝑃2.𝐴2, that ∃𝑃1.𝐴1 ⊑ ∃𝑃2.𝐴1, and so on. We begin by invoking the OWL 2 oracle, asking for
the children of the general concepts which are in the highest position in the hierarchy. So, first compute the
subsumees of ∃𝑃2 through the OWL 2 reasoner. If there are none, we avoid invoking the oracle asking for
the subsumees of ∃𝑃2.𝐴2 and so on.

5.6 Provenance in Bootstrapped Mappings

Data provenance has been identified as one of the requirements in the Statoil use case (see deliverable D9.1)
since some of the queries require the comparison of data coming from different databases (see deliverable
D9.2).

The O&M boostrapper can automatically attach provenance information to the direct mappings without
extra cost. Thus, this information can be exploited to answer queries involving provenance information (e.g.
comparing results from different databases).

In this section we present three different levels of granularity at which we can provide provenance an-
notations. For a particular application, the expert responsible of modeling the domain can choose any of
these levels of granularity or a combination of them depending on the competency questions [73] that need
to be addressed by the OBDA system and the capabilities of the underlying system. We have also extended
PROV-O [8] with additional predicates for convenience in the OBDA domain, we will refer to these predicates
with the “obdaprov:” prefix.

5.6.1 Provenance model

The PROV-O model focuses on three main concepts: prov:Entity, prov:Agent and prov:Activity. The examples
in the previous section show the focus on the relation between the entities. The agents and activities could be useful
in some particular cases, but in general the agent will be the specific OBDA system (a prov:SoftwareAgent) and the

31

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

activity will be OBDA query answering or triple materialization, a form of creation (prov:Create). Normally in a
OBDA scenario the main concern will be the relation between the entities, i.e. the original information that is accessed
and the information that is derived from it (prov:wasDerivedFrom). Therefore the extension of the PROV-O model
focuses on entities.

In particular, we extend the model in PROV-O to consider the elements that are particular to a OBDA setting,
where OBDADatabase, OBDATable, OBDAColumn and OBDARow are subclasses both of prov:Entity and the corresponding
elements in a regular database. These entities relate to each other, allowing to locate a particular row or column in a
table and a table in a database. We only need to state the specific location of some :OBDAEntity by specifying a set
of properties, like hasDatabase, hasTable or hasColumn.

5.6.2 Provenance at URI level

URIs identify the smallest fragments of information produced by OBDA systems. To provide the provenance infor-
mation we can simply state that the provenance of some URI corresponds to some OBDAEntity. A mapping to add
this kind of assertions would look like this:

:TriplesMap_prov1

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "Field"] ;

rr:subjectMap [

rr:template "http://base_uri/Field/{id}" ;

rr:class prov:Entity

] ;

rr:predicateObjectMap [

rr:predicate prov:wasDerivedFrom ;

rr:objectMap [

rr:template "http://base_uri/OBDAURI/URI_field_{id}"

]

] .

With this mapping we add a new entity that is the source of the generated URIs, and we can generate all the
provenance information for this entity with a new mapping:

:TriplesMap_prov2

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "Field"] ;

rr:subjectMap [

rr:template "http://base_uri/OBDAURI/URI_field_{id}" ;

rr:class prov:Entity

] ;

rr:predicateObjectMap [

rr:predicate obdaprov:hasDatabase ;

rr:objectMap [rr:template "Database_Running_Example"]

] ;

rr:predicateObjectMap [

rr:predicate obdaprov:hasTable ;

rr:objectMap [rr:template "Field"]

] ;

rr:predicateObjectMap [

rr:predicate obdaprov:hasColumn ;

rr:objectMap [rr:template "id"]

] .

It may be worthy to point out that several mappings can be responsible of the generation of the same URIs. This
is specially important if some join has to be performed between several data sources. These URIs are derived from
several different entities, and the provenance will correspond to the union of the sources responsible for the generation
of these URIs.

Additionally, note that rr:template "http://base_uri/OBDAURI/URI_field_id" in :TriplesMap_prov1 could
have been replaced with a rr:parentTriplesMap to :TriplesMap_prov2.

32

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

5.6.3 Provenance at triple level
To include the information about provenance in the mapping assertion we can include this information as constants
in the head of the mapping. This can be done either manually or automatically if there is some automatic process for
the generation of the mappings. By using reification to keep track of this metainformation we can obtain the following
result for the first rr:predicateObjectMap in the :TriplesMap1 in Section 5.2:

:TriplesMap_prov3

a rr:TriplesMap ;

rr:logicalTable [rr:tableName "Field"] ;

rr:subjectMap [

rr:template "http://base_uri/statement/{id}" ;

rr:class rdf:Statement ;

rr:class prov:Entity

] ;

rr:predicateObjectMap [

rr:predicate rdf:subject ;

rr:objectMap [

rr:template "http://base_uri/Field/{id}"

]

] ;

rr:predicateObjectMap [

rr:predicate rdf:predicate ;

rr:object <http://base_uri/name>

] ;

rr:predicateObjectMap [

rr:predicate rdf:object ;

rr:objectMap [rr:column "name"]

] ;

rr:predicateObjectMap [

rr:predicate obdaprov:wasDerivedWithOBDAMapping ;

rr:object :TriplesMap1

] ;

rr:predicateObjectMap [

rr:predicate prov:wasDerivedFrom ;

rr:object [

rr:template "http://base_uri/OBDAEntity/URI_field_name_{id}"

]

] .

A new mapping (analogous to :TriplesMap_prov2 in the previous section) would be needed to specify the char-
acteristics of "http://base_uri/OBDAEntity/URI_field_name_id", i.e. its database, table and column. All sorts of
provenance information can be added to the triple reified in the previous map, for example the prov:Activity activity
that generates it (:ourOBDAActivity) or the system (:ourOBDASystem) that as a prov:SoftwareAgent performs this
activity. This depends on the competency questions to be addressed for each particular use case.

As a limitation, the mappings would generate additional triples due to reification.

5.6.4 Provenance at graph level
For many applications the triple granularity will not be needed. If a set of triples share some details about their
provenance (e.g. the source database is the same) then a more efficient solution can be annotating provenance for
all of them together in a RDF named graph. This can easily be done by modifying the original mappings and
specifying a graph containing the triples that share some provenance detail and creating additional mappings to state
the provenance of that graph. The statements about the provenance can be included in the same graph, allowing for
a closed recursion.

If graphs refer to greater entities (e.g. data sources) their specification will very probably be more stable. Adding
a new graph with details about provenance may be an usual operation that can be performed manually (or semi-
automatically) when adding a new data source to the system. Therefore, the information about the provenance of the
graph can be stated statically without requiring additional mappings for this, for example:

<http://base_uri/graph/Field>

33

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

a Entity ;

prov:wasDerivedFrom "http://base_uri/OBDAEntity/Database_Running_Example" .

As in previous examples, the properties of "http://base_uri/OBDAEntity/table_Field" would be defined in a
new map specifying the original database and any other details to consider.

34

Chapter 6

Post-Bootstrapping Analysis

The previous section has described automatic techniques to bootstrap an ontology and a set of mapping given a
database schema as input. Additionally, the bootstrapped ontology can be automatically aligned to a domain on-
tology and/or the boostrapped mapping can be linked to a domain ontology. Finally, the aligned ontology can be
approximated if it is outside the OWL 2 QL profile.

The next three subsections present complementary (semi-automatic) efforts within Optique to extend and validate
the bootstrapped ontology and mappings. These efforts will be further developed within the Optique’s O&M analysis
module. Section 6.1 presents a semi-automatic method to create a set of mappings given an ontology and a database
schema as inputs. In Section 6.2 we present how the bootstrapped ontology and mappings can be validated and/or
edited. Finally, Section 6.3 provides a methodology for the manual construction of the ontology and the mappings.

6.1 Semi-Automatic Ontology Layering

In addition to the bootstrapping module, the O&M component also contains an Ontology Layering Module that offers
to layer an input ontology over an input DB schema resulting in a set of direct mappings between the ontology and
the schema. Essentially, a user constructs mappings based on automatically generated suggested candidates, thus
operating semi-automatically. Ontology layering relies on the IncMap system [58] (see Appendix B), which is provided
as a special module inside the platform. Internally, IncMap represents both the ontology and schema uniformly, using
a structure-preserving meta-graph structure called IncGraph. Thus, correspondences can be calculated and visualized
directly between the two data models. The module then computes ranked correspondences between elements of the
graphs using lexical and structural similarities, based on the Similarity Flooding algorithm of Melnik et al. [53], and
converts the correspondences into direct mappings between the ontology and schema. Human verification is provided
through the semi-automatic nature of the layering process, where each suggested mapping needs to be accepted
by an expert user before it becomes effective. IncMap operates incrementally, i.e., it uses human input to rerank
correspondences after each round of interaction. Verifications performed by a user (i.e., verified mappings) can thus
be used to improve the quality of subsequent suggestions in the structural neighborhood. As a major difference to
bootstrapping and alignment, layering can map user-specified fragments of DB schemata to user-specified fragments
of ontologies.

6.2 Validation of the boostrapped ontology and mappings

The axioms computed by the ontology bootstrapper (including the ontology-to-ontology alignments) are presented to
the user for verification, i.e., the user can edit, accept, or discard candidate axioms.1

For use cases requiring very accurate alignments, our ontology alignment system LogMap also supports user
interaction during the alignment process in order to keep the number of wrong correspondences to a minimum.

Additionally, the R2RML Mapping Editor of the Optique platform is tailored towards W3C R2RML mappings
for which direct mappings is a special case, and was evaluated with encouraging results [57]. Manual edition of
R2RML mappings is a time consuming and error prone process. To ease this issue, the R2RML editor provides

1Note that, to the time being the platform has limited support for in-line ontology editing and visualization. However,
ontologies from the platform can easily be exported to matured, third party tools such as Protege (http://protege.stanford.
edu/). Additionally the platform also provides functionality to import ontologies (see Deliverable D2.4 for details).

35

http://protege.stanford.edu/
http://protege.stanford.edu/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

an intuitive mapping visualisation, semi-automatic suggestions of mapping corrections, and step-by-step wizards for
writing complex (non direct) mappings.

6.3 Guidelines for the manual construction of an OBDA specification
“Guessing” an ontology from a database schema is no easy task, since the database modelling step that produces a
database schema from (explicit or implicit) knowledge of a domain is typically lossy. Automatic bootstrapping means
to make a best effort at reverse engineering this step and is necessarily imperfect. However, depending on the quality
of the data source schemata, the results often provide a very good starting point for later manual optimisations that
can be applied as required. Hence, in Optique we have defined a methodology for the development and maintenance
of an OBDA specification based on the functionalities offered by the Optique system.

Towards this goal, we have provided, as a starting point, a description of some initial guidelines for “manually”
building an OBDA specification.

This is already a significant contribution, since the literature in the field does not actually present any methodology
for the specification of a full-fledged OBDA system. Moreover, our previous experience in the field, as well as our
interactions with the project use cases, clearly showed that such a methodology is actually far from being trivial. In
particular, while there exist several approaches and methodologies for ontology development and ontology engineering
(e.g., [26], [33], [11], [34]), research in data integration and data exchange has only very partially dealt with the issue of
mapping development and maintenance (e.g., [46], [27], [36], [47]). Therefore, we miss a real methodology for OBDA
specification, that is, an approach that brings together ontology development, data source analysis, and mapping
development.

The document reporting such initial guidelines is reported in Appendix C. In the next years, we intend to turn
the above initial guidelines into a true methodology for OBDA specification, facing the issue of combining ontology
development, data source analysis, and mapping development in a uniform and comprehensive approach, as well as
taking into account the functionalities that will be provided by the Optique platform.

36

Chapter 7

Integration with the Optique Platform

The Optique O&M component is equipped with an O&M bootstrapper which integrated the techniques described in
Section 5.

The O&M boostrapper is fully compliant with the Optique platform APIs: the ontology API, the relational
metadata API, the R2RML mapping management API. See Deliverables D2.3 (First Prototype of the Core Platform)
and D2.4 (Second Prototype of the Core Platform) for details about these APIs.

The O&M boostrapper component retrieves the required metadata from the platfrorms’ shared metadata repository
using the Relational Metadata API. The O&M boostrapper also integrates the ontology matching system described
in Section 5.4 and an ontology approximation module to transform the resulting ontology if it is outside the desired
OWL 2 profile (see Section 5.5). The O&M bootstrapper uses the Ontology API and the Mapping Management API
to store the resulting assests (i.e. ontology and mappings) back to the platform.

A demo paper describing the first version of the Optique system, including the O&M bootstrapper, was accepted
in the 2013 edition of the International Semantic Web Conference [43] (see Appendix K). Futhermore, we recently
submitted a demo paper to an international conference (see Appendix L). The O&M bootstrapping is accessible from
the Optique’s demo web page: http://fact-pages.fluidops.net/ Demonstration videos are also available at the
following address: https://www.youtube.com/user/optiqueproject.

Next sections summarizes the different steps of the O&M boostrapper.

Figure 7.1: O&M bootstrapper: selection of the RDB Schema

37

http://fact-pages.fluidops.net/
https://www.youtube.com/user/optiqueproject

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

7.1 RDB Schema Selection and Bootstrapping

Once the platform has been connected successfully to a relational data base (RDB) (see Section 3.2.1 of Deliverable
D2.4), the O&M can be used. Figure 7.1 shows the first step of the O&M bootstrapper. The available RDB schemas
are listed and, upon selection, the metadata of the desired RDB schema is visualized. Once the “next” button is
pressed the O&M bootstrapper, following the specification and semantics described in Sections 5.2 and 5.3 creates the
bootstrapped mappings and ontology.

Figure 7.2 shows the second step of the O&M bootstrapper where an overview of the boostrapped (direct mapping)
ontology is visualized. Apart from ontology classes, the interface also allows the (optional) visualization of object
properties.

Figure 7.2: O&M bootstrapper: bootstrapped (direct mapping) ontology visualization

7.1.1 Ontology Alignment

As described in Section 5.4, the O&M bootstrapper integrates the ontology alignment system LogMap. LogMap
identifies correspondences or alignments between the bootstrapped ontology and a given domain ontology.

Figure 7.3 shows the alignment of the boostrapped ontology (green nodes) with a domain ontology (blue nodes).
The dark-red links represent the alignments extracted by LogMap.

7.1.2 Ontology approximation

The O&M bootstrapper uses the ontology approximation module described in Section 5.5 to approximate the resulting
ontology if it is outside the desired OWL 2 QL profile (i.e. current language supported by the Optique OBDA system).
Figure 7.4 shows the O&M bootstrapper interface for the ontology approximation.

The implemented approximation module, other than computing the approximation in OWL 2 QL of the ontology,
also returns a summary log specifying how the module handled each axiom of he original ontology. After the approxi-
mation, in the report each axiom of the original ontology is categorized into one of three categories, based on the type
of approximation it has undergone:

• Unapproximable axioms: all the semantics of the axiom is lost, which means that given an OWL 2 axiom 𝛼 of
the original ontology, the entailment set of 𝛼 in OWL 2 QL is empty.

38

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Figure 7.3: O&M bootstrapper: alignment of the DMO ontology with a SOTA ontology

• Equivalently rewritten axioms: all the semantics of the axiom is preserved, which means that given an OWL 2
axiom 𝛼 of the original ontology, it is rewritten by the approximation module as a set of OWL 2 QL axioms
𝒮 ⊆ ES(𝛼,𝑂𝑊𝐿 2 𝑄𝐿) such that 𝒮 ⊧ 𝛼.

• Approximated axioms: only a portion of the semantics of the axiom is preserved, which means that given an
OWL 2 axiom 𝛼 of the original ontology, it is rewritten by the approximation module as a set of OWL 2 QL
axioms 𝒮 ⊆ ES(𝛼,𝑂𝑊𝐿 2 𝑄𝐿) such that 𝒮 ⇑⊧ 𝛼.

Figure 7.4: O&M bootstrapper: OWL 2 QL approximation of the ontology

39

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

7.1.3 Ontology an Mapping Storage
As a last and optional step, the bootstrapped ontologies and mappings can be stored within the platform (see Figure
7.5).

Figure 7.5: O&M bootstrapper: Ontology and mapping storage

7.1.4 Integrated O&M boostrapper
In addition to the step-by-step boostrapping, as described in previous sections, the O&M boostrapper also includes a
one-step integrated bootstrapping interface (see Figure 7.6).

Figure 7.6: Widget for integrated bootstrapping.

40

Chapter 8

Evaluation

This section presents the evaluation conducted in the Statoil and Siemens scenarios.

8.1 Installing Optique Platform at Statoil

For reasons of confidentiality and consistency in presentation, these results are presented in Deliverable D9.2. A short
summary follows:

8.1.1 The database

The experiments focused on parts of the Exploration and Production Data Store (EPDS), a corporate data store for
subsurface data at Statoil. It has a complex schema, with ca. 1500 tables and as many views. The complexity of the
schema, and the lack of documentation makes it impossible, other than for experts on the schema, to write correct
SQL queries towards the database. Examples of why this is impossible is included in D9.2. We also have not seen
evidence of anyone writing manual queries towards the database. They use an existing catalogue of predefined queries
and tweak these as necessary. Advanced operations are done on the extracted data, and not by query combination or
modification.

8.1.2 Experiments

We bootstrapped an ontology and mapping from the relevant parts of EPDS. The ontology contains 3274 classes, 3620
object properties, and 42308 datatype properties, The mappings comprise 3069 subjectMap-s and 43376 predicate
ObjectMap-s, and all TripleMap-s select source data from exactly one database table.

In addition to the bootstrapped ontology, the Optique project has also produced two ontologies covering over-
lapping domains, the Subsurface Exploration ontology and the NPD FactPages ontology. The bootstrapped and
developed ontologies have been aligned using the techniques described in Chapter 5. Furthermore, the Subsurface
Exploration ontology has axioms outside OWL2 QL. The approximation techniques from Section 5.5 were applied to
it. The results from alignment and approximation are included in D9.2.

The coverage of the terms in the query catalogue by the different ontologies was estimated using syntactic matching.
For example, 15% terms in the query catalogue occur as classes in the bootstrapped ontology. The results are
summarized in Figure 8.1. The experiments we conducted show that about half of the classes in the query catalogue
are present in the alignment of the domain and bootstrapped ontology, and for most of these classes there are mappings
to EPDS. Moreover, the majority of properties is also present in the alignment and most of them have mappings to
EPDS.

8.2 Installing Optique Platform at Siemens

In this section we present our experience in running the O&M bootstrapping module in the Siemens use case. We
start with a short description of database and the domain ontologies (see Deliverable 8.2 and [45] for more details),
and we finally present a preliminary converage analysis of the bootstrapped ontology over the query terms.

41

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Coverage
Classes
Query
Catalogue
Total: 113

Coverage
Properties
Query
Catalogue

Total: 21

Bootstrapped Ontology

15%

1520

24%

2414
20%

1967
24%17%

18%

81%

8143

9%

857

52%

19%19%

Domain Ontology

21%

2107

6%

615

9%

878
18%

3%
15%

38%

3822

5%

478
5%

38%

Aligned Ontology

29%

2854

19%

1873

19%

1873

31%12%

23%

81%

8143

9%

857

52%

19%19%

(a)

Coverage, Classes
in Domain Ontology
and in Catalogue
(> 0.6)

Total: 79

Coverage, Properties
in Domain Ontology
and in Catalogue
(> 0.6)

Total: 18

Bootstrapped Ontology

22%

2158

24%

2412

20%

2031
10%

9%
47%

33%

3338

50%

5006

6%

556

17%

5%

67%

(b)

Figure 8.1: Inner pie charts show coverage by lexical confidence: in (︀0.9,1.0⌋︀, in (︀0.8,0.9), in
(︀0.6,0.8). Outer pie charts represent the quality of the terms with a coverage above 0.6: true positive,
semi-true positive, false positive. Figure (a) displays the coverage of terms from the query catalogue
with terms from ontologies; Figure (b) shows the overlap between terms from bootstrapped and imported
ontologies that (with confidence > 0.6) occur in the query catalogue. Details in D9.2.

Ontology Logical axioms Classes Object prop. Datatype prop.

Bootstrapped 75 7 4 24
Diagnostic 107 31 11 7
Turbine 90 37 7 1

Table 8.1: Siemens ontology metrics

8.2.1 Siemens Schemata and Ontologies
The data in the Siemens use is stored in several databases with different schemata. Although the schemata are not
specially large, the size of the data is in the order of hundreds of terabytes, e.g., there is about 15 GB of data associated
to a single turbine, and it currently grows with the average rate of 30 GB per day [45].

As for the Statoil use case, we boostrapped an ontology and mappings from one of the Siemens database schema
(as described in Sections 5.2 and 5.3). In addition to the bootstrapped ontology, the Siemens ontology also contains
two ontologies that have been developed for the Siemens use case: the Diagnostic and Turbine ontologies. The
bootstrapped and developed ontologies have been align using the techniques described in Section 5.4. Details of the
number of classes, properties, and axioms of these ontologies are in Table 8.1.

8.2.2 Coverage of Query Terms by the Ontologies
We extracted the terms from the current query catalogue which contains 27 query patterns. The terms has been split
into query classes and query properties. In total, we identified 20 query classes and 6 query properties.

Figure 8.2 shows the coverage of the ontologies introduced above over the query terms: the upper three show
the coverage of classes by, respectively (left-to-right) bootstrapped, developed, and aligned ontologies, the lower three
show the coverage of properties.

Regarding the coverage of classes, the bootstrapped ontology covers 75% of the 20 classes occurring in the catalogue.
Moreover, 50% of the query classes are matched to the bootstrapped ontology with a high lexical confidence, i.e., higher
that 0.9. The coverage of query classes by the developed ontologies is lower than by the bootstrapped ontology, it
is 30%. Regarding the coverage of properties, the bootstrapped ontology covers half of the properties occurring in
the query catalogue, while there is a lower coverage by the developed ontologies. As in the Statoil use case, the
bootstrapped ontology covers the query terms better that the developed ontologies. This can be interpreted as an
indicatiog that the information needs with respect to the queries are semantically better reflected in the database
schema than in the developed ontologies. Coverage of the aligned ontology for properties from the query catalogue is

42

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Coverage
Classes
Query
Catalogue
Total: 20

Coverage
Properties
Query
Catalogue

Total: 6

Bootstrapped Ontology

20%

200055%
5500

50%

25%

50%

500050%

17%

Developed Ontologies

30%

300030%

17%

170017%

Aligned Ontology
40%

4000

50%

5000

70%

20%

50%

500050%

17%

(a)

Figure 8.2: Coverage of terms from the query catalogue with terms from ontologies. Inner pie charts show
coverage by lexical confidence: in (︀0.9,1.0⌋︀, in (︀0.8,0.9), in (︀0.6,0.8). Outer pie charts represent the
quality of the terms with a coverage above 0.6: true positive, semi-true positive.

the same as for the bootstrapped ontology, that is, all the properties covered by the domain ontology are also covered
by the bootstrapped one. While the coverage of query classes reaches the 90%.

We also performed a manual assessment of every match for both query classes and properties. The results of
out assessments are also in Figure 8.2 in the outer circles. For example, manual assessment of coverage of classes by
the bootstrapped ontology gave 20% of true positives (i.e. correct matches) and 55% of semi-true positives (partially
correct matches).

43

Chapter 9

Ongoing Work

9.1 Benchmark for Ontology Alignment

Figure 9.1 shows an OBDA scenario where the first ontology provides the vocabulary to formulate the queries (QF-
Ontology) and the second is linked to the data and it is not visible to the users (DB-Ontology). Such OBDA scenarios
is presented in real-world use cases such as in Optique (see Section 5.4). The integration via ontology alignment is
required since only the vocabulary of the DB-Ontology is connected to the data.

QF-Ontology DB-Ontology

Query

Vocabulary

Query Evaluation Engine

Figure 9.1: Ontology Alignment in an OBDA Scenario

The traditional benchmarks of the Ontology Alignment Evaluation Inititiative (OAEI) [5, 21] evaluate ontology
matching systems w.r.t. scalability, multi-lingual support, instance matching, reuse of background knowledge, etc.
Systems’ effectiveness is, however, only assessed by means of classical information retrieval metrics (i.e, precision,
recall and f-measure) w.r.t. a manually-curated reference alignment, provided by the organisers. However, query
answering over aligned ontologies has not been addressed by any evaluation initiative so far.

We have introduced in the OAEI 2014 evaluation campaign the novel benchmark called Ontology Alignment for
Query Answering1 (OAQA) that aims at evaluating ontology matching systems w.r.t. the ability of the generated
alignments to enable the answer of a set of queries in an OBDA scenario, where several ontologies exist [70] (see
Appendix M for details).

9.2 Benchmark for Ontology and Mapping Bootstrapping

As presented in Section 2, there exist a number of approaches for the automatic bootstrapping of an ontology and
RDB2RDF mappings from a relation database schema. However, no benchmarks to compare those approaches exist
to date. In addition, slightly different assumptions about available input and expected output make existing systems
difficult to compare on the same basis. This is also reflected by the fact that none of the aforementioned approaches
did run comprehensive experiments directly comparing with any of the others.

An ongoing activity within Optique, is the creation of a comprehensive benchmark for measuring the quality of
automatically generated RDB2RDF mappings. Our benchmark is based on realistic relational schemata and ontologies
and assumes a whole set of different integration scenarios. To this end we also systematically analyze the characteristic
available input information and requirements of different scenarios that call for the automatic or semiautomatic
generation of RDB2RDF mappings.

1http://www.cs.ox.ac.uk/isg/projects/Optique/oaei/oa4qa/

44

http://www.cs.ox.ac.uk/isg/projects/Optique/oaei/oa4qa/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

9.3 Bootstrapping of Complex Mappings

In this chapter we will discuss a novel technique, which is currently under development, for bootstrapping complex,
i.e., not direct, mappings. Now we describe two approaches to such a bootstrapping.

• Whenever it is suitable, we will consider the database schema as a directed graph with a node for each table,
and an edge from table A to table B whenever A contains a foreign key referencing B. The basic idea of the
approach is to translate every table into one or more classes. The table itself is considered as a superclass. To
find its subclasses, one of the approaches would be to take joins of this table with the parent nodes. If these joins
yield sufficiently different subsets of the tuples in the table, then they define subclasses. ‘Sufficiently different’
means a frequency cutoff of some kind. The reason for taking joins with parent nodes, rather than child nodes,
is that a foreign key enforces a one-to-many relation.

• We can also look for sets of attributes in a table that have repeating values (see [41] for details). For example,
if we have a table ‘Person’ with an attribute ‘type’, then particular (repeating) values of this attribute, e.g.,
‘student’ or ‘employee’ can give rise to subclasses. A possible cutoff here is whether there are few values that
occur: it may be undesirable to create too many subclasses.

Before going into more details, we provide some basic definitions.

9.3.1 Basic Definitions

First, we recall the basic notions about relational tables, which were introduced in Section 3.1), that we are going to
use in this chapter. For ease of exposition, we assume that there is at most one foreign key between any two tables.

The following definitions declare a desired property of a bootstrapping complex mappings procedure.

Definition 9.3.1 A bootstrapping procedure is an algorithm that, given a schema 𝒮 and a database instance over 𝒮,
produces an ontology 𝑂 and a set of mappings from 𝒮 to 𝑂.

Let 𝒮 be a schema, 𝑂 an ontology, 𝑀 a set of mappings from 𝒮 to 𝑂, and 𝐷 a database instance over 𝒮. We say
that an OBDA system (𝒮,𝑀,𝑂) is consistent for 𝐷, if (𝐷,𝒮,𝑀,𝑂) ⇑⊧ �, where � stands for falsehood. Note that all
𝐷, 𝒮, 𝑀 , and 𝑂 are treated here as first-order formulae.

Definition 9.3.2 (Update-safety) Let 𝒮 be a schema, 𝑂 an ontology, and 𝑀 a set of mappings from 𝒮 to 𝑂. We
say that 𝑀 and 𝑂 are update-safe with respect to 𝒮 if the OBDA system (𝒮,𝑀,𝑂) is consistent for every database
instance 𝐷 over 𝒮.

A bootstrapping procedure is update-safe if it yields an update-safe set of mappings and ontology for every database
instance of every schema.

In other words, an update-safe bootstrapping procedure does not add any constraints to the ontology that are
not already enforced by the database schema. In particular, this means that the ontology to bootstrap will not
“break” under updates to the data in the database. Note that this property is similar to the properties of information
preservation and monotonicity identified by Sequeda et al. in [66] for direct mappings, however, it is weaker than either
of them. Observe that in general, however, this property is rather restrictive: as databases frequently do not declare
all the constraints that they satisfy, bootstrapping beyond this property can be desirable.

9.3.2 Finding classes based on joins

Let 𝑇 be a table, and {𝑆1, . . . , 𝑆𝑛} be a set of tables that reference 𝑇 . The basic idea is to create a subclass of 𝑇 ’s
base class for each 𝑆𝑖 with (𝑇 ⋉fk 𝑆𝑖) ⊂ 𝑇 . See Algorithm 3 that implements this idea.

This basic idea, however, is complicated by the following. In relational databases, many-to-many relations be-
tween entities are usually represented by a separate table that contains only foreign keys, sometimes with an auto-
incrementing integer primary key. Therefore, we prefer to map such tables to object properties, rather than classes.
Thus, we need to develop means to effectively track and disregard such cases, which we leave for future work.

45

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Algorithm 3: LJSubclasses
INPUT : a table 𝑇 , numbers 𝛼 and 𝛽
OUTPUT: tables ResultTables

1 ResultTables = ∅
2 for each 𝑇 ′ ∈ refs(𝑇) do
3 𝑆 ← 𝑇 ⋉fk 𝑇 ′
4 if 𝛼 < ⋃︀𝑆⋃︀ < 𝛽 then
5 ResultTables.add(𝑆)
6 end
7 end
8 return ResultTables

9.3.3 Finding classes based on clusters of attributes
Let 𝑇 be a table, 𝐴 the set of attributes in 𝑇 , and 𝑉𝑎 the set of different values for each attribute 𝑎 ∈ 𝐴. We want to
determine which rows of 𝑇 form subclasses based on attribute similarity. To this end, we visualize the rows as points
in space in the following natural manner. Each attribute 𝑎 ∈ 𝐴 comprises one dimension and we associate to each
value 𝑣 ∈ 𝑉𝑎 a distinct integer. Thus, a row 𝑟 in 𝑇 is mapped to a tuple on the ⋃︀𝐴⋃︀-dimensional vector space whose
components correspond to the values of 𝑟.

Example 9.3.1 Given the following table and assuming we number the attribute values in the order in which they
occur, rows 1 and 3 would be mapped to (1,1,1,1,1) and (3,3,1,2,3), respectively.

id name type gender phonenumber
1 alice student female 1234
2 bob postdoc male 2345
3 chris student male 3456
4 dora prof female 4567

In order to determine which tuples are similar, we need to introduce a metric that measures distance in some
manner. The standard Euclidean metric would not be prudent, since it makes no intuitive sense for the tuples (1,2,3)
and (2,3,4) to have different distances to the origin. Intuitively, we want to count the number of values in which two
points differ. This results in a sort of Hamming distance, which we define as

𝑑(𝑥, 𝑦) = ∑
𝑎∈𝐴

𝜒(𝑥𝑎, 𝑦𝑎),

where 𝜒(𝑎, 𝑏) = 1 if 𝑎 ≠ 𝑏 and 𝜒(𝑎, 𝑎) = 0. This is fairly simple metric, which does not take into account the number
of values that occur in an attribute column, i.e., it “punishes” differences in all columns equally (e.g., ‘name’ is given
equal priority as ‘gender’ in Example 9.3.1). A way to circumvent this would be to define a variant of the above metric
as follows:

𝑑𝑤(𝑥, 𝑦) = ∑
𝑎∈𝐴

1

⋃︀𝑉𝑎⋃︀
𝜒(𝑥𝑎, 𝑦𝑎).

Of course, the weighting could be adjusted, depending on how much one wants to “punish” different values.

Example 9.3.2 Given the table from Example 9.3.1 and the metrics defined above, rows 1 and 3 have the following
distances:

𝑑(𝑟1, 𝑟3) = 4

𝑑𝑤(𝑟1, 𝑟3) = 1
4
+ 1

4
+ 0 + 1

2
+ 1

4
= 5

4
.

On the other hand, rows 1 and 4 have distances

𝑑(𝑟1, 𝑟4) = 4

𝑑𝑤(𝑟1, 𝑟4) = 1
4
+ 1

4
+ 1

3
+ 0 + 1

4
= 13

12
.

46

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

We still need to see whether the metric 𝑑𝑤 is worth using/investigating, but it should not be an issue to benchmark
this once we have a working implementation.

In order to determine subclasses of a table, we can visualize the rows as point in space as discussed above. Using
a suitable clustering algorithm, one can determine which points “belong together”, i.e., which rows should belong to
the same subclass.

Concerning the clustering algorithm, there are various options.

Hierarchical clustering

• divisive: Begin by considering all points as one cluster. Recursively divide each cluster into smaller clusters
until we reach a point where we want to end or each point is its own cluster. This results in a tree-like hierarchy.

Drawback: complex, doesn’t solve the problem directly since we still need a “flat” clustering algorithm in
each step, i.e., we need to decide how to split before we can continue with recursion.

• agglomerative: Begin with each point as its own cluster. Merge two clusters if they are each others nearest
neighbor. Repeat this until there is only one cluster.

Drawback: fairly memory intensive, but do not need a flat clustering algorithm. It is very likely that this
approach will not be suitable for us, since we have to begin with too many clusters.

K-mediods clustering

• chooses 𝑘 points which represent clusters and iteratively adds points to the clusters to which they are nearest.
Drawback: we cannot use some standard techniques such as K-means since we do not use Euclidean distance.

As the next step, we will decide what approach to clustering will work the best in our framework.

47

Bibliography

[1] http://jena.sourceforge.net/SquirrelRDF.

[2] http://www.w3.org/TR/r2rml/.

[3] http://www.w3.org/TR/rdb-direct-mapping/.

[4] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient Management of Transitive Relationships in
Large Data and Knowledge Bases. In ACM SIGMOD Conf. on Manag. of Data, pages 253–262, 1989.

[5] J.L. Aguirre, Kai Eckert, Jérôme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura Hollink, Christian Meil-
icke, Andriy Nikolov, Dominique Ritze, François Scharffe, Pavel Shvaiko, Ondrej Sváb-Zamazal, Cássia Trojahn,
E. Jiménez-Ruiz, Bernardo Cuenca Grau, and Benjamin Zapilko. Results of the Ontology Alignment Evaluation
Initiative 2012. In Ontology Matching Workshop, 2012.

[6] Irina Astrova. Rules for mapping sql relational databases to owl ontologies. In MTSR, pages 415–424, 2007.

[7] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.

[8] Khalid Belhajjame, James Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, Jun Zhao,
Timothy Lebo, Satya Sahoo, and Deborah McGuinness. PROV-o: The PROV ontology. Technical report, World
Wide Web Consortium, 2012.

[9] Alexandre Bertails and Eric Prud’hommeaux. Interpreting Relational Databases in the RDF Domain. In K-CAP,
pages 129–136, 2011.

[10] C. Bizer and A. Seaborne. D2RQ-Treating non-RDF Databases as Virtual RDF Graphs. In ISWC, 2004.

[11] Alexander Borgida, Vinay K. Chaudhri, Paolo Giorgini, and Eric S. K. Yu, editors. Conceptual Modeling:
Foundations and Applications - Essays in Honor of John Mylopoulos, volume 5600 of Lecture Notes in Computer
Science. Springer, 2009.

[12] Alexander Borgida and Luciano Serafini. Distributed Description Logics: Assimilating Information from Peer
Sources. J. Data Sem., 1:153–184, 2003.

[13] Elena Botoeva, Diego Calvanese, and Mariano Rodriguez-Muro. Expressive approximations in DL-Lite ontologies.
Proceedings of the 14th International Conference on Artificial Intelligence: Methodology, Systems, Applications
(AIMSA 2010), pages 21–31, 2010.

[14] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Mariano
Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo. The MASTRO system for ontology-
based data access. Semantic Web Journal, 2(1):43–53, 2011.

[15] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. Tractable
reasoning and efficient query answering in description logics: The dl-lite family. Journal of Automated Reasoning,
39(3):385–429, 2007.

[16] F. Cerbah and N. Lammari. Perspectives in Ontology Learning, chapter Ontology Learning from Databases:
Some Efficient Methods to Discover Semantic Patterns in Data, pages 1–30. AKA / IOS Press. Serie, 2012.

[17] Farid Cerbah. Mining the content of relational databases to learn ontologies with deeper taxonomies. In Web
Intelligence, pages 553–557, 2008.

[18] Cristina Civili, Marco Console, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Lorenzo Lepore,
Riccardo Mancini, Antonella Poggi, Riccardo Rosati, Marco Ruzzi, Valerio Santarelli, and Domenico Fabio Savo.
Mastro studio: Managing ontology-based data access applications. PVLDB, 6(12):1314–1317, 2013.

48

http://jena.sourceforge.net/SquirrelRDF
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/rdb-direct-mapping/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

[19] Marco Console, Valerio Santarelli, and Domenico Fabio Savo. Efficient approximation in DL-Lite of OWL 2
ontologies. In Proc. of the 26th Int. Workshop on Description Logic (DL), volume 1014 of CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/, pages 132–143, 2013.

[20] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, and U. Sattler. OWL 2: The next step
for OWL. J. Web Sem., 6(4):309–322, 2008.

[21] Bernardo Cuenca Grau, Zlatan Dragisic, Kai Eckert, Jérôme Euzenat, Alfio Ferrara, Roger Granada, Valentina
Ivanova, Ernesto Jiménez-Ruiz, Andreas Oskar Kempf, Patrick Lambrix, Andriy Nikolov, Heiko Paulheim, Do-
minique Ritze, François Scharffe, Pavel Shvaiko, Cássia Trojahn dos Santos, and Ondrej Zamazal. Results of
the ontology alignment evaluation initiative 2013. In Proceedings of the 8th International Workshop on Ontol-
ogy Matching co-located with the 12th International Semantic Web Conference (ISWC 2013), Sydney, Australia,
October 21, 2013., pages 61–100, 2013.

[22] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular reuse of ontologies: Theory
and practice. J. Artif. Intell. Res., 31:273–318, 2008.

[23] Carlo Curino, Giorgio Orsi, Emanuele Panigati, and Letizia Tanca. Accessing and documenting relational
databases through owl ontologies. In FQAS, pages 431–442, 2009.

[24] Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn. The Alignment API 4.0. J. Sem. Web,
2(1):3–10, 2011.

[25] Cristian Pérez de Laborda and Stefan Conrad. Database to Semantic Web Mapping Using RDF Query Languages.
In ER, pages 241–254, 2006.

[26] María del Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano Fernández-López. The neon methodol-
ogy for ontology engineering. In María del Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and
Aldo Gangemi, editors, Ontology Engineering in a Networked World, pages 9–34. Springer, 2012.

[27] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. Principles of Data Integration. Morgan Kaufmann, 2012.

[28] William F. Dowling and Jean H. Gallier. Linear-Time Algorithms for Testing the Satisfiability of Propositional
Horn Formulae. J. Log. Prog., 1(3):267–284, 1984.

[29] Jérôme Euzenat. Semantic Precision and Recall for Ontology Alignment Evaluation. In Int’l Joint Conf. on Artif.
Intell. (IJCAI), pages 348–353, 2007.

[30] Daniel Faria, Ernesto Jimenez-Ruiz, Catia Pesquita, Emanuel Santos, and Francisco M. Couto. Towards anno-
tating potential incoherences in BioPortal mappings. In International Semantic Web Conference, 2014.

[31] Matthew Fisher, Mike Dean, and Greg Joiner. Use of owl and swrl for semantic relational database translation.
In OWLED, 2008.

[32] PREMIS Working Group et al. Data dictionary for preservation metadata: final report of the PREMIS Working
Group. OCLC, 2005.

[33] Nicola Guarino. The ontological level: Revisiting 30 years of knowledge representation. In Borgida et al. [11],
pages 52–67.

[34] Nicola Guarino and Christopher A. Welty. An overview of ontoclean. In Steffen Staab and Rudi Studer, editors,
Handbook on Ontologies, International Handbooks on Information Systems, pages 151–172. Springer, 2004.

[35] Peter Haase et al. Optique System: Towards Ontology and Mapping Management in OBDA Solutions. In
Workshop on Debugging Ontologies and Ontology Mappings (WoDOOM), 2013.

[36] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration: The teenage years. In Umeshwar
Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun
Cha, and Young-Kuk Kim, editors, VLDB, pages 9–16. ACM, 2006.

[37] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From 𝒮ℋℐ𝒬 and RDF to OWL: the making
of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

[38] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. LogMap: Logic-based and Scalable Ontology Matching. In
Int’l Sem. Web Conf. (ISWC), pages 273–288, 2011.

[39] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and Rafael Berlanga. Logic-based Assessment of
the Compatibility of UMLS Ontology Sources. J. Biomed. Semant., 2(Suppl 1):S2, 2011.

49

http://ceur-ws.org/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

[40] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks. Large-scale Interactive Ontology
Matching: Algorithms and Implementation. In Eur. Conf. on Artif. Intell. (ECAI), pages 444–449, 2012.

[41] Sokratis Karkalas and Nigel J. Martin. Automatic semantic object discovery and mapping from non-normalised
relational database systems. In Advances in Information Systems, First International Conference, (ADVIS) ,
pages 92–107, 2000.

[42] Yevgeny Kazakov, Markus Krotzsch, and Frantisek Simancik. Concurrent Classification of EL Ontologies. In
Int’l Sem. Web Conf. (ISWC), pages 305–320, 2011.

[43] E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjæveland, A. Soylu, D. Zheleznyakov, T. Bagosi, M. Con-
sole, P. Haase, I. Horrocks, S. Marciuska, C. Pinkel, M. Rodriguez-Muro, M. Ruzzi, V. Santarelli, D. F. Savo,
K. Sengupta, M. Schmidt, E. Thorstensen, J. Trame, and A. Waaler. Optique 1.0: Semantic Access to Big Data:
The Case of Norwegian Petroleum Directorate’s FactPages. In International Semantic Web Conference (ISWC).
Demo track, 2013.

[44] Evgeny Kharlamov, Ernesto Jiménez-Ruiz, Dmitriy Zheleznyakov, et al. Optique: Towards OBDA Systems for
Industry. In Eur. Sem. Web Conf. (ESWC) Satellite Events, pages 125–140, 2013.

[45] Evgeny Kharlamov, Nina Solomakhina, Ozgur Ozçep, Dmitriy Zheleznyakov, Thomas Hubauer, Steffen Lam-
parter, Mikhail Roshchin, and Ahmet Soylu. How semantic technologies can enhance data access at siemens
energy. In Proc. International Semantic Web Conference, 2014.

[46] Phokion G. Kolaitis, Maurizio Lenzerini, and Nicole Schweikardt, editors. Data Exchange, Integration, and
Streams, volume 5 of Dagstuhl Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[47] Maurizio Lenzerini. Data integration: A theoretical perspective. In Lucian Popa, Serge Abiteboul, and Phokion G.
Kolaitis, editors, PODS, pages 233–246. ACM, 2002.

[48] Dmitry V. Levshin. Mapping relational databases to the semantic web with original meaning. Int. J. Software
and Informatics, 4(1):23–37, 2010.

[49] Man Li, Xiao-Yong Du, and Shan Wang. Learning ontology from relational database. In Proceedings of Interna-
tional Conference on Machine Learning and Cybernetics, 2005.

[50] Lina Lubyte and Sergio Tessaris. Automatic extraction of ontologies wrapping relational data sources. In DEXA,
pages 128–142, 2009.

[51] Carsten Lutz, Inanç Seylan, and Frank Wolter. An automata-theoretic approach to uniform interpolation and
approximation in the description logic ℰℒ. In Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR). AAAI Press, 2012.

[52] C. Meilicke. Alignments Incoherency in Ontology Matching. PhD thesis, University of Mannheim, 2011.

[53] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile graph matching algo-
rithm and its application to schema matching. In ICDE, pages 117–128, 2002.

[54] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz. OWL 2 Web
Ontology Language – Profiles (2nd edition). W3C Recommendation, World Wide Web Consortium, December
2012. Available at http://www.w3.org/TR/owl2-profiles/.

[55] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for Description Logics. J. Artif. Intell.
Res. (JAIR), 36:165–228, 2009.

[56] Jeff Z. Pan and Edward Thomas. Approximating OWL-DL ontologies. In Proc. of the 22nd AAAI Conf. on
Artificial Intelligence (AAAI), pages 1434–1439, 2007.

[57] C. Pinkel, C. Binnig, P. Haase, C. Martin, K. Sengupta, and J. Trame. How to Best Find a Partner? An
Evaluation of Editing Approaches to Construct R2RML Mappings. In ESWC, 2014.

[58] C. Pinkel, C. Binnig, E. Kharlamov, and P. Haase. IncMap: Pay as You Go Matching of Relational Schemata to
OWL Ontologies. In Ontology Matching workshop, 2013.

[59] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Linking data to ontologies. J. Data Semantics, 10:133–173, 2008.

[60] Freddy Priyatna, Óscar Corcho, and Juan Sequeda. Formalisation and experiences of r2rml-based sparql to sql
query translation using morph. In WWW, pages 479–490, 2014.

50

http://www.w3.org/TR/owl2-profiles/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

[61] Raymond Reiter. A Theory of Diagnosis from First Principles. Artif. Intell., 32(1):57–95, 1987.

[62] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. Ontop at work. In OWLED, 2013.

[63] Heru Agus Santoso, Su-Cheng Haw, and Ziyad Abdul-Mehdi. Ontology extraction from relational database:
Concept hierarchy as background knowledge. Knowl.-Based Syst., 24(3):457–464, 2011.

[64] Stefan Schlobach. Debugging and Semantic Clarification by Pinpointing. In Eur. Sem. Web Conf. (ESWC), pages
226–240. Springer, 2005.

[65] Stefan Schlobach and Ronald Cornet. Non-standard Reasoning Services for the Debugging of Description Logic
Terminologies. In Int’l Joint Conf. on Artif. Intell. (IJCAI), pages 355–362, 2003.

[66] Juan Sequeda, Marcelo Arenas, and Daniel P. Miranker. On directly mapping relational databases to rdf and
owl. In WWW, pages 649–658, 2012.

[67] Juan Sequeda, Syed Hamid Tirmizi, Óscar Corcho, and Daniel P. Miranker. Survey of Directly Mapping SQL
Databases to the Semantic Web. Knowledge Eng. Review, 26(4):445–486, 2011.

[68] Martin G. Skjæveland, Espen H. Lian, and Ian Horrocks. Publishing the Norwegian Petroleum Directorate’s
FactPages as Semantic Web Data. In ISWC, pages 162–177, 2013.

[69] A. Solimando, Ernesto Jiménez-Ruiz, and G. Guerrini. Detecting and Correcting Conservativity Principle Viola-
tions in Ontology-to-Ontology Mappings. In International Semantic Web Conference, 2014.

[70] Alessandro Solimando, Ernesto Jimenez-Ruiz, and Christoph Pinkel. Evaluating Ontology Alignment Systems in
Query Answering Tasks. In Poster paper at Int’l Sem. Web Conf. (ISWC), 2014.

[71] Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Guillermo Vega-Gorgojo, and Ian Horrocks. Experiencing
optiquevqs: A multi-paradigm and ontology-based visual query system for end users. In Under Review, 2014.

[72] Dimitrios-Emmanuel Spanos, Periklis Stavrou, and Nikolas Mitrou. Bringing Relational Databases into the
Semantic Web: A Survey. Semantic Web, 3(2):169–209, 2012.

[73] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Boris Villazón-Terrazas. How to write and use the
ontology requirements specification document. In On the Move to Meaningful Internet Systems: OTM 2009,
number 5871 in Lecture Notes in Computer Science, pages 966–982. Springer Berlin Heidelberg, January 2009.

[74] Tuvshintur Tserendorj, Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Approximate OWL-reasoning
with Screech. In Proc. of RR 2008, pages 165–180. Springer, 2008.

[75] Holger Wache, Perry Groot, and Heiner Stuckenschmidt. Scalable instance retrieval for the semantic web by
approximation. In Proc. of WISE 2005, pages 245–254. Springer, 2005.

51

Glossary

CQA Consistent Query Answering
GSA Global Semantic Approximation
IWB Information Workbench
LSA Local semantic approximation
NCS Norwegian Continental Shelf
NPD Norwegian Petroleum Directorate
O&M Ontology and Mapping
OAEI Ontology Alignment Evaluation Initiative
OBDA Ontology-based Data Access
OWL Web Ontology Language
QF Query Formulation
QFI Query Formulation Interface
R2RML RDB to RDF Mapping Language
RDB Relational Data Base
RDF Resource Description Framework
REST Representational State Transfer
URI Uniform Resource Identifier
VM Virtual Machine
W3C World Wide Web Consortium
WP Work Package

52

Appendix A

R2RML direct mapping cases

Table A.1 summarizes the cases that we have considered in the mapping bootstrapper. Note that some types of
mappings have not been considered since they require (directly or indirectly) knowledge about the data (i.e. use of
complex logical tables) or they have been left for the extended boostrapper (i.e. null treatment). Some other types of
mappings are considered as optional like the generation of blank nodes when the primary key is missing.

Table A.1: R2RML direct mapping cases (http://www.w3.org/TR/rdb2rdf-test-cases/)

Type Identifier Example DB Mapping Considered?

Missing primary key

R2RMLTC0000 One table, a col-
umn, zero rows, no
primary key

Direct mapping of an
empty table

Yes

R2RMLTC0001a One table, one col-
umn, one row, no
primary key

One column mapping,
subject URI generation
by using rr:template

Yes (default)

R2RMLTC0001b One table, one col-
umn, one row, no
primary key

One column mapping,
generation of a Blan-
kNode subject by using
rr:termType

Yes (opt.)

R2RMLTC0002a One table, two
columns, one row,
no primary key

Two columns mapping,
generation of a subject
URI by the concatenation
of two column values

Yes (default)

R2RMLTC0002b One table, two
columns, one row,
no primary key

Two columns map-
ping, generation of a
BlankNode subject by
using rr:template and
rr:termType

Yes (opt.)

R2RMLTC0002d One table, two
columns, one row,
no primary key

Two columns mapping,
generation of a BlankN-
ode subject by using a
SQL Query that concate-
nates two columns

No

R2RMLTC0003a One table, three
columns, one row,
no primary key

Three columns mapping,
undefined SQL Version
identifier

No

R2RMLTC0003b One table, three
columns, one row,
no primary key

Three columns map-
ping, concatenation of
columns, by using a
rr:sqlQuery to produce
literal

No

53

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

. . . continued
Type Identifier Example DB Mapping Considered?

R2RMLTC0003c One table, three
columns, one row,
no primary key

Three columns mapping,
by using a rr:template to
produce literal

No

R2RMLTC0005 One table, three
columns, three
rows, two duplicate
tuples, no primary
key

Generation of BlankN-
odes from duplicate tu-
ples

No

Generation of subject

R2RMLTC0006a One table, one pri-
mary key, one col-
umn, one row

Long form of R2RML
by using rr:constant
in rr:subjectMap,
rr:predicateMap,
rr:objectMap and
rr:graphMap

No

R2RMLTC0007c One table, one
primary key, two
columns, one row

One column mapping, us-
ing rr:class

Yes (default)

R2RMLTC0007d One table, one
primary key, two
columns, one row

One column map-
ping, specifying an
rr:predicateObjectMap
with rdf:type

Yes (opt.)

R2RMLTC0007e One table, one
primary key, two
columns, one row

One column mapping,
using rr:graphMap and
rr:class

No

R2RMLTC0007f One table, one
primary key, two
columns, one row

One column mapping,
using rr:graphMap
and specifying an
rr:predicateObjectMap
with rdf:type

No

Composite primary key
R2RMLTC0008a One table, a com-

posite primary key,
three columns, one
row

Generation of direct
graph from a table with
composite primary key

Yes (default)

R2RMLTC0008b One table, a com-
posite primary key,
three columns, one
row

Generation of triples ref-
erencing object map

Yes (opt.?)

R2RMLTC0008c One table, a com-
posite primary key,
three columns, one
row

Generation of triples
by using multiple pred-
icateMaps within a
rr:predicateObjectMap

Yes (Opt.)

Foreign key management

R2RMLTC0009a Two tables, a pri-
mary key, a foreign
key

Generation of triples from
foreign key relations

Yes (default)

R2RMLTC0009b Two tables, a pri-
mary key, a foreign
key

Generation of triples to
multiple graphs

No

R2RMLTC0009c Two tables, a pri-
mary key, a foreign
key

Unnamed column in a
logical table

No

R2RMLTC0009d Two tables, a pri-
mary key, a foreign
key

Named column in logical
table

No

54

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

. . . continued
Type Identifier Example DB Mapping Considered?

DGraphTC0021 Two tables, two pri-
mary keys, a for-
eign key, references
all nulls

Generation of triples for
two tables, two primary
keys, a foreign key, refer-
ences all nulls

No

DGraphTC0022 Two tables, a pri-
mary key, a foreign
key, references no
primary keys

Generation of triples from
two tables, a primary key,
a foreign key, references
no primary keys

Yes

DGraphTC0023 Two tables, two
primary keys, two
foreign keys, refer-
ences to a key other
than primary key

Generation of triples for
two tables, two primary
keys, two foreign keys,
references to a key other
than primary key

Yes

DGraphTC0024 Two tables, two pri-
mary keys, a for-
eign key to a row
with some NULLs
in the key

Generation of triples from
two tables, two primary
keys, a foreign key to a
row with some NULLs in
the key

No

DGraphTC0025 Three tables, three
primary keys, three
foreign keys

Generation of triples from
three tables, three pri-
mary keys, three foreign
keys

Yes

Many-to-Many tables
R2RMLTC0011b Database with

many to many
relations

M to M relation, by using
an additional Triples Map

Yes (default)

R2RMLTC0011a Database with
many to many
relations

M to M relation, by using
a SQL query

No

IRI value in columns

R2RMLTC0014d 3 tables, one pri-
mary key, one for-
eign key

Test the translation of
database type codes to
IRIs

Yes (optional)

R2RMLTC0019a One table, one
primary key, three
columns, three
rows

Generation of triples
by using IRI value in
columns

No

R2RMLTC0019b One table, one
primary key, three
columns, three
rows

Generation of triples
by using IRI value in
columns, with data error

No

R2RMLTC0020a One table, one col-
umn, five rows

Generation of triples
by using IRI value in
columns

No

R2RMLTC0020b One table, one col-
umn, five rows

Generation of triples
by using IRI value in
columns, with data errors

No

Datatype management

R2RMLTC0016a One table, one
primary key, ten
columns, three rows
with sql datatypes

Table with datatypes:
string and integer

Yes

R2RMLTC0016b One table, one
primary key, ten
columns, three rows
with sql datatypes

Table with datatypes:
real and float

Yes

55

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

. . . continued
Type Identifier Example DB Mapping Considered?

R2RMLTC0016c One table, one
primary key, ten
columns, three rows
with sql datatypes

Table with datatypes:
date and timestamp

Yes

R2RMLTC0016d One table, one
primary key, ten
columns, three rows
with sql datatypes

Table with datatypes,
boolean conversions

Yes

R2RMLTC0016e One table, one
primary key, ten
columns, three rows
with sql datatypes

Table with datatypes, bi-
nary column

No

R2RMLTC0018a One table, one
primary key, two
columns, three
rows

Generation of triples by
using CHAR datatype
column

Yes

Language management R2RMLTC0015a One table, three
columns, one com-
posite primary key,
three rows, two lan-
guages

Generation of language
tags from a table with
language information

No

R2RMLTC0015b One table, three
columns, one com-
posite primary key,
three rows, two lan-
guages

Generation of language
tags from a table with
language information,
and a term map with
invalid rr:language value

No

Special characters

R2RMLTC0010a One table, a pri-
mary key, three
columns, three
rows

Template with table col-
umn with special chars

Yes

R2RMLTC0010b One table, a pri-
mary key, three
columns, three
rows

Template with table
columns with special
chars

Yes

R2RMLTC0010c One table, a pri-
mary key, three
columns, three
rows

Template with table
columns with special
chars and backslashes

No

DGraphTC0017 I18N No Special
Chars

I18N No Special Chars No

rr:inverseExpression
R2RMLTC0014a 3 tables, one pri-

mary key, one for-
eign key

Subjectmap with
rr:inverseExpression

No

R2RMLTC0014b 3 tables, one pri-
mary key, one for-
eign key

Triplesmaps with
rr:inverseExpression
and rr:joinCondition

No

R2RMLTC0014c 3 tables, one pri-
mary key, one for-
eign key

Triplesmaps with
rr:inverseExpression,
rr:joinCondition, and
referencing object maps

No

56

Appendix B

OM 2013: IncMap

This appendix reports the paper:

− Christoph Pinkel, Carsten Binnig, Evgeny Kharlamov, Peter Haase IncMap: Pay as you go Matching of Rela-
tional Schemata to OWL Ontologies. In Proceedings of the International Ontology Matching workshop 2013

57

IncMap: Pay as you go Matching of
Relational Schemata to OWL Ontologies

Christoph Pinkel1, Carsten Binnig2, Evgeny Kharlamov3, and Peter Haase1

1 fluid Operations AG, D-69190 Walldorf, Germany,
2 University of Mannheim, D-68131 Mannheim, Germany,

3 University of Oxford, Oxford, UK

Abstract. Ontology Based Data Access (OBDA) enables access to re-
lational data with a complex structure through ontologies as conceptual
domain models. A key component of an OBDA system are mappings be-
tween the schematic elements in the ontology and their correspondences
in the relational schema. Today, in existing OBDA systems these map-
pings typically need to be compiled by hand, which is a complex and la-
bor intensive task. In this paper we address the problem of creating such
mappings and present IncMap, a system that supports a semi-automatic
approach for matching relational schemata and ontologies. Our approach
is based on a novel matching technique that represents the schematic ele-
ments of an ontology and a relational schema in a unified way. IncMap is
designed to work in a query-driven, pay as you go fashion and leverages
partial, user-verified mappings to improve subsequent mapping sugges-
tions. This effectively reduces the overall effort compared to compiling
a mappings in one step. Moreover, IncMap can incorporate knowledge
from user queries to enhance suggestion quality.

1 Introduction

Effective understanding of complex data is a crucial task for enterprises to sup-
port decision making and retain competitiveness on the market. This task is not
trivial especially since the data volume and complexity keep growing fast in the
light of Big Data [1]. While there are many techniques and tools for scalable
data analytics today, there is little known on how to find the right data.

Today, enterprise information systems of large companies store petabytes of
data distributed across multiple – typically relational – databases, each with
hundreds or sometimes even thousands of tables (e.g., [2]). For example, an
installation of an SAP ERP system comes with tens of thousands of tables [3].
Due to the complexity of data a typical scenario for data analyses today involves
a domain expert who formulates an analytical request and an IT expert who has
to understand the request, find the data relevant to it, and then translate the
request into an executable query. In large enterprises this process may iterate
several times between the domain and IT experts, the complexity of data and
other factors, and may take up to several weeks.

Ontology-based data access (OBDA) [4] is an approach that has recently
emerged to provide semantic access to complex structured relational data. The

2 Christoph Pinkel et al.

core elements of an OBDA system are an ontology, describing the application
domain, and a set of declarative mappings, relating the ontological schema ele-
ments (e.g., names of classes and properties) with the relational schema elements
(e.g., names of table and attributes) of the underlying data sources. Using the
ontology and the mappings, domain experts can access the data directly by for-
mulating queries in terms defined in the ontology that reflects their vocabulary
and conceptualization. Using query rewriting techniques, the end-user queries
are then translated into queries over the underlying data sources.

Today, most approaches for ontology-based data access focus on the definition
of mapping languages and the efficient translation of high-level user queries over
an ontology into executable queries over relational data [4,5]. These approaches
assume that a declarative mapping of the schema elements of the ontology to
the relational elements is already given. So far, in real-world systems [6,7] that
follow the ontology-based data access principle, the mappings have to be created
manually. The costs for the manual creation of mappings constitute a significant
entry barrier for applying OBDA in practice.

To overcome this limitation we propose a novel semi-automatic schema match-
ing approach and a system called IncMap to support the creation of mappings
directly from relational schemata to ontologies.

We focus on finding one-to-one (direct) correspondences of ontological and
relational schema elements, while we also work on extensions for finding more
complex correspondences. In order to compute mapping suggestions IncMap uses
a relational schema, an OWL ontology, a set of user conjunctive queries over the
ontology, and user feedback as basic input.

The matching approach of IncMap is inspired by the Similarity Flooding
algorithm of Melnik et al. [8] that works well for schemata that follow the same
modeling principles (e.g., same level of granularity). However, applying the Sim-
ilarity Flooding algorithm naively for matching schema elements of a relational
schema to an OWL ontology results in rather poor quality of the suggested cor-
respondences as we show in our experiments. A major reason is the impedance
mismatch between ontologies and relational schemata: While ontologies typi-
cally model high-level semantic information, relational schemata describe the
syntactical structure on a very low level of granularity.

The contributions of the paper are the following:

– In Section 3, we propose a novel graph structure called IncGraph to represent
schema elements from both ontologies and relational schemata in a unified
way. Therefore, we devise algorithms to convert an ontology as well as a
relational schema into their unified IncGraph representation. We also briefly
discuss techniques to further improve IncGraph.

– In Section 4, we present our matching algorithm that we use for matching
IncGraphs. Its most prominent feature is that IncMap can produce the map-
ping incrementally, query by query. While the original Similarity Flooding
algorithm generates correspondences for all schema elements, IncMap sup-
ports a pay as you go matching strategy. For each query we produce only
required mappings. IncMap leverages the structure of mappings from previ-

IncMap: Pay as you go schema matching 3

ous queries to improve suggestion quality. This effectively reduces the total
effort for the user to verify mapping suggestions.

– Section 5 presents an experimental evaluation using different (real-world)
relational schemata and ontologies. We see that even in the basic version of
IncMap, the effort for creating a mapping is up to 20% less than using the
Similarity Flooding algorithm in a naive way. In addition, the incremental
version of IncMap can reduce the total effort by another 50%− 70%.

2 Background

In this section we briefly introduce ontologies [9], relational schemata, and the
Similarity Flooding algorithm [8].

Ontologies. An ontology O specifies a conceptualization of a domain in terms
of classes and properties and consists of a set of axioms. Without explanation,
ontologies in this paper are OWL ontologies and we will use the following OWL
constructs: object and data properties P , and domains Domain(P) and ranges
Range(P) of properties. We denote with Class(O) and Property(O) the sets of
class and property names, respectively, occurring in the ontology O. For a given
ontology O, with C ∈ Domain(P) we denote the fact that one can derive from
O that the class name C is a domain of the property P . Also, C ′ ∈ Range(P)
denotes the fact that C ′ is a range of P and it is derivable from O.

Relational Schemata. A relational schema R defines a set of relations (tables)
T , where each table defines a set of columns c. We also assume that a schema
contains foreign keys k that define references between tables.

Similarity Flooding Algorithm. The Similarity Flooding algorithm matches a
given schema S with a schema S ′. In the first step, directed labeled graphs
G(S) and G(S ′) are constructed from S and S ′, where the nodes represent the
schema elements, and the edges with labels define relationships between the
schema elements. There is no exact procedure to construct the graphs from
the schemata given in [8]. Thus, the Similarity Flooding algorithm is open for
any graph construction process. The second step in the algorithm is to merge
G(S) and G(S ′) into one graph, a so-called pairwise connectivity graph PCG.
Intuitively, each node of the PCG is a pair of nodes, and represents a potential
match between schema elements of S and S ′. Then, the PCG is enriched with
inverse edges and edge weights (propagation coefficients), where the value of the
weights is based on the number of outgoing edges with the same label from a
given node. This graph is called the induced propagation graph IPG. The final
step of the algorithm is a fix-point computation to propagate initial similarities
by using the structural dependencies represented by the propagation coefficients.
The fix-point computation termination is based either on threshold values or the
number of iterations. The result is a ranked list of suggested mappings. We refer
to [8] for further details.

4 Christoph Pinkel et al.

Algorithm 1: IncGraph for constructing graphs from ontologies
INPUT : OWL ontology O
OUTPUT: Graph G = (V, LblV , E, LblE)

1 Let G = (V, LblV , E, LblE), V = {n>}, LblV = {(n>,>)}, E = ∅, LblE = ∅;
2 foreach C ∈ Class(O) do V := V ∪ {nC} and LblE(nC) := C
3 foreach P ∈ Property(O) do
4 V := V ∪ {nP } and LblV(nP) := P ; Let C ∈ Domain(P);
5 if P is an object property then
6 E := E ∪ {(nC , nP)} and LblV((nC , nP)) := ‘ref’;

7 Let C′ ∈ Range(P);
8 E := E ∪ {(nP , nC′)} and LblV((nP , nC′)) := ‘ref’;

9 else if P is a data property then
10 E := E ∪ {(nC , nP)} and LblE((nC , nP)) := ‘value’

11 return G.

Algorithm 2: IncGraph for constructing graphs from relational schemata
INPUT : Relational Schema R
OUTPUT: Graph G = (V, LblV , E, LblE)

1 Let V = ∅, LblV = ∅, E = ∅, LblE = ∅;
2 foreach table T in R do
3 V := V ∪ {nT } and LblV(nT) := T ;
4 foreach column c in R do
5 V := V ∪ {nc} and LblV(nc) := c;
6 E := E ∪ {(nT , nc)} and LblE((nT , nc)) := ‘value’

7 if c has a foreign key k to some table T ′ then
8 V := V ∪ {nk} and LblV(nk) := k;
9 E := E ∪ {(nT , nk)} and LblE((nT , nk)) := ‘ref’

10 E := E ∪ {(nk, nT ′)} and LblE((nk, nT ′)) := ‘ref’

11 return G.

3 The IncGraph Model

In this section, we describe the IncGraph model used by IncMap to represent
schema elements of an OWL ontology O and a relational schema R in a unified
way.

An IncGraph model is defined as directed labeled graph G = (V, LblV , E , LblE).
It can be used as input by the original Similarity Flooding algorithm (Section 2)
or IncMap. V represents a set of vertices, E a set of directed edges, LblV a set
of labels for vertices (i.e., one label for each vertex) and LblE a set of labels for
edges (i.e., one label for each edge). A label lV ∈ LblV represents a name of a
schema element whereas a label lE ∈ LblE is either “ref” representing a so called
ref-edge or “value” representing a so called val-edge.

3.1 IncGraph Construction

The goal of the procedures for the basic construction is to incorporate explicit
schema information from O and R into the IncGraph model. Incorporating im-
plicit schema information is discussed in the next section.

Algorithm 1 creates an IncGraph model G for a given ontology O. The algo-
rithm constructs a vertex nC for each class name C ∈ Class(O) and a vertex

IncMap: Pay as you go schema matching 5

!"#$%&!!'()

*+,-$./,)
0/1&+2)

0+,-$.!) 3/4+-)
,&25-)

6%&!!)

!"#$%&!!'()'#7-$.)
8,/9-,.:)

!"#$%&!!'()

*&.&)
8,/9-,.:)

;&!<+.%-)
0/1&+2)

!"#$%&!!'()

!"#$%&'#(

0+,-$./,)
8=)

>>>)

)'*"$(

?.%-)

0+,-$./,)
@=)

>>>)

+,&'-'./(+! 0$-12',1-(3%4$51(0!

*+,-$./,)
,-()

0+,-$.!) 3/4+-)
,-()

;&!<+.%-)

4&%)

*+,-$./,)
,-()

0+,-$./,)
@=) 3/4+-)

,-()

;&!<+.%-)

4&%)
0+,-$./,)

@=)
*+,-$./,)

8=)

4&%)

6,%7#1849+:! 6,%.#18490:!

4&%)

Fig. 1. IncGraph Construction Example

nP for each property name P ∈ Property(O) using the names of these ontology
elements as label in LblV . Directed edges in the IncGraph model are created
for each domain and range definition in O. The labels LblE for edges are either
“ref” in case of an object property or “value” in case of a data property. For
a domain definition in O the direction of the edge in G is from the node nC
representing the domain of P to the node nP representing the property P . For a
range definition the direction of the edge in G is from the node nP representing
object property to the node nC′ representing the range of P (i.e., another class).
If an object property in O has no range (respectively, domain) definition, then a
directed labeled edge to a node n> is added to explicitly model the most general
range (respectively, domain), i.e., a top-level concept > like Thing.

Algorithm 2 creates a IncGraph model G for a given relational schema R:
The algorithm constructs a vertex nT for each table and a vertex nc for each
column using the names of these schema elements as labels LblV . Directed edges
with the label “value” are created from a node nT representing a table to a node
nc representing a columns of that table. For columns with a foreign key k an
additional node nk is created. Moreover, two directed edges with the label “ref”
are added, which represent a path from node nT to a node nT ′ representing the
referenced table via node nk.

Figure 1 shows the result of applying these two algorithms to the ontology
O and the relational schema R in this figure. Both O and R describe the same
entities Directors and Movies using different schema elements. The resulting
IncGraph models of O and R represent the schema structure in a unified way.

3.2 IncGraph Annotations

IncGraph is designed to represent both relational schemata and ontologies in
a structurally similar fashion because matching approaches such as ours work
best when the graph representations on both the source and target side are as
similar as possible. However, even in IncGraph structural differences remain due
to the impedance mismatch and different design patterns used in ontologies and
relational schemata, respectively.

We consider this issue by supporting annotations in IncGraph. Annotations
basically are additional ref-edges in either the source or target model that can
be designed to bridge structural gaps for different design patterns or levels of

6 Christoph Pinkel et al.

granularity. For instance, shortcut edges in the relational IncGraph model could
represent a multi-hop join over a chain of relationship relations. Annotations can
be constructed by plug-ins during IncGraph construction.

We plan to evaluate the opportunities of different kinds of annotations in
future work.

4 The IncMap System

In this section, we present our matching approach and system called IncMap. In-
cMap takes a source and target IncGraph as input, i.e., the IncGraphs produced
for a relational schema and for an ontology as described in Section 3.

4.1 Overview of IncMap

In its basic version, IncMap applies the original Similarity Flooding algorithm
(with minor adaptions) and thus creates initial mapping suggestions for the
IncGraph of an ontology O and a relational schema R. In its extended version,
IncMap activates inactive ref-edges before executing the Similarity Flooding
algorithm to achieve better mapping suggestions.

Another extension is the incremental version of IncMap. In this version the
initial mapping suggestions are re-ranked by IncMap in a semi-automatic ap-
proach by including user feedback. Re-ranking works iteratively in a query-driven
fashion thus increasing the quality of the suggested mappings. In each iteration,
IncMap applies a version of the Similarity Flooding algorithm (as described be-
fore). However, in addition between each iteration user feedback is incorporated.

The idea of user feedback is that the user confirms those mapping suggestions
of the previous iteration, which are required to answer a given user query over
ontology O. Confirmed suggestions are used as input for the next iteration to
produce better suggestions for follow-up queries. This is in contrast to many
other existing approaches (including the original Similarity Flooding algorithm)
that return a mapping for the complete source and target schema only once.

IncMap is designed as a framework and provides different knobs to control
which extensions to use and within each extension which concrete variants to
choose (e.g., to select a concrete strategy for activating inactive edges). The goal
of this section is to present IncMap with all its variants and to show their benefits
for different real-world data sets in our experimental evaluation in Section 5. A
major avenue of future work is to apply optimization algorithms to find the best
configurations of IncMap for a given ontology O and schema R automatically
by searching the configuration space based on the knobs presented before.

4.2 Basic Matching in IncMap

As already mentioned, in the basic version of IncMap, we simply apply the
Similarity Flooding algorithm for the two IncGraphs produced for a relational
schema R and for an ontology O similar to the process as described in Section 2.

As a first step, IncMap generates the PCG (i.e., a combined graph which pairs
similar nodes of both input IncGraphs) using an initial lexical matching, which

IncMap: Pay as you go schema matching 7

supports interchangeable matchers as one knob for configuration. One difference
is the handling of inactive ref-edges in the input IncGraphs. For inactive ref-
edges, which are not handled in the original Similarity Flooding, we apply the fol-
lowing rule when building the PCG: if an edge in the PCG refers to at least one inac-
tive ref-edge in one of the IncGraph models, it also becomes inactive in the PCG.

In addition, other than in the original Similarity Flooding approach, where
propagation coefficients for the IPG are ultimately determined during graph con-
struction, our propagation coefficients can be calculated several times when the
graph changes with the activation and deactivation of edges. Also, propagation
coefficients in IncMap are modular and can be changed. In particular, a new
weighting formula supported by IncMap considers the similarity scores on both
ends of an edge in the IPG. The intuition behind this is that a higher score in-
dicates better chances of the match being correct. Thus, an edge between two
matches with relatively high scores is more relevant for the structure than an
edge between one isolated well-scored match and another with a poor score. For
calculating the weight w(e) of a directed edge e = (n1, n2) from n1 to n2 in the
IPG where l is the label of the edge, we currently use two alternatives:
– Original Weight as in [8] : w(e) = 1/outl where outl is the number of edges

connected to node n1 with the same label l
– Normalized Similarity Product : w(e) = (score(n1) ∗ score(n2))/outl.

4.3 Extended IncMap: Iterative User Feedback
Query-driven incremental mappings allow to leverage necessary user feedback
after each iteration to improve the quality of mapping suggestions in subsequent
iterations. One of the reasons why we have chosen Similarity Flooding as a basis
for IncMap is the fact that user feedback can be integrated by adopting the
initial match scores in an IPG before the fix-point computation starts.

Though the possibility of an incremental approach has been mentioned al-
ready in the Similarity Flooding paper [8], it so far has not been implemented
and evaluated. Also, while it is simple to see where user feedback could be in-
corporated in the IPG, it is far less trivial to decide which feedback should be
employed and how exactly it should be integrated in the graph. In this paper we
focus on leveraging only the most important kind of user feedback, i.e., the pre-
vious confirmation and rejection of suggested mappings. We have devised three
alternative methods how to add this kind of feedback into the graph.

First, as a confirmed match corresponds to a certain score of 1.0, while a
rejected match corresponds to a score of 0.0, we could simply re-run the fix-point
computation with adjusted initial scores of confirmed and/or rejected matches.
We consequently name this first method Initializer. However, there is a clear
risk that the influence of such a simple initialization on the resulting mapping is
too small as scores tend to change rapidly during the first steps of the fix-point
computation.

To tackle this potential problem, our second method guarantees maximum
influence of feedback throughout the fix-point computation. Instead of just ini-
tializing a confirmed or rejected match with their final score once, we could re-
peat the initialization at the end of each step of the fix-point computation after

8 Christoph Pinkel et al.

normalization. This way, nodes with definite user feedback influence their neigh-
borhood with their full score during each step of the computation. We therefore
call this method Self-Confidence Nodes. However, as scores generally decrease in
most parts of the graph during the fix-point computation and high scores become
more important for the ranking of matches in later fix-point computation steps,
this method implies the risk of over-influencing parts of the graph. For example,
one confirmed match in a partially incorrect graph neighborhood would almost
certainly move all of its neighbors to the top of their respective suggestion lists.

Finally, with our third method, we attempt to balance the effects of the pre-
vious two methods. We therefore do not change a confirmed match directly but
include an additional node in IPG that can indirectly influence the match score
during the fix-point computation. We name this method Influence Nodes. By
keeping the scores of those additional influence nodes invariant we ensure per-
manent influence throughout all steps of the fix-point computation. Yet, the in-
fluence node only indirectly affects the neighborhood of confirmed nodes through
the same propagation mechanism that generally distributes scores through the
graph.

5 Experimental Evaluation

The main goal of IncMap is to reduce the human effort for constructing map-
pings between existing relational database schemata and ontologies. Mapping
suggestions are intended to be used only after they have been validated by a
user. Thus, there are two relevant evaluation measures: first, the percentage of
the mappings in the reference mappings that can be represented by IncMap.
We specify this percentage for all reference mappings when introducing them.
Certain complex mappings (e.g., mappings performing data transformations)
cannot be represented by IncMap. These complex mappings are rare in all real-
world reference mappings we used in this paper. The second and most important
measure is the amount of work that a user needs to invest to transform a set
of mapping suggestions into the correct (intended) mappings. As the latter is
the most crucial aspect, we evaluate our approach by measuring the work time
required to transform our suggestions into the existing reference mappings.

5.1 Relational Schemata and Ontologies

To show the general viability of our approach, we evaluate IncMap in two sce-
narios with fairly different schematic properties. In addition to showing the key
benefits of the approach under different conditions, this also demonstrates how
the impact of modular parameters varies for different scenarios.

IMDB and Movie Ontology. As a first scenario, we evaluate a mapping from the
schema of well known movie database IMDB4 to the Movie Ontology [10]. With
27 foreign keys connecting 21 tables in the relational schema and 27 explicitly
modeled object properties of 21 classes in the ontology, this scenario is average

4 http://www.imdb.com

IncMap: Pay as you go schema matching 9

in size and structural complexity. The reference mappings we use to derive corre-
spondences for this scenario5 has been made available by the -ontop- team [11].
A set of example queries is provided together with these reference mappings.
We use these to construct annotations for user queries as well as to structure
our incremental, query-by-query experiments. We extract a total of 73 potential
correspondences from this mapping, 65 of which can be represented by IncMap
as mapping suggestions. This corresponds to 89% of the mappings that could be
represented in IncMap.
MusicBrainz and Music Ontology. The second scenario is a mapping from the
MusicBrainz database6 to the Music Ontology [12]. The relational schema con-
tains 271 foreign keys connecting 149 tables, while the ontology contains 169
explicitly modeled object properties and 100 classes, making the scenario both
larger and more densely connected than the previous one. Here we use R2RML
reference mappings that have been developed in the project EUCLID.7 As there
were no example queries provided with the mapping in this case, we use exam-
ple queries provided by the Music Ontology for user query annotations and to
structure the incremental experiment runs.

For these reference mappings, two out of 48 correspondences cannot be repre-
sented as mapping suggestions by IncMap as they require data transformations.
This corresponds to 95.8% of the mappings that could be represented in IncMap.

5.2 Work Time Cost Model

We evaluate our algorithms w.r.t. reducing work time (human effort). As the
user feedback process always needs to transform mapping suggestions generated
by IncMap into the correct mappings (i.e. to achieve a precision and recall of
100%), the involved effort is the one distinctive quality measure. To this end, we
have devised a simple and straightforward work time cost model as follows: we
assume that users validate mappings one by one, either accepting or rejecting
them. We further assume that each validation, on average, takes a user the same
amount of time tvalidate. The costs for finding the correct correspondence for any
concept in this case is identical with the rank of the correct mapping suggestion
in the ranked list of mapping suggestions for the concept times tvalidate.

As IncMap is interactive by design and would propose the user one mapping
suggestion after another, this model closely corresponds to end user reality. We
are aware that this process represents a simplification of mapping reality where
users may compile some of the mappings by other means for various reasons. Nev-
ertheless, this happens in the same way for any suggestion system and therefore
does not impact the validity of our model for the purpose of comparison.

5.3 Experimental Evaluation

Experiment 1 – Naive vs. IncGraph. In our first experiment we compare the
effort required to correct the mapping suggestions when the schema and ontol-

5 https://babbage.inf.unibz.it/trac/obdapublic/wiki/Example MovieOntology
6 http://musicbrainz.org/doc/MusicBrainz Database
7 http://euclid-project.eu

10 Christoph Pinkel et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

Random LS Similarity Inverse LS Dist.

E
ffo

rt
 [a

ct
io

ns
]

IMDB: Naive Similarity Flooding vs. IncGraph
Naive [initial]

IncGraph [initial]
Naive [final]

IncGraph [final]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

Random LS Similarity Inverse LS Dist.

E
ffo

rt
 [a

ct
io

ns
]

Music Ontology: Naive Similarity Flooding vs. IncGraph
Naive [initial]

IncGraph [initial]
Naive [final]

IncGraph [final]

(a) Naive vs. IncGraph

 0

 100

 200

 300

 400

 500

 600

 700

 800

Norm. Sim. Product Original Weights

E
ffo

rt
 [a

ct
io

ns
]

IMDB: Incremental Runs
Non-Incremental

Initializer
Self-Confidence Nodes

Influence Nodes

 0

 1000

 2000

 3000

 4000

 5000

 6000

Norm. Sim. Product Original Weights

E
ffo

rt
 [a

ct
io

ns
]

Music Ontology: Incremental Runs
Non-Incremental

Initializer
Self-Confidence Nodes

Influence Nodes

(b) Incremental Evaluation

Fig. 2. Experimental Evaluation

ogy are represented naively, or as IncGraphs. Additionally, we vary the lexical
matcher used for the initial mapping between randomly assigned scores (minimal
base line), Levenshtein similarity and inverse Levenshtein distance. Figure 2(a)
shows that IncGraph in all cases works better than the naive approach. As In-
cMap reliably improves the mapping for all configurations, it also underlines the
ability of IncMap to operate in a stable manner with different initial matchers.

Experiment 2 – Incremental Mapping Generation. Finally, we evaluated the
best previous configurations incrementally, i.e., leveraging partial mappings. Fig-
ure 2(b) illustrates the effects on the total effort. We show total effort for all
three incremental methods, for different propagation coefficients. Most signifi-
cantly, incremental evaluation reduces the overall effort by up to 50% − 70%.
More specifically, Self-Confidence Nodes and Influence nodes work much better
than the naive Initializer approach.

6 Related Work
Many existing mapping systems rely on two-step mapping procedures: They em-
ploy lexical similarity of terms together with structural similarity of the struc-
tures ([13,14,15] or [16,17] for surveys). A very few of them rely on variations of
Similarity Flooding to perform the latter task. However, to the best of our knowl-
edge, all of these approaches focus on ontology-to-ontology rather than relational
schema-to-ontology mappings. RiMOM [18] performs a multi-strategy mapping
discovery between ontologies and performs mappings using a variant of the Sim-
ilarity Flooding algorithm, while it relies on structural similarities of ontologies
derived from sub-class and sub-property relationships, rather than connectivity

IncMap: Pay as you go schema matching 11

of classes via properties as we do in order to get a better alignment of relational
schemata and ontologies. In Yamm++ [19] the authors used Similarity Flood-
ing and exploit both sub-class and sub-property relationships, and domain and
ranges of ontologies, while they did it in a naive way which, as our experimental
results showed, does not give good results for relational schemata-to-ontology
mappings. Moreover, they use Similarity Flooding to obtain new mappings on
top of the ones obtained via linguistic similarities, while we do not derive new
mappings but refine the ranking over the linguistically derived ones. There are
works on semi-automatic discovery of relational schema-to-ontology mappings,
but they use approaches different from ours: For example, [20] transforms re-
lational schemata and ontologies into directed labeled graphs respectively and
reuse COMA [21] for essentially syntactic graph matching. Ronto [22] uses a
combination of syntactic strategies to discover mappings by distinguishing the
types of entities in relational schemata. The authors of [23] exploit structure of
ontologies and relational schemata by calculating the confidence measures be-
tween virtual documents corresponding to them via the TF/IDF model. All these
approaches do not incorporate implicit schema information and do not support
an incremental mapping construction in the pay as you go fashion as IncMap
does. Finally, [24] describes an approach to derive complex correspondences for
a relational schema-to-ontology mapping using simple correspondences as input.
This work is orthogonal to the approach presented in this paper.

7 Conclusions and Outlook
We presented IncMap, a novel semi-automatic matching approach for generat-
ing relational schema-to-ontology mappings. Our approach is based on a novel
unified graph model called IncGraph for ontologies and relational schemata. In-
cMap implements a semi-automatic matching approach to derive mappings from
IncGraphs using both lexical and structural similarities between ontologies and
relational schemata. In order to find structural similarities IncMap exploits both
explicit and implicit schema information. Moreover, IncMap allows to incorpo-
rate user queries and user feedback in an incremental way, thus, enabling a pay
as you go fashion of the mapping generation. Our experiments with IncMap on
different real-world relational schemata and ontologies showed that the effort for
creating a mapping with IncMap is up to 20% less than using the Similarity
Flooding algorithm in a naive way. The incremental version of IncMap reduces
the total effort of mapping creation by another 50% − 70%. As future work we
plan to follow three lines: (1) add more implicit schema information (annota-
tions) to the IncGraphs, (2) support more complex mappings in IncMap, and
(3) devise a search strategy over the configuration space to auto-tune IncMap.

8 Acknowledgements

This work was supported by the Seventh Framework Program (FP7) of the
European Commission under Grant Agreement 318338, the Optique project.

12 Christoph Pinkel et al.

References

1. Beyer, M.A., Lapkin, A., Gall, N., Feinberg, D., Sribar, V.T.: ‘Big Data’ is Only the
Beginning of Extreme Information Management. Gartner rep. G00211490 (2011)

2. Crompton, J.: Keynote talk at the W3C Workshop on Sem. Web in Oil & Gas
Industry (2008) http://www.w3.org/2008/12/ogws-slides/Crompton.pdf.

3. SAP HANA Help: http://help.sap.com/hana/html/sql export.html (2013)
4. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:

Linking Data to Ontologies. J. Data Semantics 10 (2008) 133–173
5. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The Com-

bined Approach to Ontology-Based Data Access. In: IJCAI. (2011) 2656–2661
6. Hepp, M., Wechselberger, A.: OntoNaviERP: Ontology-Supported Navigation in

ERP Software Documentation. In: International Semantic Web Conference. (2008)
7. Blunschi, L., Jossen, C., Kossmann, D., Mori, M., Stockinger, K.: SODA: Gener-

ating SQL for Business Users. PVLDB 5(10) (2012) 932–943
8. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph

Matching Algorithm and its Application to Schema Matching. In: ICDE, IEEE
Computer Society (2002)

9. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (2012) W3C Rec.

10. Bouza, A.: MO – The Movie Ontology, http://www.movieontology.org (2010)
11. Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over

DL-Lite Ontologies. In: KR. (2012)
12. Raimond, Y., Giasson, F., (eds): Music Ontology, www.musicontology.com (2012)
13. Jiménez-Ruiz, E., Grau, B.C.: LogMap: Logic-Based and Scalable Ontology Match-

ing. In: International Semantic Web Conference (1). (2011) 273–288
14. Lambrix, P., Tan, H.: SAMBO – A system for aligning and merging biomedical

ontologies. J. Web Sem. 4(3) (2006) 196–206
15. Fagin, R., Haas, L.M., Hernández, M.A., Miller, R.J., Popa, L., Velegrakis, Y.:

Clio: Schema Mapping Creation and Data Exchange. In: Conceptual Modeling:
Foundations and Applications. (2009) 198–236

16. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Chal-
lenges. IEEE Trans. Knowl. Data Eng. 25(1) (2013) 158–176

17. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. In: VLDB J. (2001) 334–350

18. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Trans. Knowl. Data Eng. (2009) 1218–1232

19. Ngo, D., Bellahsene, Z.: YAM++: A Multi-strategy Based Approach for Ontology
Matching Task. In: EKAW. (2012) 421–425

20. Dragut, E.C., Lawrence, R.: Composing Mappings Between Schemas Using a Ref-
erence Ontology. In: CoopIS/DOA/ODBASE (1). (2004) 783–800

21. Do, H.H., Rahm, E.: COMA – A System for Flexible Combination of Schema
Matching Approaches. In: VLDB. (2002) 610–621

22. Papapanagiotou, P., Katsiouli, P., Tsetsos, V., Anagnostopoulos, C., Hadjiefthymi-
ades, S.: Ronto: Relational to Ontology Schema Matching. In: AIS SIGSEMIS
BULLETIN. (2006) 32–34

23. Hu, W., Qu, Y.: Discovering Simple Mappings Between Relational Database
Schemas and Ontologies. In: ISWC/ASWC. (2007) 225–238

24. An, Y., Borgida, A., Mylopoulos, J.: Inferring Complex Semantic Mappings Be-
tween Relational Tables and Ontologies from Simple Correspondences. In: OTM
Conferences (2). (2005)

Appendix C

Initial guidelines for OBDA specification

This appendix reports the paper:

− Maurizio Lenzerini, Riccardo Rosati, Valerio Santarelli, Domenico Fabio Savo. Towards a methodology for
OBDA specification. Optique internal technical report, 2013.

70

Towards a methodology for OBDA specification

Maurizio Lenzerini, Riccardo Rosati. Valerio Santarelli, Domenico Fabio Savo

Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti
Sapienza Università di Roma

lenzerini,rosati,santarelli,savo@dis.uniroma1.it

Introduction

This documents aims at providing some initial guidelines towards the definition of a
methodology for the specification of an ontology-based data access (OBDA) system.

Dealing with complex real world scenarios, such as those of businesses or enter-
prizes, even of small or medium scale, leads to facing several critical issues that are
general enough to be taken into account in the OBDA approach regardless of the orga-
nization, and that can be summarized in:

(i) Knowledge gathering over the domain of interest;
(ii) Ontology development;
(iii) Data source analysis;
(iv) Mapping development.

Activities (i) and (iii) are requirement gathering activities, necessary to allow the on-
tology developer to acquire sufficient knowledge of the domain and of the data sources
to develop, respectively, the ontology that models the domain of interest, and the map-
pings that link the ontology to the data sources. Both these activities require collabora-
tion on the part of enterprise experts. Specifically, activity (i) requires the collaboration
of domain experts, while activity (iii) requires the collaboration of IT experts, who have
sufficient understanding of the data sources.

During the acquisition of the necessary information for the development of the on-
tology, it is crucial that the description of the domain be as independent as possible
from the actual source database. The ontology is in fact supposed to model the domain
of interest, and not the way the data sources that are used in the enterprise model such
a domain.

Once the development of the ontology is considered to be sufficiently mature, the
data source analysis phase can begin, which leads to the definition of the mappings. This
activity can nevertheless lead to the acquisition of new knowledge of the domain, and
to the consequent refinement of the ontology. The definition of the mappings, therefore,
takes in input both the analysis of the data sources and the ontology. The result of this
activity will be a set of mapping assertions.

The process which we have described is depicted in Figure 1.
In the following, we provide a detailed description of all the above-mentioned ac-

tivities.

Fig. 1. The OBDA specification process.

Knowledge gathering over the domain of interest

When the OBDA approach is used in real-life projects, the first problem that needs to be
addressed concerns communication with the domain expert. As for conceptual model-
ing in general, developing an ontology requires to exchange knowledge with people that
are generally not expert of logical formalisms, but that have a deep understanding of the
domain of interest. Exchanging this kind of knowledge requires the adoption of one or
more techniques allowing the ontology developer to acquire the necessary knowledge
for modeling the domain of interest in play.

Interviews. Interviews can be conducted by the ontology developer by following dif-
ferent approaches. The first, and most common, approach is the unstructured in-
terview. In this scenario, the ontology developer and the knowledge expert freely
discuss one or more aspects of the domain. This type of interview is typically con-
ducted in the early stages of knowledge acquisition, when the ontology developer
lacks sufficient knowledge to formulate a questionnaire. Instead, a semi-structured
or structured interview consists of a series of pre-established questions, which the
knowledge expert is provided with beforehand. In a semi-structured interview, the
answers to these questions can lead to a discussion, during which the ontology
developer focuses on some key aspects. In a structured interview, no follow-up dis-
cussion is expected. These two types of interviews are generally conducted in later
stages of the project, when the ontology developer has a more mature understanding
of the domain.

Commentary. This technique, instead of a discussion between the ontology developer
and the domain expert, calls for the observation by the developer of the carrying
out of a typical task by the knowledge expert. The expert is required to provide a
running commentary of his thought process and of his activities as he completes a
certain task. In order to avoid cognitive overload of the expert, who must both carry
out his task and provide useful insight, it is common to have a second domain expert

comment on the actions of another expert. This technique is quite useful because
it allows the ontology designer to have a first-hand look at the actual behavior of
the domain expert and of the tools at his disposal, instead of just listening to a
recollection of his actions once a task is completed.

Teach Back. Once the ontology developer has acquired sufficient knowledge of a por-
tion of the domain, he explains his understanding of that portion of the domain to
the expert, which comments on it. This technique is very useful for to assess the
level of comprehension of the developer, and to shed light on areas of confusion or
misunderstanding.
For this activity, it is very important that the knowledge expert and the ontology
developer find a communication tool with which both are comfortable. A tech-
nique that we have found to be very effective is the use of graphical formalisms
to represent the ontology. In fact, a graphical representation is typically accessible
to non-experts of logical and ontology formalisms, and can also allow the ontol-
ogy developer to capture the main modeling features of the OWL 2 language. This
choice proves to be effective, both in terms of improving communication between
the parts, and also later phases of ontology refinement, allowing the developer to
comfortably define and analyze the ontology.

Documentation Analysis. This technique calls for the inspection by the ontology ex-
pert of existing documentation of the business processes and the information sys-
tems that are used by the enterprise. This analysis allows the ontology developer
to extract information regarding the domain of interest, both with respect to what
data is used in these processes, and how it is managed by the information sys-
tems. Examples of aspects of which in-depth information can be acquired, through
the inspection of such documentation, are: business entities, entity attributes, rules,
and functionalities. This information allows the developer to carve a more precise
outline of the domain that must be captured by the ontology.

Ontology development

There exist several approaches and methodologies for ontology engineering (e.g., [2],
[4], [1], [5]). Based on the above results, in the following we briefly sketch some initial
guidelines for this task. We remark, however, that we do not intend to propose any
new approach in this direction: rather, our long-term goal is to create a methodology
for OBDA specification that is independent on the particular methodology chosen for
ontology development and maintenance.

The development of the ontology takes place during the requirement gathering
phase. Initially, the acquired knowledge of the domain is inspected top-down, identi-
fying the central concepts and the relations between them. Then, iteratively, with the
collaboration of the domain expert, the ontology is refined. The knowledge gathered
from the inspection of the data sources is used only in the final stages of the design
phase, in order to refine the ontology.

As mentioned previously, in order to represent the ontology through a formalism
which can both be comfortably understood by the domain expert and that is sufficiently
expressive for the ontology designer, one can use a graphical language, which can be
enriched with auxiliary documentation regarding the design choices that were made.

In case the ontology developer chooses to adopt this solution, the ontology must
then be translated into a set of processable logical axioms. In other words, it must be
written in some formal language, such as OWL 2. If an automated tool is available, it
can be used to efficiently carry out this task. Otherwise, it must be done manually, with
the aid of an ontology editor, such as Protègè.

The choice of the modeling language that will be adopted depends on the purpose
for which the ontology is being developed. In fact, the use of very expressive languages
such as the full OWL 2 language is very useful if the aim is to utilize the ontology as a
formal description of the domain of interest. The expressivity of such languages allows
the ontology designer to obtain a precise formalization of the domain. If instead the goal
is to use the ontology for reasoning tasks, the high expressivity of the language used to
model the ontology may be of hindrance. In particular, when wishing to access large
quantities of data through the ontology, as in OBDA, the computational cost of very ex-
pressive languages such as OWL 2 is prohibitive. In these cases, it is necessary to recur
to less expressive languages, thus resigning to having less complete representations of
the domain of interest.

One possible solution to this issue is to allow the ontology designer the use of ex-
pressive languages to define ontologies that model the domain in great detail for the
purpose of documentation and of other tasks that do not require strong computational
effort, while adopting, for all those reasoning tasks in which particular computational
properties are required, such as OBDA, descriptions of the domain of interest obtained
through less expressive languages. The transition from an ontology formalized through
an expressive language to one formalized through a less expressive language can be
performed through automated approximation procedures.

During this phase, the execution of intentional reasoning tasks such as ontology
classification is very important, in order to verify the quality and correctness of the
choices made during ontology design.

Data source analysis

The first, crucial, step for this phase, is to identify the data sources which store the
information regarding the domain that is represented by the developed ontology.

Once these data sources have been identified, it is necessary to understand where
the information is stored and how it is possible to extract it. This task is very complex,
due to the fact that often times the data sources are tailored towards being used by
software applications, and that the gap between the database structure and the ontology
representation of the domain can be quite large. For this reason, it is very important to
obtain the collaboration of IT experts who have sufficient expertise of the data sources
in this phase.

Other methods to acquire knowledge of the databases can be the inspection of docu-
mentation, and the analysis of the automated procedures that are used by the enterprizes
to extract information.

Empirical evidence shows that, in order to gather sufficient information for defining
the mappings, it is not sufficient to work solely with the database schema, but it is
necessary to have access to the data.

Finally, it is quite common that this data source analysis phase can lead to acquiring
new information that must be used to refine the ontology.

Mapping development

Mapping development has been studied in the fields of data integration and data ex-
change (see, e.g., [7], [3], [6], [8]). However, the issue of defining a comprehensive
methodology for mapping development and mapping maintenance is still to be fully
addressed.

When sufficient information of the data sources has been gathered, and one is con-
fident that the development of the ontology is sufficiently stable, the mapping devel-
opment phase can begin. Currently, this task is completely performed manually, and
involves both the ontology designer and the IT expert.

To successfully carry out this task, it is important to have access to the data sources,
and in particular, to be able to query the database, in order to be able to verify the
mapping assertions that are being defined.

Our experience teaches us that in this phase, automated systems for the verification
of the syntactic correctness of the mappings are very useful. Furthermore, reasoning
services over the OBDA system, such as the consistency checking service, can highlight
issues that can be indicators of errors that were made during mapping specification.

References

1. A. Borgida, V. K. Chaudhri, P. Giorgini, and E. S. K. Yu, editors. Conceptual Modeling:
Foundations and Applications - Essays in Honor of John Mylopoulos, volume 5600 of Lecture
Notes in Computer Science. Springer, 2009.

2. M. del Carmen Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López. The neon
methodology for ontology engineering. In M. del Carmen Suárez-Figueroa, A. Gómez-Pérez,
E. Motta, and A. Gangemi, editors, Ontology Engineering in a Networked World, pages 9–34.
Springer, 2012.

3. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

4. N. Guarino. The ontological level: Revisiting 30 years of knowledge representation. In
Borgida et al. [1], pages 52–67.

5. N. Guarino and C. A. Welty. An overview of ontoclean. In S. Staab and R. Studer, editors,
Handbook on Ontologies, International Handbooks on Information Systems, pages 151–172.
Springer, 2004.

6. A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data integration: The teenage years. In U. Dayal,
K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y.-K.
Kim, editors, VLDB, pages 9–16. ACM, 2006.

7. P. G. Kolaitis, M. Lenzerini, and N. Schweikardt, editors. Data Exchange, Integration, and
Streams, volume 5 of Dagstuhl Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2013.

8. M. Lenzerini. Data integration: A theoretical perspective. In L. Popa, S. Abiteboul, and P. G.
Kolaitis, editors, PODS, pages 233–246. ACM, 2002.

Appendix D

LogMap: OM 2013 paper

This appendix reports the paper:

− Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Ian Horrocks. LogMap and LogMapLt Results for OAEI
2013. OM 2013.

76

LogMap and LogMapLt results for OAEI 2013

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. We present the results obtained in the OAEI 2013 campaign by our on-
tology matching system LogMap and its ‘lightweight” variant called LogMapLt.
The LogMap project started in January 2011 with the objective of developing a
scalable and logic-based ontology matching system. This isour fourth participa-
tion in the OAEI and the experience has so far been very positive.

1 Presentation of the system

LogMap [11, 12] is a highly scalable ontology matching system with built-in reasoning
and inconsistency repair capabilities. LogMap also supports (real-time) user interaction
during the matching process, which is essential for use cases requiring very accurate
mappings. LogMap is one of the few ontology matching system that (1) can efficiently
match semantically rich ontologies containing tens (and even hundreds) of thousands
of classes, (2) incorporates sophisticated reasoning and repair techniques to minimise
the number of logical inconsistencies, and (3) provides support for user intervention
during the matching process. LogMap is also available as a “lightweight” variant called
LogMapLt, which essentially only applies (efficient) string matching techniques.

LogMap relies on the following elements, which are keys to its favourable scalabil-
ity behaviour (see [11, 12] for details).

Lexical indexation. An inverted index is used to store the lexical information contained
in the input ontologies. This index is the key to efficiently computing an initial set of
mappings of manageable size. Similar indexes have been successfully used in informa-
tion retrieval and search engine technologies [4].

Logic-based module extraction. The practical feasibility of unsatisfiability detection
and repair critically depends on the size of the input ontologies. To reduce the size of
the problem, we exploit ontology modularisation techniques. Ontology modules with
well-understood semantic properties can be efficiently computed and are typically much
smaller than the input ontology (e.g. [7]).

Propositional Horn reasoning. The relevant modules in the input ontologies together
with (a subset of) the candidate mappings are encoded in LogMap using a Horn propo-
sitional representation. Furthermore, LogMap implementsthe classic Dowling-Gallier
algorithm for propositional Horn satisfiability [8, 10]. Such encoding, although incom-
plete, allows LogMap to detect unsatisfiable classes soundly and efficiently.

Axiom tracking and greedy repair. LogMap extends Dowling-Gallier’s algorithm to
track all mappings that may be involved in the unsatisfiability of a class. This exten-
sion is key to implementing a highly scalable repair algorithm.

Semantic indexation. The Horn propositional representation of the ontology modules
and the mappings are efficiently indexed using an interval labelling schema [1] — an
optimised data structure for storing directed acyclic graphs (DAGs) that significantly
reduces the cost of answering taxonomic queries [6, 17]. In particular, this semantic
index allows us to answer many entailment queries over the input ontologies and the
mappings computed thus far as an index lookup operation, andhence without the need
for reasoning. The semantic index complements the use of thepropositional encoding
to detect and repair unsatisfiable classes.

1.1 Adaptations made for the 2013 evaluation

The new version of LogMap also integrates MORe [2, 3] as OWL 2 reasoner. MORe is
a modular reasoner which combines a fully-fledged (and slower) reasoner with a profile
specific (and more efficient) reasoner.

LogMap’s algorithm described in [11–13] has also been adapted to meet the re-
quirements of the new interactive matching track which usesanOracle as expert user.

LogMap aims at making a reduced number of calls to the Oracle,i.e.: only those
borderline mappings that cannot be clearly included or excluded with automatic heuris-
tics. For each call to the Oracle, LogMap applies conflict andambiguity based heuristics
(see [12] for details) to reduce the remaining number of calls (i.e. mappings).

Additionally, the interactive algorithm described in [12]has been slightly extended
to include object and data properties in the process.

1.2 Link to the system and parameters file

LogMap is open-source and released under GNU Lesser GeneralPublic License 3.0.1

Latest components and source code are available from the LogMap’s Google code page:
http://code.google.com/p/logmap-matcher/.

LogMap distributions can be easily customized through a configuration file contain-
ing the matching parameters.

LogMap, including support for interactive ontology matching, can also be used di-
rectly through an AJAX-based Web interface:http://csu6325.cs.ox.ac.uk/.
This interface has been very well received by the community,with more than 900 re-
quests processed so far coming from a broad range of users.

1.3 Modular support for mapping repair

Only very few systems participating in the OAEI 2013 competition implement repair
techniques. As a result, existing matching systems (even those that typically achieve
very high precision scores) compute mappings that lead in many cases to a large number
of unsatisfiable classes.

We believe that these systems could significantly improve their output if they were
to implement repair techniques similar to those available in LogMap. Therefore, with

1 http://www.gnu.org/licenses/

Table 1: Results for Benchmark track.

System
biblio 2012 biblioc
P R F P R F

LogMap 1.00 0.47 0.64 0.73 0.42 0.53
LogMapLt 0.95 0.50 0.66 0.43 0.50 0.46

Table 2: Results for Anatomy track.

System P R F Time (s)

LogMap 0.918 0.846 0.881 13
LogMapLt 0.962 0.728 0.829 7

the goal of providing a useful service to the community, we have made LogMap’s ontol-
ogy repair module (LogMap-Repair) available as a self-contained software component
that can be seamlessly integrated in most existing ontologymatching systems [14].

2 Results

In this section, we present a summary of the results obtainedby LogMap and LogMapLt
in the OAEI 2013 campaign. Please refer tohttp://oaei.ontologymatching.
org/2013/results/index.html for complete results.

2.1 Benchmark track

Ontologies in this track have been synthetically generated. The goal of this track is to
evaluate the matching systems in scenarios where the input ontologies lack important
information (e.g., classes contain no meaningful URIs or labels) [9].

Table 1 summarises the average results obtained by LogMap and LogMapLt. Note
that the computation of candidate mappings in LogMap and LogMapLt heavily relies
on the similarities between the vocabularies of the input ontologies; hence, there is a
direct negative impact in the cases where the labels are replaced by random strings.

2.2 Anatomy track

This track involves the matching of the Adult Mouse Anatomy ontology (2,744 classes)
and a fragment of the NCI ontology describing human anatomy (3,304 classes). The ref-
erence alignment has been manually curated [19], and it contains a significant number
of non-trivial mappings.

Table 2 summarises the results obtained by LogMap and LogMapLt. LogMap ranked
3rd among the systems not using specialised background knowledge. Regarding map-
ping coherence, only two tools (including LogMap) generated coherent alignments. The
evaluation was run on a server with 3.46 GHz (6 cores) and 8GB RAM.

Table 3: Results for Conference track.

System
RA1 reference RA2 reference

Time (s)
P R F P R F

LogMap 0.80 0.59 0.68 0.76 0.54 0.63 24
LogMapLt 0.73 0.50 0.59 0.68 0.45 0.54 21

Table 4: Results for Library track.

System P R F Time (s)

LogMap 0.777 0.645 0.705 99
LogMapLt 0.646 0.771 0.703 20

2.3 Conference track

The Conference track uses a collection of 16 ontologies fromthe domain of academic
conferences [18]. These ontologies have been created manually by different people and
are of very small size (between 14 and 140 entities). The track uses two reference align-
ments RA1 and RA2. RA1 contains manually curated mappings between 21 ontology
pairs, while RA2 also contains composed mappings based on the alignments in RA1.

Table 3 summarises the average results obtained by LogMap and LogMapLt. The
last column represents the total runtime on generating all 21 alignments. Tests were
run on a laptop with Intel Core i5 2.67GHz and 8GB RAM. LogMap ranked 3rd and
produced coherent alignments.

2.4 Multifarm track

This track is based on the translation of the OntoFarm collection of ontologies into
9 different languages [16]. Both LogMap and LogMapLt, as expected, obtained poor
results since they do not implement specific multilingual techniques.

2.5 Library track

The library track involves the matching of the STW thesaurus(6,575 classes) and the
TheSoz thesaurus (8,376 classes). Both of these thesauri provide vocabulary for eco-
nomic and social sciences. Table 4 summarises the results obtained by LogMap and
LogMapLt. The track was run on a computer with one 2.4GHz corewith 7GB RAM
and 2 cores. LogMap ranked 5th in this track.

2.6 Interactive matching track

The interactive track is based on the conference track and ituses the RA1 reference
alignment as Oracle. Table 5 summarizes the obtained results by LogMap with and
without the interactive mode activated. LogMap with interactivity (LogMap-Int) im-
proved both the average Precision and Recall wrt LogMap withthe interactive mode

Table 5: Results for Interactive track.

System
RA1 reference

Calls Time (s)
P R F

LogMap 0.80 0.59 0.68 0 24
LogMap-Int 0.90 0.64 0.73 91 27

Table 6: Summary results for the Large BioMed track

System Total Time (s) P R F Inc. Degree.

LogMap-BK 2,391 0.904 0.700 0.785 0.013%
LogMap 2,485 0.910 0.689 0.780 0.015%
LogMapLt 371 0.874 0.517 0.598 34.1%

deactivated, and it only performed 91 calls to the Oracle along the 21 matching tasks
(i.e. less than 5 questions per ontology pair).

Not that, although LogMap-Int ranked 1st in the interactivematching track, it could
not outperform the best tool in the conference track, which obtained a F-measure of 0.74
(wrt the RA1 reference alignment). Nevertheless, there is still room for improvement
and we aim at implementing more sophisticated matching and interactive techniques.

2.7 Large BioMed track

This track consists of finding alignments between the Foundational Model of Anatomy
(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI). These on-
tologies are semantically rich and contain tens of thousands of classes. UMLS Metathe-
saurus [5] has been selected as the basis for the track reference alignments.

In this track LogMap has been evaluated with two variants: LogMap and LogMap-
BK. LogMap-BK uses normalisations and spelling variants from the general (biomedi-
cal) purpose UMLS Lexicon,2 while LogMap has this feature deactivated.

Table 6 summarises the results obtained by LogMap and LogMapLt. The table
shows the total time in seconds to complete all tasks in the track and averages for Pre-
cision, Recall, F-measure and Incoherence degree. The track was run on a server with
16 CPUs and allocating 15GB RAM.

Regarding mapping coherence, only two tools (including LogMap and its variant
LogMap-BK) generated almost coherent alignments. LogMap-BK ranked 3rd among
the systems not using specialised background knowledge and1st among the systems
computing almost coherent alignments. LogMapLt was the fastest to complete all tasks.

2 http://www.nlm.nih.gov/pubs/factsheets/umlslex.html

Table 7: Results for Instance matching track.

System
RDFT

P R F

LogMap 0.922 0.746 0.812

2.8 Instance matching

This year only LogMap participated in the Instance Matchingtrack. The dataset was
based on dbpedia ontology3 and included controlled transformations in the data (i.e.
value and structure transformations).

Table 7 summarises the average results obtained by LogMap. The results are quite
promising considering that LogMap does not implement sophisticated instance match-
ing techniques. Furthermore, LogMap outperformed one of the participating tools spe-
cialised in instance matching.

Adaptations to the original dataset The original provided dataset was preprocessed
in order to be properly interpreted by the OWL API and to avoidinconsistencies when
reasoning. Next we summarise the performed changes:

– Added import of dbpedia: The dataset (ABOX) is based on dbpedia, however, the
dbpedia ontology was not included as TBOX. Hence the OWL API was interpret-
ing the instance entities of the dataset as “annotations” and not as “OWL named
individuals”. Furthermore, by adding dbpedia TBOX to the datasets, an OWL 2
reasoner could be used to infer the corresponding class typefor each instance.

– Minor changes to dbpedia: The integration of the provided dataset (ABOX) and
dbpedia (TBOX) resulted in an inconsistent knowledge base.The inconsistencies
were due to some data property assertion axioms pointing to the incorrect datatype
and a functional datatype property which was used in two or more data property
assertion axioms with the same subject. To avoid these inconsistencies dbpedia was
slightly modified by removing the range and the functionality of the corresponding
data properties.

– Added additional object properties: The dataset also references the object proper-
ties “curriculum”, “places” and “label” which are not included in the dbpedia ontol-
ogy. Hence, these properties has been explicitly declared as OWL object properties.

– Removal of invalid characters: the dataset also included some characters that could
not be processed by the OWL API and Protégé (e.g.\u).

3 General comments and conclusions

3.1 Comments on the results

LogMap, apart from Benchmark and Multifarm tracks for whichdoes not implement
specific techniques, has been one of the top systems in the OAEI 2013. Furthermore,

3 http://dbpedia.org/

it has also been one of the few systems implementing repair techniques and providing
(almost) coherent mappings in all tracks.

LogMap’s main weakness relies on the fact that the computation of candidate map-
pings is based on the similarities between the vocabulariesof the input ontologies;
hence, there is a direct negative impact in the cases where the ontologies are lexically
disparate or do not provide enough lexical information (e.g. Benchmark and Multifarm).

3.2 Discussions on the way to improve the proposed system

LogMap is now a stable and mature system that has been made available to the commu-
nity. There are, however, many exciting possibilities for future work. For example we
aim at exploiting background knowledge to be competitive inthe Multifarm track and
to improve the performance in the other tracks.

3.3 Comments on the OAEI test cases

The number and quality of the OAEI tracks is growing year by year. However, there is
always room for improvement:

Comments on the OAEI instance matching track. I consider the 2012 IIMB Instance
Matching track more challenging, from the logical point of view, than the current task.
The IIMB dataset included a TBOX and the controlled transformations also involved
changes on the instance class types. Thus the application oflogic based techniques had
an important impact since lexically similar instances belonging to two disjoint class
types should not be matched.

Comments on the OAEI interactive matching track. The new interactive track has been a
very important step forward in the OAEI, however, larger andmore challengings tasks
should be included. For example, matching tasks (e.g. anatomy and largebio) where
the number of questions to the expert user or Oracle may be critical. Furthermore, it is
quite unlikely that the expert user will be perfect, thus, the interactive matching track
should also consider the evaluation of several Oracles withdifferent error rates such as
the evaluation performed in [12].

Comments on the OAEI largebio track. One of the objectives of the largebio track is the
creation of a “silver standard” reference alignment by harmonising the output of the dif-
ferent participating systems. In the next OAEI campaign it would be very interesting to
actively use this “silver standard” in the construction of the track’s reference alignment.

3.4 Comments on the OAEI 2013 measures

Although themapping coherence is a measure already used in the OAEI we consider
that is not given yet the required weight in the evaluation. Thus, developers focus on
creating matching systems that maximize the F-measure but they disregard the impact
of the generated output in terms of logical errors. As a result, even highly precise map-
pings lead to a large number of unsatisfiable classes.

Thus, we encourage ontology matching system developers to develop their own re-
pair techniques or to use state-of-the-art techniques suchas Alcomo [15] and LogMap-
Repair (see Section 1.3), which have shown to work well in practice [14].

Acknowledgements

This work was supported by the Seventh Framework Program (FP7) of the European
Commission under Grant Agreement 318338, ”Optique”, the Royal Society, and the
EPSRC projects Score!, ExODA and MaSI3.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships
in large data and knowledge bases. In: ACM SIGMOD Conf. on Management of Data. pp.
253–262 (1989)

2. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular Combination of OWL
Reasoners for Ontology Classification. In: Int’l Sem. Web Conf. (ISWC). pp. 1–16 (2012)

3. Armas Romero, A., Cuenca Grau, B., Horrocks, I., Jiménez-Ruiz, E.: MORe: a Modular
OWL Reasoner for Ontology Classification. In: OWL ReasoningEvaluation (ORE) (2013)

4. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press /
Addison-Wesley (1999)

5. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical ter-
minology. Nucleic Acids Research 32, 267–270 (2004)

6. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
Semantic Web. In: Int’l World Wide Web (WWW) Conf. pp. 544–555 (2003)

7. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

8. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. J. Log. Prog. 1(3), 267–284 (1984)

9. Euzenat, J., Rosoiu, M.E., dos Santos, C.T.: Ontology matching benchmarks: Generation,
stability, and discriminability. J. Web Sem. 21, 30–48 (2013)

10. Gallo, G., Urbani, G.: Algorithms for testing the satisfiability of propositional formulae. J.
Log. Prog. 7(1), 45–61 (1989)

11. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)

12. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks,I.: Large-scale interactive ontology
matching: Algorithms and implementation. In: European Conf. on Artif. Intell. (ECAI). pp.
444–449 (2012)

13. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I.: LogMap andLogMapLt results for OAEI 2012.
In: Proceedings of the 7th International Workshop on Ontology Matching (2012)

14. Jimenez-Ruiz, E., Meilicke, C., Cuenca Grau, B., Horrocks, I.: Evaluating mapping repair
systems with large biomedical ontologies. In: 26th Description Logics Workshop (2013)

15. Meilicke, C.: Alignment Incoherence in Ontology Matching. Ph.D. thesis, University of
Mannheim (2011)

16. Meilicke, C., Castro, R.G., Freitas, F., van Hage, W.R.,Montiel-Ponsoda, E., de Azevedo,
R.R., Stuckenschmidt, H.,Šváb-Zamazal, O., Svátek, V., Tamilin, A., Trojahn, C., Wang, S.:
MultiFarm: a benchmark for multilingual ontology matching. J. Web Sem. (2012)

17. Nebot, V., Berlanga, R.: Efficient retrieval of ontologyfragments using an interval labeling
scheme. Inf. Sci. 179(24), 4151–4173 (2009)

18. Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: OntoFarm: towards an experimental
collection of parallel ontologies. In: Int’l Sem. Web Conf.(ISWC). Poster Session (2005)

19. Zhang, S., Mork, P., Bodenreider, O.: Lessons learned from aligning two representations of
anatomy. In: Conf. on Princliples of Knowledge Representation and Reasoning (KR) (2004)

Appendix E

LogMap: OM 2014 paper

This appendix reports the paper:

− Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Weiguo Xia, Alessandro Solimando, Xi Chen, Valerie Cross,
Yuan Gong, Shuo Zhang, Anurekha Chennai-Thiagarajan. OM 2014.

85

LogMap family results for OAEI 2014 ?

E. Jiménez-Ruiz1, B. Cuenca Grau1, W. Xia2, A. Solimando3, X. Chen2,
V. Cross2, Y. Gong1, S. Zhang1, and A. Chennai-Thiagarajan2

1 Department of Computer Science, University of Oxford, Oxford UK
2 Computer Science and Software Engineering, Miami University, Oxford, OH, United States

3 Dipartimento di Informatica, Università di Genova, Italy

Abstract. We present the results obtained in the OAEI 2014 campaign by our
ontology matching system LogMap and its variants: LogMap-C, LogMap-Bio
and LogMapLt. The LogMap project started in January 2011 with the objective
of developing a scalable and logic-based ontology matching system. This is our
fifth participation in the OAEI and the experience has so far been very positive.

1 Presentation of the system

Ontology matching systems typically rely on lexical and structural heuristics and the
integration of the input ontologies and the mappings may lead to many undesired log-
ical consequences. In [13] three principles were proposed to minimize the number of
potentially unintended consequences, namely: (i) consistency principle, the mappings
should not lead to unsatisfiable classes in the integrated ontology; (ii) locality principle,
the mappings should link entities that have similar neighbourhoods; (iii) conservativ-
ity principle, the mappings should not introduce alterations in the classification of the
input ontologies. Violations to these principles may hinder the usefulness of ontology
mappings. The practical effect of these violations, however, is clearly evident when
ontology alignments are involved in complex tasks such as query answering [17].

LogMap [12, 14] is a highly scalable ontology matching system that implements the
consistency and locality principles. LogMap also supports (real-time) user interaction
during the matching process, which is essential for use cases requiring very accurate
mappings. LogMap is one of the few ontology matching system that (i) can efficiently
match semantically rich ontologies containing tens (and even hundreds) of thousands
of classes, (ii) incorporates sophisticated reasoning and repair techniques to minimise
the number of logical inconsistencies, and (iii) provides support for user intervention
during the matching process.

LogMap relies on the following elements, which are keys to its favourable scalabil-
ity behaviour (see [12, 14] for details).

Lexical indexation. An inverted index is used to store the lexical information contained
in the input ontologies. This index is the key to efficiently computing an initial set of
mappings of manageable size. Similar indexes have been successfully used in informa-
tion retrieval and search engine technologies [2].

? This research was financed by the Optique project with the grant agreement FP7-318338.

Logic-based module extraction. The practical feasibility of unsatisfiability detection
and repair critically depends on the size of the input ontologies. To reduce the size of
the problem, we exploit ontology modularisation techniques. Ontology modules with
well-understood semantic properties can be efficiently computed and are typically much
smaller than the input ontology (e.g. [6]).
Propositional Horn reasoning. The relevant modules in the input ontologies together
with (a subset of) the candidate mappings are encoded in LogMap using a Horn propo-
sitional representation. Furthermore, LogMap implements the classic Dowling-Gallier
algorithm for propositional Horn satisfiability [7]. Such encoding, although incomplete,
allows LogMap to detect unsatisfiable classes soundly and efficiently.
Axiom tracking and greedy repair. LogMap extends Dowling-Gallier’s algorithm to
track all mappings that may be involved in the unsatisfiability of a class. This exten-
sion is key to implementing a highly scalable repair algorithm.
Semantic indexation. The Horn propositional representation of the ontology modules
and the mappings are efficiently indexed using an interval labelling schema [1] — an
optimised data structure for storing directed acyclic graphs (DAGs) that significantly
reduces the cost of answering taxonomic queries [5, 19]. In particular, this semantic
index allows us to answer many entailment queries over the input ontologies and the
mappings computed thus far as an index lookup operation, and hence without the need
for reasoning. The semantic index complements the use of the propositional encoding
to detect and repair unsatisfiable classes.

1.1 Adaptations made for the 2014 evaluation

In the OAEI 2014 campaign we have participated with 3 additional variants:

LogMapLt is a “lightweight” variant of LogMap, which essentially only applies (effi-
cient) string matching techniques.

LogMap-C is a variant of LogMap which, in addition to the consistency and locality
principles, also implements the conservativity principle (see details in [21, 20]).
The repair algorithm is more aggressive than in LogMap, thus we expect highly
precise mappings but with a significant decrease in recall.

LogMap-Bio includes an extension to use BioPortal [10, 11] as a (dynamic) provider
of mediating ontologies instead of relying on a few preselected ontologies [4]. In
the OAEI 2014, LogMap-Bio uses the top-5 mediating ontologies given by the algo-
rithm presented in [4]. Note that, LogMap-Bio only participates in the biomedical
tracks. In the other tracks the results are expected to be the same as LogMap.

LogMap’s algorithm described in [12, 14] has also been adapted with the following
new functionalities:

i Multilingual support. We have implemented a multilingual module based on google
translate4 to participate in the Multifarm track. Additionally, in order to split Chi-

4 Currently we use the (unofficial) API available at https://code.google.com/p/
google-api-translate-java/.

nese words, we rely on the ICTCLAS library5 developed by the Institute of Com-
puting Technology of the Chinese Academy of Sciences.

ii Extended repair algorithm. We have extended the Horn propositional projection
of the input ontologies to involve data and object properties in the repair pro-
cess [24]. LogMap’s repair module is now more complete and it is also able to
repair (object and data) property mappings.6

iii Extended interactive support. The interactive algorithm described in [14] has been
slightly extended to include object and data properties in the process. Note that this
extension was already included in the OAEI 2013 campaign.

1.2 Link to the system and parameters file

LogMap is open-source and released under GNU Lesser General Public License 3.0.7

Latest components and source code are available from the LogMap’s Google code page:
http://code.google.com/p/logmap-matcher/.

LogMap distributions can be easily customized through a configuration file contain-
ing the matching parameters.

LogMap, including support for interactive ontology matching, can also be used di-
rectly through an AJAX-based Web interface: http://csu6325.cs.ox.ac.uk/.
This interface has been very well received by the community, with more than 1,500 re-
quests processed so far coming from a broad range of users.

1.3 Modular support for mapping repair

Only very few systems participating in the OAEI competition implement repair tech-
niques. As a result, existing matching systems (even those that typically achieve very
high precision scores) compute mappings that lead in many cases to a large number of
unsatisfiable classes.

We believe that these systems could significantly improve their output if they were
to implement repair techniques similar to those available in LogMap. Therefore, with
the goal of providing a useful service to the community, we have made LogMap’s ontol-
ogy repair module (LogMap-Repair) available as a self-contained software component
that can be seamlessly integrated in most existing ontology matching systems [15, 9].

2 Results

In this section, we present a summary of the results obtained by the LogMap family in
the OAEI 2014 campaign. Please refer to http://oaei.ontologymatching.
org/2014/results/index.html for complete results.

5 https://code.google.com/p/ictclas4j/
6 The OAEI 2014 coherence results does not exhibit these improvements since only the con-

ference track ontologies involve mappings among properties and LogMap 2013 was already
coherent. It does have, however, an impact when repairing other mapping sets as shown in [24].

7 http://www.gnu.org/licenses/

Table 1: Results for Benchmark track.

System biblio cose dog
P F R P F R P F R

LogMap 0.40 0.40 0.40 0.38 0.41 0.45 0.96 0.15 0.08
LogMap-C 0.42 0.41 0.40 0.39 0.41 0.43 0.98 0.15 0.08
LogMapLt 0.43 0.46 0.50 0.37 0.43 0.50 0.86 0.71 0.61

Table 2: Results for Anatomy track.

System P F R Time (s)
LogMap-Bio 0.888 0.897 0.906 535
LogMap 0.918 0.881 0.846 12
LogMap-C 0.975 0.802 0.682 22
LogMapLt 0.962 0.829 0.728 5

2.1 Benchmark track

Ontologies in this track have been synthetically generated. The goal of this track is to
evaluate the matching systems in scenarios where the input ontologies lack important
information (e.g., classes contain no meaningful URIs or labels) [8].

Table 1 summarises the average results obtained by LogMap and its variants. Note
that the computation of candidate mappings in LogMap (and its variants) heavily relies
on the similarities between the vocabularies of the input ontologies; hence, there is a
direct negative impact in the cases where the labels are replaced by random strings.
Surprisingly, LogMapLt obtained the best results in the dog test case.

2.2 Anatomy track

This track involves the matching of the Adult Mouse Anatomy ontology (2,744 classes)
and a fragment of the NCI ontology describing human anatomy (3,304 classes). The ref-
erence alignment has been manually curated [25], and it contains a significant number
of non-trivial mappings.

Table 2 summarises the results obtained by the LogMap family. LogMap-Bio ranked
2nd in the track. The use of BioPortal as mediating ontology provider had a significant
improvement in recall. LogMap-Bio runtime is near 10 minutes since the discovery of
the mediating ontologies is performed on-the-fly [4]. Regarding mapping coherence,
only two tools (apart from LogMap, LogMap-C and LogMap-Bio) generated coherent
alignments. The evaluation was run on a server with 3.46 GHz (6 cores) and 8GB RAM.

2.3 Conference track

The Conference track uses a collection of 16 ontologies from the domain of academic
conferences [23]. These ontologies have been created manually by different people and

Table 3: Results for Conference track.

System RA1 reference RA2 reference
P F R P F R

LogMap 0.80 0.68 0.59 0.76 0.63 0.54
LogMap-C 0.82 0.67 0.57 0.78 0.62 0.52
LogMapLt 0.73 0.59 0.50 0.68 0.54 0.45

Table 4: Results for Multifarm track.

System Different ontologies Same ontologies
P F R P F R

LogMap 0.80 0.40 0.28 0.94 0.41 0.27

are of very small size (between 14 and 140 entities). The track uses two reference align-
ments RA1 and RA2. RA1 contains manually curated mappings between 21 ontology
pairs, while RA2 also contains composed mappings based on the alignments in RA1.

Table 3 summarises the average results obtained by the LogMap family. The last
column represents the total runtime on generating all 21 alignments. Tests were run on
a laptop with Intel Core i5 2.67GHz and 8GB RAM. LogMap ranked 2nd and LogMap-
C ranked 3rd. They both produced coherent alignments.

2.4 Multifarm track

This track is based on the translation of the OntoFarm collection of ontologies into 9
different languages [18].

In the OAEI 2014, only LogMap, AML and XMap implemented specific multilin-
gual techniques. Table 4 summarises the results. LogMap achieved very competitive
results in terms of precision. Regarding recall, however, there is still room for im-
provement. In the close future we plan to extend the multilingual module with more
sophisticated translation techniques.

2.5 Library track

The library track involves the matching of the STW thesaurus (6,575 classes) and the
TheSoz thesaurus (8,376 classes). Both of these thesauri provide vocabulary for eco-
nomic and social sciences. Table 5 summarises the results obtained by the LogMap fam-
ily. The track was run on a computer with one 2.4GHz core with 7GB RAM and 2 cores.
LogMap ranked 2nd in this track. The results for LogMap* are obtained with a version
of the input OWL ontologies using skos labels (i.e. skos:altLabel and skos:prefLabel).

2.6 Interactive matching track

The interactive track is based on the conference track and it uses the RA1 reference
alignment as Oracle. Table 6 summarizes the obtained results by LogMap with the

Table 5: Results for Library track.

System P R F Time (s)
LogMap* 0.743 0.711 0.681 223
LogMap 0.775 0.705 0.648 74
LogMapLt 0.644 0.703 0.771 9
LogMap-C 0.484 0.342 0.264 22

Table 6: Results for Interactive track.

System RA1 reference Avg. Calls Time (s)P R F
LogMap 0.88 0.73 0.64 4 27

Table 7: Summary results for the Large BioMed track

System Total Time (s) P F R Inc. Degree.
LogMap 1,751 0.890 0.792 0.719 0.013%
LogMap-Bio 8,634 0.843 0.784 0.744 0.8%
LogMap-C 6,331 0.907 0.688 0.559 0.013%
LogMapLt 317 0.868 0.613 0.532 34.0%

interactive mode activated. LogMap with interactivity improved both the average Pre-
cision and Recall wrt LogMap with the interactive mode deactivated (see Section 2.3).
LogMap performed on average, 3.91 calls to the Oracle along the 21 matching tasks.
LogMap ranked 2nd in the interactive matching track, but it was the system performing
less calls to the oracle.

2.7 Large BioMed track

This track consists of finding alignments between the Foundational Model of Anatomy
(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI). These on-
tologies are semantically rich and contain tens of thousands of classes. UMLS Metathe-
saurus [3] has been selected as the basis for the track reference alignments.

Table 7 summarises the results obtained by the LogMap family. The table shows
the total time in seconds to complete all tasks in the track and averages for Precision,
Recall, F-measure and Incoherence degree. The track was run on a Ubuntu Laptop with
an Intel Core i7-4600U CPU @ 2.10GHz x 4 and allocating 15Gb of RAM..

Only AML and LogMap variants (excluding LogMapLt) generated almost coher-
ent alignments. LogMap ranked 2nd in the track, while LogMap-C and LogMap-Bio
obtained the best average Precision and the second best average Recall, respectively.
LogMapLt was the fastest to complete all tasks.

Table 8: Results for OA4QA track.

System Queries RA1 reference RAR1 reference
P F R P F R

LogMap 18/18 0.750 0.741 0.750 0.729 0.728 0.750
LogMapC 18/18 0.722 0.704 0.694 0.722 0.703 0.694
LogMapLt 11/18 0.409 0.379 0.423 0.351 0.348 0.402

Table 9: Results for Instance matching track.

System Identity
P F R

LogMap 0.603 0.099 0.054
LogMap-C 0.642 0.078 0.042

2.8 OA4QA track

The Ontology Alignment for Query Answering (OA4QA) track [22] does not follow the
classical ontology alignment evaluation with respect to a set of reference alignments.
Precision and recall is calculated with respect to the ability of the generated alignments
to answer a set of queries in a ontology-based data access scenario where several on-
tologies exist. Given a query and an ontology pair, a model (or reference) answer set is
computed using the correspondent reference alignment for the ontology pair. Precision
and recall is calculated with respect to these model answer sets.

In the OAEI 2014 the ontologies and reference alignment (RA1) are based on the
conference track. RAR1 is a repaired version of RA1 different from RA2 in the confer-
ence track. Table 8 summarises the (average) results for the LogMap family. LogMap
and LogMap-C ranked 1st and 2nd in the track, although the number of queries is still
not large enough to provide representative values for Precision and Recall. However,
the most interesting result is the number of queries a system is able to answer when
the computed alignments is incoherent. For example, LogMapLt, since it does not im-
plement mapping repair techniques, is only able to answer 11 of the queries, which
damages the obtained precision and recall.

2.9 Instance matching track

The results of LogMap (and LogMap-C) were not as good as previous years. Note that,
LogMap does not implement specialised instance matching techniques. Nevertheless,
LogMap outperformed two of the participating tools specialised in instance matching.
Table 9 summarises the results obtained by LogMap and LogMap-C.

3 General comments and conclusions

3.1 Comments on the results

LogMap, apart from Benchmark and Instance Matching tracks for which does not im-
plement specific techniques, has been one of the top systems in the OAEI 2014. Fur-

thermore, it has also been one of the few systems implementing repair techniques and
providing (almost) coherent mappings in all tracks.

LogMap’s main weakness relies on the fact that the computation of candidate map-
pings is based on the similarities between the vocabularies of the input ontologies;
hence, there is a direct negative impact in the cases where the ontologies are lexically
disparate or do not provide enough lexical information (e.g. Benchmark and Instance
Matching).

3.2 Discussions on the way to improve the proposed system

LogMap is now a stable and mature system that has been made available to the commu-
nity. There are, however, many exciting possibilities for future work. For example we
aim at improving the multilingual features and the current use of external resources like
BioPortal. Furthremore, we are applying LogMap in practice in the domain of oil and
gas industry within the FP7 Optique8 [16], which presents a very challenging scenario.

3.3 Comments on the OAEI test cases

The number and quality of the OAEI tracks is growing year by year. However, there is
always room for improvement:

Comments on the OA4QA track. The new OA4QA track has succesfully shown the neg-
ative impact of a incoherent alignment in query answering tasks. However, the number
of queries is still small to provide representative values for the F-measure. More queries
and more challenging ontologies will make the track more attractive.

Comments on the OAEI interactive matching track. The interactive track has been a
very important step forward in the OAEI, however, larger and more challengings tasks
should be included. For example, matching tasks (e.g. anatomy and largebio) where
the number of questions to the expert user or Oracle may be critical. Furthermore, it is
quite unlikely that the expert user will be perfect, thus, the interactive matching track
should also consider the evaluation of several Oracles with different error rates such as
the evaluation performed in [14].

Comments on the OAEI largebio track. One of the objectives of the largebio track is the
creation of a “silver standard” reference alignment by harmonising the output of the dif-
ferent participating systems. In the next OAEI campaign it would be very interesting to
actively use this “silver standard” in the construction of the track’s reference alignment.
This will help to improve the completeness of the reference alignment.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships
in large data and knowledge bases. In: ACM SIGMOD Conf. on Management of Data. pp.
253–262 (1989)

8 http://www.optique-project.eu/

2. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press /
Addison-Wesley (1999)

3. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical ter-
minology. Nucleic Acids Research 32, 267–270 (2004)

4. Chen, X., Xia, W., Jiménez-Ruiz, E., Cross, V.: Extending an ontology alignment system
with bioportal: a preliminary analysis. In: Poster at Int’l Sem. Web Conf. (ISWC) (2014)

5. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
Semantic Web. In: Int’l World Wide Web (WWW) Conf. pp. 544–555 (2003)

6. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

7. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. J. Log. Prog. 1(3), 267–284 (1984)

8. Euzenat, J., Rosoiu, M.E., dos Santos, C.T.: Ontology matching benchmarks: Generation,
stability, and discriminability. J. Web Sem. 21, 30–48 (2013)

9. Faria, D., Jiménez-Ruiz, E., Pesquita, C., Santos, E., Couto, F.M.: Towards annotating po-
tential incoherences in bioportal mappings. In: 13th Int’l Sem. Web Conf. (ISWC) (2014)

10. Fridman Noy, N., Shah, N.H., Whetzel, P.L., Dai, B., et al.: BioPortal: ontologies and inte-
grated data resources at the click of a mouse. Nucleic Acids Research 37, 170–173 (2009)

11. Ghazvinian, A., Noy, N.F., Jonquet, C., Shah, N.H., Musen, M.A.: What four million map-
pings can tell you about two hundred ontologies. In: Int’l Sem. Web Conf. (ISWC) (2009)

12. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)

13. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based assessment of
the compatibility of UMLS ontology sources. J. Biomed. Sem. 2 (2011)

14. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology
matching: Algorithms and implementation. In: Europ. Conf. on Artif. Intell. (ECAI) (2012)

15. Jiménez-Ruiz, E., Meilicke, C., Cuenca Grau, B., Horrocks, I.: Evaluating mapping repair
systems with large biomedical ontologies. In: 26th Description Logics Workshop (2013)

16. Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., et al.: Optique: Towards OBDA Systems
for Industry. In: Eur. Sem. Web Conf. (ESWC) Satellite Events. pp. 125–140 (2013)

17. Meilicke, C.: Alignment Incoherence in Ontology Matching. Ph.D. thesis, University of
Mannheim (2011)

18. Meilicke, C., Castro, R.G., Freitas, F., van Hage, W.R., Montiel-Ponsoda, E., de Azevedo,
R.R., Stuckenschmidt, H., Šváb-Zamazal, O., Svátek, V., Tamilin, A., Trojahn, C., Wang, S.:
MultiFarm: a benchmark for multilingual ontology matching. J. Web Sem. (2012)

19. Nebot, V., Berlanga, R.: Efficient retrieval of ontology fragments using an interval labeling
scheme. Inf. Sci. 179(24), 4151–4173 (2009)

20. Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: Detecting and correcting conservativity prin-
ciple violations in ontology-to-ontology mappings. In: Int’l Sem. Web Conf. (ISWC) (2014)

21. Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: A multi-strategy approach for detecting and
correcting conservativity principle violations in ontology alignments. In: Proc. of the 11th
International Workshop on OWL: Experiences and Directions (OWLED). pp. 13–24 (2014)

22. Solimando, A., Jiménez-Ruiz, E., Pinkel, C.: Evaluating Ontology Alignment Systems in
Query Answering Tasks. In: Poster at Int’l Sem. Web Conf. (ISWC) (2014)

23. Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: OntoFarm: towards an experimental
collection of parallel ontologies. In: Int’l Sem. Web Conf. (ISWC). Poster Session (2005)

24. Zhang, S., Jiménez-Ruiz, E., Cuenca Grau, B.: Inconsistency Repair in Ontology Match-
ing. MSc thesis., University of Oxford (2014), http://www.cs.ox.ac.uk/isg/
projects/LogMap/papers/Master_thesis_Shuo_Zhang.pdf

25. Zhang, S., Mork, P., Bodenreider, O.: Lessons learned from aligning two representations of
anatomy. In: Conf. on Princliples of Knowledge Representation and Reasoning (KR) (2004)

Appendix F

ISWC 2014: Conservativity in Ontology
Alignments

This appendix reports the paper:

− Alessandro Solimando, Ernesto Jimenez-Ruiz, Giovana Guerrini. Detecting and Correcting Conservativity Prin-
ciple Violations in Ontology-to-Ontology Mappings. In Proceedings of the International Semantic Web Confer-
ence 2014

95

Detecting and Correcting Conservativity Principle
Violations in Ontology-to-Ontology Mappings

Alessandro Solimando1, Ernesto Jiménez-Ruiz2, and Giovanna Guerrini1

1 Dipartimento di Informatica, Università di Genova, Italy
2 Department of Computer Science, University of Oxford, UK

Abstract. In order to enable interoperability between ontology-based systems,
ontology matching techniques have been proposed. However, when the gener-
ated mappings suffer from logical flaws, their usefulness may be diminished. In
this paper we present an approximate method to detect and correct violations to
the so-called conservativity principle where novel subsumption entailments be-
tween named concepts in one of the input ontologies are considered as unwanted.
We show that this is indeed the case in our application domain based on the EU
Optique project. Additionally, our extensive evaluation conducted with both the
Optique use case and the data sets from the Ontology Alignment Evaluation Ini-
tiative (OAEI) suggests that our method is both useful and feasible in practice.

1 Introduction

Ontologies play a key role in the development of the Semantic Web and are being used
in many diverse application domains, ranging from biomedicine to energy industry. An
application domain may have been modeled with different points of view and purposes.
This situation usually leads to the development of different ontologies that intuitively
overlap, but they use different naming and modeling conventions.

In particular, this is the case we are facing in the EU Optique project.3 Optique aims
at facilitating scalable end-user access to big data in the oil and gas industry. The project
is focused around two demanding use cases provided by Siemens and Statoil. Optique
advocates for an Ontology Based Data Access (OBDA) approach [24] so that end-users
formulate queries using the vocabulary of a domain ontology instead of composing
queries directly against the database. Ontology-based queries (e.g., SPARQL) are then
automatically rewritten to SQL and executed over the database.

In Optique two independently developed ontologies co-exist. The first ontology has
been directly bootstrapped from one of the relational databases in Optique and it is
linked to the database via direct ontology-to-database mappings;4 while the second
ontology is a domain ontology based on the Norwegian Petroleum Directorate (NPD)
FactPages5 [41] and it is currently preferred by Optique end-users to feed the visual
query formulation interface6 [42]. This setting requires the “query formulation” ontol-
ogy to be linked to the relational database. In Optique we follow two approaches that

3 http://www.optique-project.eu/
4 http://www.w3.org/TR/rdb-direct-mapping/
5 http://factpages.npd.no/factpages/
6 The query formulation interface has been evaluated with end-users at Statoil.

will complement each other: (i) creation of ontology-to-database mappings between
the query formulation ontology and the database; (ii) creation of ontology-to-ontology
mappings between the bootstrapped ontology and the query formulation ontology. In
this paper we only deal with ontology-to-ontology mappings (or mappings for short).
The creation, analysis and evolution of ontology-to-database mappings are also key
research topics within Optique, however, they fall out of the scope of this paper.

The problem of (semi-)automatically computing mappings between independently
developed ontologies is usually referred to as the ontology matching problem. A num-
ber of sophisticated ontology matching systems have been developed in the last years
[11, 40]. Ontology matching systems, however, rely on lexical and structural heuristics
and the integration of the input ontologies and the mappings may lead to many un-
desired logical consequences. In [19] three principles were proposed to minimize the
number of potentially unintended consequences, namely: (i) consistency principle, the
mappings should not lead to unsatisfiable classes in the integrated ontology, (ii) locality
principle, the mappings should link entities that have similar neighbourhoods, (iii) con-
servativity principle, the mappings should not introduce new semantic relationships
between concepts from one of the input ontologies.

The occurrence of these violations is frequent, even in the reference mapping sets
of the Ontology Alignment Evaluation Initiative7 (OAEI). Also manually curated align-
ments, such as UMLS-Metathesaurus [3] (UMLS), a comprehensive effort for integrat-
ing biomedical knowledge bases, suffer from these violations. Violations to these prin-
ciples may hinder the usefulness of ontology mappings. In particular, in the Optique’s
scenario, violation of the consistency or conservativity principles will directly affect the
quality of the query results, since queries will be rewritten according to the ontology
axioms, the ontology-to-ontology mappings and the ontology-to-database mappings.

These principles has been actively investigated in the last years (e.g., [31, 30, 15,
19, 17, 29, 37]). In this paper we focus on the conservativity principle and we explore a
variant of violation of this principle which we consider appropriate for the application
domain in Optique. Furthermore, this variant of the conservativity principle allows us to
reduce the problem to a consistency principle problem. We have implemented a method
which relies on the projection of the input ontologies to Horn propositional logic. This
projection allows us to be efficient in both the reduction to the consistency principle and
the subsequent repair process. Our evaluation suggests that our method is feasible even
with the largest test cases of the OAEI campaign.

The remainder of the paper is organised as follows. Section 2 summarises the basics
concepts and definitions we will rely on along the paper. In Section 3 we introduce our
motivating scenario based on Optique. Section 4 describes our method. In Section 5 we
present the conducted evaluation. A comparison with relevant related work is provided
in Section 6. Finally, Section 7 gives some conclusions and future work lines.

2 Preliminaries

In this section, we present the formal representation of ontology mappings and the no-
tions of semantic difference, mapping coherence and conservativity principle violation.

7 http://oaei.ontologymatching.org/

2.1 Representation of Ontology Mappings

Mappings are conceptualised as 5-tuples of the form 〈id, e1, e2, n, ρ〉, with id a unique
identifier, e1, e2 entities in the vocabulary or signature of the relevant input ontologies
(i.e., e1 ∈ Sig(O1) and e2 ∈ Sig(O2)), n a confidence measure between 0 and 1, and ρ
a relation between e1 and e2, typically subsumption, equivalence or disjointness [10].

RDF Alignment [8] is the main format used in the OAEI campaign to represent
mappings containing the aforementioned elements. Additionally, mappings are also rep-
resented as OWL 2 subclass, equivalence, and disjointness axioms [6]; mapping iden-
tifiers (id) and confidence values (n) are then represented as axiom annotations. Such
a representation enables the reuse of the extensive range of OWL 2 reasoning infras-
tructure that is currently available. Note that alternative formal semantics for ontology
mappings have been proposed in the literature (e.g., [4]).

2.2 Semantic Consequences of the Integration

The ontology resulting from the integration of two ontologies O1 and O2 via a set of
mappingsM may entail axioms that do not follow from O1, O2, orM alone. These
new semantic consequences can be captured by the notion of deductive difference [25].

Intuitively, the deductive difference between O and O′ w.r.t. a signature Σ (i.e., set
of entities) is the set of entailments constructed over Σ that do not hold in O, but do
hold inO′. The notion of deductive difference, however, has several drawbacks in prac-
tice. First, there is no algorithm for computing the deductive difference in expressive
DLs [25]. Second, the number of entailments in the difference can be infinite.

Definition 1 (Approximation of the Deductive Difference). Let A,B be atomic con-
cepts (including >,⊥), Σ be a signature, O and O′ be two OWL 2 ontologies. We
define the approximation of the Σ-deductive difference between O and O′ (denoted
diff≈Σ(O,O′) as the set of axioms of the form A v B satisfying: (i) A,B ∈ Σ,
(ii) O 6|= A v B, and (iii) O′ |= A v B.

In order to avoid the drawbacks of the deductive difference, in this paper we rely on
the approximation given in Definition 1. This approximation only requires comparing
the classification hierarchies of O and O′ provided by an OWL 2 reasoner, and it has
successfully been used in the past in the context of ontology integration [18].

2.3 Mapping Coherence and Mapping Repair

The consistency principle requires that the vocabulary in OU = O1 ∪ O2 ∪ M be
satisfiable, assuming the union of input ontologiesO1 ∪O2 (without the mappingsM)
does not contain unsatisfiable concepts. Thus diff≈Σ(O1 ∪ O2,OU) should not contain
any axiom of the form A v ⊥, for any A ∈ Σ = Sig(O1 ∪ O2).

Definition 2 (Mapping Incoherence). A set of mappingsM is incoherent with respect
toO1 andO2, if there exists a classA, in the signature ofO1∪O2, such thatO1∪O2 6|=
A v ⊥ and O1 ∪ O2 ∪M |= A v ⊥.

An incoherent set of mappings M can be fixed by removing mappings from M.
This process is referred to as mapping repair (or repair for short).

Definition 3 (Mapping Repair). Let M be an incoherent set of mappings w.r.t. O1

and O2. A set of mappings R ⊆ M is a mapping repair for M w.r.t. O1 and O2 iff
M\R is coherent w.r.t. O1 and O2.

A trivial repair is R = M, since an empty set of mappings is trivially coherent
(according to Definition 2). Nevertheless, the objective is to remove as few mappings
as possible. Minimal (mapping) repairs are typically referred to in the literature as map-
ping diagnoses [29] — a term coined by Reiter [36] and introduced to the field of on-
tology debugging in [39]. A repair or diagnosis can be computed by extracting the jus-
tifications for the unsatisfiable concepts (e.g., [38, 22, 43]), and selecting a hitting set of
mappings to be removed, following a minimality criteria (e.g., the number of removed
mappings). However, justification-based technologies do not scale when the number of
unsatisfiabilities is large (a typical scenario in mapping repair problems [16]). To ad-
dress this scalability issue, mapping repair systems usually compute an approximate
repair using incomplete reasoning techniques (e.g., [17, 29, 37]). An approximate re-
pairR≈ does not guarantee thatM\R≈ is coherent, but it will (in general) significantly
reduce the number of unsatisfiabilities caused by the original set of mappingsM.

2.4 Conservativity Principle

The conservativity principle (general notion) states that the integrated ontology OU =
O1 ∪ O2 ∪ M should not induce any change in the concept hierarchies of the input
ontologies O1 and O2. That is, the sets diff≈Σ1

(O1,OU) and diff≈Σ2
(O2,OU) must be

empty for signatures Σ1 = Sig(O1) and Σ2 = Sig(O2), respectively.
In [19] a lighter variant of the conservativity principle was proposed. This variant re-

quired that the mappingsM alone should not introduce new subsumption relationships
between concepts from one of the input ontologies. That is, the set diff≈Σ(O1,O1 ∪M)
(resp. diff≈Σ(O2,O2 ∪M)) must be empty for Σ = Sig(O1) (resp. Σ = Sig(O2)).

In this paper we propose a different variant of the conservativity principle where
we require that the integrated ontology OU does not introduce new subsumption rela-
tionships between concepts from one of the input ontologies, unless they were already
involved in a subsumption relationship or they shared a common descendant. Note that
we assume that the mappingsM are coherent with respect to O1 and O2.

Definition 4 (Conservativity Principle Violations). Let A,B,C be atomic concepts
(not including >,⊥), let O be one of the input ontologies, let Sig(O) be its signature,
and let OU be the integrated ontology. We define the set of conservativity principle
violations of OU w.r.t. O (denoted consViol(O,OU)) as the set of axioms of the form
A v B satisfying: (i) A,B,C ∈ Sig(O), (ii) A v B ∈ diff≈Sig(O)(O,OU), (iii) O 6|=
B v A, and (iv) there is no C s.t. O |= C v A, and O |= C v B.

This variant of the conservativity principle follows the assumption of disjointness
proposed in [38]. That is, if two atomic concepts A,B from one of the input ontolo-
gies are not involved in a subsumption relationship nor share a common subconcept
(excluding ⊥) they can be considered as disjoint. Hence, the conservativity principle
can be reduced to the consistency principle, if the input ontologies are extended with
sufficient disjointness axioms. This reduction will allow us to reuse the available infras-
tructure and techniques for mapping repair.

Table 1. Fragments of the ontologies used in Optique.
Ontology O1 Ontology O2

α1 WellBore v ∃belongsTo.Well β1 Exploration well v Well
α2 WellBore v ∃hasOperator.Operator β2 Explor borehole v Borehole
α3 WellBore v ∃locatedIn.Field β3 Appraisal exp borehole v Explor borehole
α4 AppraisalWellBore v WellBore β4 Appraisal well v Well
α5 ExplorationWellBore v WellBore β5 Field v ∃hasFieldOperator.Field operator
α6 Operator v Owner β6 Field operator u Owner v Field owner
α7 Operator v Company β7 Company v Field operator
α8 Field v ∃hasOperator.Company β8 Field owner v Owner
α9 Field v ∃hasOwner.Owner β9 Borehole v Continuant t Occurrent

Table 2. Ontology mappings for the vocabulary in O1 and O2.
Mappings M

id e1 e2 n ρ

m1 O1:Well O2:Well 0.9 ≡
m2 O1:WellBore O2:Borehole 0.7 ≡
m3 O1:ExplorationWellBore O2:Exploration well 0.6 v
m4 O1:ExplorationWellBore O2:Explor borehole 0.8 ≡
m5 O1:AppraisalWellBore O2:Appraisal exp borehole 0.7 ≡
m6 O1:Field O2:Field 0.9 ≡
m7 O1:Operator O2:Field operator 0.7 w
m8 O1:Company O2:Company 0.9 ≡
m9 O1:hasOperator O2:hasFieldOperator 0.6 ≡
m10 O1:Owner O2:Owner 0.9 ≡

3 Conservativity Principle Violations in Practice

In this section, we show the problems led by the violation of the conservativity principle
when integrating ontologies via mappings in a real-world scenario. To this end, we
consider as motivating example a use case based on the Optique’s application domain.

Table 1 shows the fragments of two ontologies in the context of the oil and gas
industry. The ontology O1 has been directly bootstrapped from a relational database
in Optique, and it is linked to the data via direct ontology-to-database mappings. The
ontology O2, instead, is a domain ontology, based on the NPD FactPages, preferred by
Optique end-users to feed the visual query formulation interface.8

The integration via ontology matching of O1 and O2 is required since the vocabu-
lary inO2 is used to formulate queries, but only the vocabulary ofO1 is connected to the
database.9 Consider the set of mappingsM in Table 2 between O1 and O2 generated
by an off-the-shelf ontology alignment system. As described in Section 2.1, mappings
are represented as 5-tuples; for example the mapping m2 suggests an equivalence rela-
tionship between the entities O1:WellBore and O2:Borehole, with confidence 0.7.

The integrated ontology OU = O1 ∪O2 ∪M, however, violates the conservativity
principle, according to Definition 4, and introduces non desired subsumption relation-
hips (see Table 3). Note that the entailments σ4 and σ5 are not included in our variant of
conservativity violation, sinceO1:Company andO1:Operator (resp.O2:Field operator
and O2:Company) are involved in a subsumption relationship in O1 (resp. O2). How-

8 In Optique we use OWL 2 QL ontologies for query rewriting, while the query formulation
may be based on much richer OWL 2 ontologies. The axioms that fall outside the OWL 2 QL
profile are either approximated or not considered for the rewriting.

9 As mentioned in Section 1, in this paper we only focus on ontology-to-ontology mappings.

Table 3. Example of conservativity principle violations.
σ Entailment: follows from: Violation?
σ1 O2:Explor borehole v O2:Exploration well m3,m4 YES
σ2 O1:AppraisalWellBore v O1:ExplorationWellBore β3,m4,m5 YES
σ3 O2:Field operator v O2:Field owner α6, β6,m7,m10 YES
σ4 O1:Company ≡ O1:Operator

α7, β7,m7,m8 NO (*)
σ5 O2:Field operator ≡ O2:Company
σ6 O1:Company v O1:Owner σ4, α6 YES
σ7 O2:Company v O2:Field owner σ3, σ5 YES

ever, these entailments lead to other violations included in our variant (σ6 and σ7), and
may also be considered as violations. These conservativity principle violations may hin-
der the usefulness of the generated ontology mappings since may affect the quality of
the results when performing OBDA queries over the vocabulary of O2.

Example 1. Consider the following conjunctive query CQ(x)← O2:Well(x). The query
asks for wells and has been formulated from the Optique’s query formulation interface,
using the vocabulary of O2. The query is rewritten, according to the ontology axioms
and mappings β1, β4,m1,m3,m4 in OU = O1 ∪ O2 ∪M, into the following union
of conjunctive queries UCQ(x)← O2:Well(x)∪O1:Well(x)∪O2:Exploration well(x)∪
O2:Appraisal well(x)∪O1:ExplorationWellBore(x)∪O2:Explor borehole(x). Since only
the vocabulary ofO1 is linked to the data, the union of conjunctive queries could be sim-
plified as UCQ(x)←Well(x)∪ExplorationWellBore(x), which will clearly lead to non
desired results. The original query was only asking for wells, while the rewritten query
will also return data about exploration wellbores.

We have shown that the quality of the mappings in terms of conservativity principle
violations will directly affect the quality of the query results. Therefore, the detection
and repair of these violations arise as an important quality assessment step in Optique.

4 Methods

We have reduced the problem of detecting and solving conservativity principle viola-
tions, following our notion of conservativity (see Section 2), to a mapping (incoherence)
repair problem. Currently, our method relies on the indexing and reasoning techniques
implemented in LogMap, an ontology matching and mapping repair system [17, 20, 21].

Algorithm 1 shows the pseudocode of the implemented method. The algorithm ac-
cepts as input two OWL 2 ontologies, O1 and O2, and a set of mappings M which
are coherent10 with respect to O1 and O2. Additionally, an optimised variant to add
disjointness axioms can be selected. The algorithm outputs the number of added dis-
jointness during the process disj, a set of mappingsM′, and an (approximate) repair
R≈ such thatM′ =M\R≈. The (approximate) repairR≈ aims at solving most of the
conservativity principle violations ofM with respect to O1 and O2. We next describe
the techniques used in each step.

10 Note thatM may be the result of a prior mapping (incoherence) repair process.

Algorithm 1 Algorithm to detect and solve conservativity principle violations
Input:O1,O2: input ontologies;M: (coherent) input mappings;Optimization: Boolean value
Output:M′: output mappings;R≈: approximate repair; disj: number of disjointness rules
1: 〈O′1,O′2〉 := ModuleExtractor(O1,O2,M)
2: 〈P1,P2〉 := PropositionalEncoding(O′1,O′2)
3: SI1 := StructuralIndex(O′1)
4: SI2 := StructuralIndex(O′2)
5: if (Optimization = true) then
6: SIU := StructuralIndex(O′1 ∪ O′2 ∪M)

7: 〈Pd
1 , disj1〉 := DisjointAxiomsExtensionOptimized(P1, SI1, SIU) . See Algorithm 3

8: 〈Pd
2 , disj2〉 := DisjointAxiomsExtensionOptimized(P2, SI2, SIU)

9: else
10: 〈Pd

1 , disj1〉 := DisjointAxiomsExtensionBasic(P1, SI1) . See Algorithm 2
11: 〈Pd

2 , disj2〉 := DisjointAxiomsExtensionBasic(P2, SI2)
12: end if
13: 〈M′,R≈〉 := MappingRepair(Pd

1 ,Pd
2 ,M) . See Algorithm 2 in [21]

14: disj := disj1 + disj2
15: return 〈M′,R≈, disj〉

Module Extraction. In order to reduce the size of the problem our method extracts
two locality-based modules [7], one for each input ontology, using the entities involved
in the mappings M as seed signatures for the module extractor (step 1 in Algorithm
1). These modules preserve the semantics for the given entities, can be efficiently com-
puted, and are typically much smaller than the original ontologies.

Propositional Horn Encoding. The modules O′1 and O′2 are encoded as the Horn
propositional theories, P1 and P2 (step 2 in Algorithm 1). This encoding includes rules
of the form A1 ∧ . . . ∧ An → B. For example, the concept hierarchy provided by an
OWL 2 reasoner (e.g., [32, 23]) will be encoded as A → B rules, while the explicit
disjointness relationships between concepts will be represented as Ai ∧ Aj → false.
Note that the input mappings M can already be seen as propositional implications.
This encoding is key to the mapping repair process.

Example 2. Consider the ontologies and mappings in Tables 1 and 2. The axiom β6 is
encoded as Field operator∧Owner→ Field owner, while the mappingm2 is translated
into rules O1:WellBore→ O2:Borehole, and O2:Borehole→ O1:WellBore.

Structural Index. The concept hierarchies provided by an OWL 2 reasoner (exclud-
ing ⊥) and the explicit disjointness axioms of the modules O′1 and O′2 are efficiently
indexed using an interval labelling schema [1] (steps 3 and 4 in Algorithm 1). This
structural index exploits an optimised data structure for storing directed acyclic graphs
(DAGs), and allows us to answer many entailment queries over the concept hierarchy
as an index lookup operation, and hence without the need of an OWL 2 reasoner. This
kind of index has shown to significantly reduce the cost of answering taxonomic queries
[5, 33] and disjointness relationships queries [17, 20].

Disjointness Axioms Extension. In order to reduce the conservativity problem to a
mapping incoherence repair problem following the notion of assumption of disjoint-
ness, we need to automatically add sufficient disjointness axioms into each module O′i.
However, the insertion of additional disjointness axioms δ may lead to unsatisfiable
classes in O′i ∪ δ.

Algorithm 2 Basic disjointness axioms extension
Input: P : propositional theory; SI: structural index
Output: Pd: extended propositional theory;disj: number of disjointness rules
1: disj := 0
2: Pd := P
3: for each pair 〈A,B〉 ∈ OrderedVariablePairs(P) do
4: if not (areDisj(SI,A,B) or inSubSupRel(SI,A,B) or shareDesc(SI,A,B)) then
5: Pd := Pd ∪ {A ∧ B → false}
6: SI := updateIndex(SI,A u B → ⊥)
7: disj := disj + 1
8: end if
9: end for

10: return 〈Pd, disj〉

Example 3. Consider the axiom β9 from Table 1. Following the assumption of dis-
jointness a very naı̈ve algorithm would add disjointness axioms between Borehole,
Continuant and Occurrent, which would make Borehole unsatisfiable.

In order to detect if each candidate disjointness axiom leads to an unsatisfiability,
a non naı̈ve algorithm requires to make an extensive use of an OWL 2 reasoner. In
large ontologies, however, such extensive use of the reasoner may be prohibitive. Our
method, in order to address this issue, exploits the propositional encoding and structural
index of the input ontologies. Thus, checking if O′i ∪ δ contains unsatisfiable classes is
restricted to the Horn propositional case.

We have implemented two algorithms to extend the propositional theories P1 and
P2 with disjointness rules of the form A ∧ B → ⊥ (see steps 5-12 in Algorithm 1).
These algorithms guarantee that, for every propositional variable A in the extended
propositional theory Pdi (with i ∈ {1, 2}), the theory Pdi ∪ {true → A} is satisfiable.
Note that this does not necessarily hold if the disjointness axioms are added to the OWL
2 ontology modules, O′1 and O′2, as discussed above.

Algorithm 2 presents a (basic) algorithm to add as many disjointness rules as pos-
sible, for every pair of propositional variables A,B in the propositional theory P given
as input. In order to minimize the number of necessary disjointness rules, the variables
in P are ordered in pairs following a top-down approach. The algorithm exploits the
structural index SI to check if two propositional variables (i.e., classes in the input
ontologies) are disjoint (areDisj(SI,A,B)), they keep a sub/super-class relationship
(inSubSupRel(SI,A,B)), or they share a common descendant (shareDesc(SI,A,B))
(step 4 in Algorithm 2). Note that the structural index is also updated to take into ac-
count the new disjointness rules (step 6 in Algorithm 2).

The addition of disjointness rules in Algorithm 2, however, may be prohibitive for
large ontologies (see Section 5). Intuitively, in order to reduce the number of disjoint-
ness axioms, one should only focus on the cases where a conservativity principle viola-
tion occurs in the integrated ontology OU = O′1 ∪ O′2 ∪M, with respect to one of the
ontology modules O′i (with i ∈ {1, 2}); i.e., adding a disjointness axiom between each
pair of classes A,B ∈ O′i such that A v B ∈ consViol(O′i,OU), as in Definition 4.
Algorithm 3 implements this idea for the Horn propositional case and extensively ex-
ploits the structural indexing to identify the conservativity principle violations (step 3
in Algorithm 3). Note that this algorithm also requires to compute the structural index

Algorithm 3 Optimised disjointness axioms extension
Input: P : propositional theory; SI: structural index SIU : structural index of the union ontology
Output: Pd: extended propositional theory;disj: number of disjointness rules
1: disj := 0
2: Pd := P
3: forA→ B ∈ ConservativityViolations(SI, SIU) do
4: if not (areDisj(SI,A,B)) then
5: Pd := Pd ∪ {A ∧ B → false}
6: SI := updateIndex(SI,A u B → ⊥)
7: disj := disj + 1
8: end if
9: end for

10: return 〈Pd, disj〉

of the integrated ontology, and thus its classification with an OWL 2 reasoner (step 6
in Algorithm 1). The classification of the integrated ontology is known to be typically
much higher than the classification of the input ontologies individually [16]. However,
this was not a bottleneck in our experiments, as shown in Section 5.

Mapping Repair. The step 13 of Algorithm 1 uses the mapping (incoherence) repair
algorithm presented in [17, 21] for the extended Horn propositional theoriesPd1 andPd2 ,
and the input mappingsM. The mapping repair process exploits the Dowling-Gallier
algorithm for propositional Horn satisfiability [9] and checks, for every propositional
variableA ∈ Pd1∪Pd2 , the satisfiability of the propositional theoryPA = Pd1∪Pd2∪M∪
{true→ A}. Satisfiability of PA is checked in worst-case linear time in the size of PA,
and the number of Dowling-Gallier calls is also linear in the number of propositional
variables in Pd1 ∪ Pd2 . In case of unsatisfiability, the algorithm also allows us to record
conflicting mappings involved in the unsatisfiability, which will be considered for the
subsequent repair process. The unsatisfiability will be fixed by removing some of the
identified mappings. In case of multiple options, the mapping confidence will be used
as a differentiating factor.11

Example 4. Consider the propositional encoding P1 and P2 of the axioms of Table 1
and the mappingsM in Table 2, seen as propositional rules. Pd1 and Pd2 have been cre-
ated by adding disjointness rules to P1 and P2, according to Algorithm 2 or 3. For
example, Pd2 includes the rule ψ = O2:Well ∧ O2:Borehole → false. The map-
ping repair algorithm identifies the propositional theory Pd1 ∪ Pd2 ∪ M ∪ {true →
O1:ExplorationWellbore} as unsatisfiable. This is due to the combination of the map-
pingsm3 andm4, the propositional projection of axioms β1 and β2, and the rule ψ. The
mapping repair algorithm also identifies m3 and m4 as the cause of the unsatisfiability,
and discards m3, since its confidence is smaller than that of m4 (see Table 2).

Algorithm 1 gives as output the number of added disjointness rules during the pro-
cess disj, a set of mappings M′, and an (approximate) repair R≈ such that M′ =
M \ R≈. M′ is coherent with respect to Pd1 and Pd2 (according to the propositional
case of Definition 2). Furthermore, the propositional theory P1 ∪ P2 ∪ M′ does not
11 In scenarios where the confidence of the mapping is missing (e.g., in reference or manually

created mapping sets) or unreliable, our mapping repair technique computes fresh confidence
values based on the locality principle [19].

Algorithm 4 Conducted evaluation over the Optique and OAEI data sets
Input:O1,O2: input ontologiesM: reference mappings forO1 andO2

1: OU := O1 ∪ O2 ∪M
2: Store size of Sig(O1) (I), Sig(O2) (II) andM (III)
3: Compute number of conservativity principle violations (our variant as in Definition 4):

consViol := |consViol(O1,OU)|+ |consViol(O2,OU)| (IV)
4: Compute number of conservativity principle violations (general notion as in Section 2.4):

diff≈ := |diff≈Sig(O1)(O1,OU)|+ |diff≈Sig(O2)(O2,OU)| (V)
5: Compute two repairsR≈ using Algorithm 1 forO1,O2,M, with the Optimization set to false (see Table 5) and

true (see Table 6)
6: Store number of added disjointness disj (VI and XII), size of repair |R≈| (VII and XIII), time to compute disjointness

rules td (VIII and XIV), and time to compute the mapping repair tr (IX and XV)
7: OU := O1 ∪ O2 ∪M \R≈
8: Compute number of remaining conservativity principle violations (our variant):

consViol := |consViol(O1,OU)|+ |consViol(O2,OU)| (X and XVI)
9: Compute number of remaining conservativity principle violations (general notion):

diff≈ := |diff≈Sig(O1)(O1,OU)|+ |diff≈Sig(O2)(O2,OU)| (XI and XVII)

contain any conservativity principle violation with respect to P1 and P2 (according to
the propositional case of Definition 4). However, our encoding is incomplete, and we
cannot guarantee that O′1 ∪ O′2 ∪M′ does not contain conservativity principle viola-
tions with respect to O′1 and O′2. Nonetheless, our evaluation suggests that the number
of remaining violations after repair is typically small (see Section 5).

5 Evaluation

In this section we evaluate the feasibility of using our method to detect and correct con-
servativity principle violations in practice. To this end we have conducted the evaluation
in Algorithm 4 (the Roman numbers refer to stored measurements) over the Optique’s
use case and the ontologies and reference mapping sets of the OAEI 2013 campaign:12

i Optique’s use case is based on the NPD ontology and a bootstrapped ontology
(BootsOnto) from one of the Optique databases. The mappings between these on-
tologies were semi-automatically created using the ontology matcher LogMap [20].
Although the NPD ontology is small with respect to the size of the bootstrapped on-
tology, its vocabulary covers a large portion of the current query catalog in Optique.

ii LargeBio: this dataset includes the biomedical ontologies FMA, NCI and (a frag-
ment of) SNOMED, and reference mappings based on the UMLS [3].

iii Anatomy: the Anatomy dataset involves the Adult Mouse Anatomy (MO) ontology
and a fragment of the NCI ontology (NCIAnat), describing human anatomy. The
reference alignment has been manually curated [48].

iv Library: this OAEI dataset includes the real-word thesauri STW and TheSoz from
the social sciences. The reference mappings have been manually validated.

v Conference: this dataset uses a collection of 16 ontologies from the domain of
academic conferences [46]. Currently, there are 21 manually created mapping sets
among 7 of the ontologies.

12 Note that the reference mappings of the OAEI 2013 campaign are coherent with respect to the
test case ontologies [13]. More information about the used ontology versions can be found in
http://oaei.ontologymatching.org/2013/

Table 4. Test cases and violations with original reference mappings. BootsOnto contains around
3,000 concepts, and a large number of properties.

Dataset O1 ∼ O2

Problem size Original Violations
I II III IV V

|Sig(O1)| |Sig(O2)| |M| consViol diff≈

Optique NPD∼BootsOnto 757 40,671 102 214 220

LargeBio
SNOMED∼NCI 122,519 66,914 36,405 >525,515 >546,181
FMA∼SNOMED 79,042 122,519 17,212 125,232 127,668
FMA∼NCI 79,042 66,914 5,821 19,740 19,799

Anatomy MO∼NCIAnat 2,747 3,306 3,032 1,321 1,335

Library STW∼TheSoz 6,575 8,376 6,322 42,045 42,872

Conference

cmt∼confof 89 75 32 11 11
conference∼edas 124 154 34 8 8
conference∼iasted 124 182 28 9 9
confof∼ekaw 75 107 40 6 6
edas∼iasted 154 182 38 7 7

Table 5. Results of our basic method to detect and solve conservativity principle violations.

Dataset O1 ∼ O2

Solution size Times Remaining Violations
VI VII VIII IX X XI

#disj |R≈| td(s) tr(s) consViol diff≈

Optique NPD∼BootsOnto 4,716,685 49 9,840 121 0 0

LargeBio
SNOMED∼NCI – – – – – –
FMA∼SNOMED 1,106,259 8,234 35,817 1,127 0 121
FMA∼NCI 347,801 2,176 2,471 38 103 112

Anatomy MO∼NCIAnat 1,331,374 461 397 56 0 3

Library STW∼TheSoz 591,115 2,969 4,126 416 0 24

Conference

cmt∼confof 50 6 0.01 0.01 0 0
conference∼edas 774 6 0.03 0.01 0 0
conference∼iasted 2,189 4 0.06 0.02 0 0
confof∼ekaw 296 6 0.02 0.01 0 0
edas∼iasted 1,210 4 0.06 0.02 1 1

Table 4 shows the size of the evaluated ontologies and mappings (I, II and III).
For the Conference dataset we have selected only 5 pair of ontologies for which the
reference mappings lead to more than five conservativity principle violations. Note that
we count equivalence mappings as two subsumption mappings, and henceM represents
subsumption mappings. Table 4 also shows the conservativity principle violations for
the reference mappings (IV and V). For LargeBio and Library the number is expecially
large using both our variant and the general notion of the conservativity principle.13

Tables 5 and 6 show the obtained results for our method using both the basic and
optimised algorithms to add disjointness axioms.14

13 In the SNOMED-NCI case no OWL 2 reasoner could succeed in classifying the integrated
ontology via mappings [16], so we used the OWL 2 EL reasoner ELK [23] for providing a
lower bound on the number of conservativity principle violations.

14 The computation times of Steps 1-4 in Algorithm 1 were negligible with respect to the repair
and disjointness addition times (tr and td) and thus they were not included in the result tables.

Table 6. Results of our optimised method to detect and solve conservativity principle violations.

Dataset O1 ∼ O2

Solution size Times Remaining Violations
XII XIII XIV XV XVI XVII
#disj |R≈| td(s) tr(s) consViol diff≈

Optique NPD∼BootsOnto 214 41 2.54 0.17 0 0

LargeBio
SNOMED∼NCI 525,515 15,957 275 3,755 >411 >1,624
FMA∼SNOMED 125,232 8,342 30 251 0 131
FMA∼NCI 19,740 2,175 34 6.18 103 112

Anatomy MO∼NCIAnat 1,321 491 1.39 0.53 0 3

Library STW∼TheSoz 42,045 3,058 4.93 41 0 40

Conference

cmt∼confof 11 6 0.05 0.01 0 0
conference∼edas 8 6 0.07 0.01 0 0
conference∼iasted 9 1 0.22 0.01 0 0
confof∼ekaw 6 5 0.04 0.01 0 0
edas∼iasted 7 4 0.21 0.02 1 1

We have run the experiments on a desktop computer with an AMD Fusion A6-3670K
CPU and allocating 12 GB of RAM. The obtained results are summarized as follows:

i The number of added disjointness rules disj (VI), as expected, is very large in the
basic algorithm and the required time prohibitive (VIII) when involving SNOMED
(it did not finish for SNOMED-NCI). This is clearly solved in our optimised algo-
rithm that considerably reduces the number of necessary disjoitness rules (XII) and
it requires only 275 seconds to compute them in the SNOMED-NCI case (XIV).

ii The computed repairs R≈ (VII and XIII) using both the basic and optimised al-
gorithms are of comparable size. This suggests that the large number of added
disjointness in the basic algorithm does not have a negative impact (in terms of
aggressiveness) on the repair process.

iii Repair times tr (IX and XV) are small and they do not represent a bottleneck in
spite of the large number of added disjointness rules.

iv The conservativity principle violations using both algorithms and considering our
variant (X and XVI) are completely removed in the Optique, Anatomy and Library
cases, and almost completely removed in the Conference and LargeBio datasets.

v The number of missed violations is only slightly higher when considering the gen-
eral notion of the conservativity principle (XI and XVII), which suggests that our
(approximate) variant is also suitable in practice. Furthermore, in several test cases
these violations are also almost removed.

vi The computed repairs R≈, using both algorithms (VII and XIII), are rather ag-
gressive and they can remove from 16% (Anatomy) up to 48% (Optique) of the
mappings. In the Optique’s use case, however, we follow a better safe than sorry
approach and we prefer to remove as many violations as possible, rather than pre-
serving potentially conflicting mapping sets.

In summary, the results suggest that our method to repair conservativity principle
violations is suitable for Optique, and it is feasible in practice, even when considering
the largest datasets of the OAEI.

6 Related Work

The conservativity principle problem, although indirectly, has been actively studied in
the literature. For example, the assumption of disjointness was originally introduced by
Schlobach [38] to enhance the repair of ontologies that were underspecified in terms of
disjointness axioms. In [30], a similar assumption is followed in the context of repairing
ontology mappings, where the authors restricted the number of disjointness axioms by
using learning techniques [45]. These techniques, however, typically require a manually
created training set. In [12] the authors present an interactive system to guide the expert
user in the manual enrichment of the ontologies with disjointness axioms. In this paper,
as in [45, 30, 12], we have also focused on the addition of a small set of disjointness
axioms, since adding all possible disjointness may be unfeasible for large ontologies.
However, our method does not require manual intervention. Furthermore, to address the
scalability problem when dealing with large ontologies and mapping sets, our method
relies on the propositional projection of the input ontologies.

Ontology matching systems have also dealt with the conservativity principle in or-
der to improve the precision (with respect to a reference mapping set) of the computed
mappings. For example, systems such as ASMOV [15], Lily [47] and YAM++ [34] have
implemented different heuristics and patterns to avoid violations of the conservativity
principle. Another relevant approach has been presented in [2], where a set of sanity
checks and best practices are proposed for computing ontology mappings. In this paper
we present an elegant way to detect and solve conservativity principle violations by re-
ducing the problem to a consistency principle violation problem. Concretely, we have
reused and adapted the infrastructure provided by LogMap [17, 20]. However, other
mapping repair systems, such as Alcomo [29] or AML [37], could be considered. Note
that, to the best of our knowledge, these mapping repair systems have only focused on
solving violations of the consistency principle.

The work presented in [26, 14, 27] deserves a special attention since they propose an
opposite approach with respect to ours. Authors consider the violations of the conser-
vativity principle as false positives, based on the potential incompleteness of the input
ontologies. Hence, the correction strategy does not aim at removing mappings but at in-
serting subsumption axioms to the input ontologies to enrich their concept hierarchies.
Authors in [35] also suggest that removing mapping may not be the best solution in a
mapping repair process, and fixing the input ontologies may be an alternative.

Currently, in the Optique use case, we consider that the input ontologies are not
modifiable. The query formulation ontology is based on the NPD ontology, which in-
cludes knowledge already agreed by the community, while the bootstrapped ontology
is directly linked to the information represented in the database. Nevertheless, future
extensions in Optique may consider appropriate the extension of the input ontologies.

7 Conclusions and Future Work

In this paper we have presented an approximate and fully-automatic method to detect
and correct conservativity principle violations in practice. We have characterised the
conservativity principle problem, following the assumption of disjointness, as a consis-
tency principle problem. We have also presented an elegant and scalable way to detect

and repair violations in the Horn propositional case. Thus, our method is incomplete
and it may fail to detect and repair all violations. However, the conducted evaluation
suggests that our method produces competitive results in practice. In the close future
we plan to consider extensions of the current projection to Horn propositional logic
while keeping the nice scalability properties of the current method.

The implemented method follows a “better safe than sorry” approach, which we
currently consider suitable for the Optique project since we do not want ontology-to-
ontology mappings to lead to unexpected results for the OBDA queries, as motivated
in Section 3. Hence, we currently delegate complex relationhips between ontology en-
tities and the database to the (hand-crafted) schema-to-ontology mappings, which will
also play an important role in Optique. Nevertheless we do not discard in the future
to explore alternative methods to detect and repair conservative principle violations.
In particular, we plan to study the potential application of approaches based on graph-
theory, in order to extend the detection and repair of conservativity principle violations.
Strongly connected compontents of a graph representation of the subsumption relation
between named concepts (as defined in [29]), for instance, may be used to capture vio-
lations between pairs of concepts already involved in a subsumption relationship.

Additionally, we will also consider exploring the use of learning techniques for the
addition of disjointness axioms [45], and to involve the domain experts in the assess-
ment/addition of such disjointness [18, 12]. This manual assessment may also be used
to consider violations as false positives, as proposed in [26, 14, 27], and suggest them
as candidate extensions of the input ontologies.

We consider that the proposed method has also potential in scenarios others than
Optique. For instance, the authors in [28] apply ontology matching in a multi-agent
system scenario in order to allow the exchange and extension of ontology-based ac-
tion plans among agents. In such a context, violations of the conservativity principle
should be taken into account and highly critical tasks should not be performed if viola-
tions are detected. In [44], authors present an ontology-based data integration (OBDI)
system, which integrates ontology mapping and query reformulation techniques. As in
Optique, mappings violating the conservativity principle may compromise the quality
of the query results in the proposed OBDI system.

Finally, we have short-term plans for deployment in the Optique industry partners
Statoil and Siemens. The techniques described in this paper have already been inte-
grated within the “ontology and mapping management module” (see [24] for details
about the Optique architecture).

Acknowledgements

This work was supported by the EU FP7 IP project Optique (no. 318338), the MIUR
project CINA (Compositionality, Interaction, Negotiation, Autonomicity for the future
ICT society) and the EPSRC project Score!. We also thank the unvaluable help provided
by Bernardo Cuenca and Ian Horrocks. Finally, we are also very grateful for the support
of the Optique colleagues that facilitated our understanding of the domain, especially:
Dag Hovland, Evgeny Kharlamov, Dmitry Zheleznyakov and Martin G. Skjæveland.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient Management of Transitive Relationships
in Large Data and Knowledge Bases. In: ACM SIGMOD Conf. on Manag. of Data (1989)

2. Beisswanger, E., Hahn, U., et al.: Towards valid and reusable reference alignmentsten basic
quality checks for ontology alignments and their application to three different reference data
sets. J. Biomed. Semant. 3(Suppl 1), S4 (2012)

3. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical
terminology. Nucleic Acids Research 32, 267–270 (2004)

4. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from
Peer Sources. J. Data Sem. 1, 153–184 (2003)

5. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On Labeling Schemes for the
Semantic Web. In: Int’l World Wide Web Conf. (WWW). pp. 544–555 (2003)

6. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL
2: The next step for OWL. J. Web Sem. 6(4), 309–322 (2008)

7. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular Reuse of Ontologies: The-
ory and Practice. J. Artif. Intell. Res. 31, 273–318 (2008)

8. David, J., Euzenat, J., Scharffe, F., Trojahn, C.: The Alignment API 4.0. J. Sem. Web 2(1),
3–10 (2011)

9. Dowling, W.F., Gallier, J.H.: Linear-Time Algorithms for Testing the Satisfiability of Propo-
sitional Horn Formulae. J. Log. Prog. 1(3), 267–284 (1984)

10. Euzenat, J.: Semantic Precision and Recall for Ontology Alignment Evaluation. In: Int’l Joint
Conf. on Artif. Intell. (IJCAI). pp. 348–353 (2007)

11. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology Alignment
Evaluation Initiative: Six Years of Experience. J. Data Sem. 15, 158–192 (2011)

12. Ferré, S., Rudolph, S.: Advocatus Diaboli - Exploratory Enrichment of Ontologies with Neg-
ative Constraints. In: Int’l Conf. on Knowl. Eng. (EKAW). pp. 42–56 (2012)

13. Grau, B.C., Dragisic, Z., Eckert, K., et al.: Results of the Ontology Alignment Evaluation
Initiative 2013. In: Ontology Matching (OM) (2013)

14. Ivanova, V., Lambrix, P.: A Unified Approach for Aligning Taxonomies and Debugging Tax-
onomies and their Alignments. In: Eur. Sem. Web Conf. (ESWC), pp. 1–15. Springer (2013)

15. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology Matching With Semantic Ver-
ification. J. Web Sem. 7(3), 235–251 (2009)

16. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I.: On the feasibility of using OWL 2 DL
reasoners for ontology matching problems. In: OWL Reasoner Evaluation Workshop (2012)

17. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)

18. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using
mappings: Towards getting the right logical consequences. In: Eur. Sem. Web Conf. (2009)

19. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based Assessment of
the Compatibility of UMLS Ontology Sources. J. Biomed. Semant. 2(Suppl 1), S2 (2011)

20. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale Interactive Ontology
Matching: Algorithms and Implementation. In: Eur. Conf. on Artif. Intell. (ECAI) (2012)

21. Jiménez-Ruiz, E., Meilicke, C., Grau, B.C., Horrocks, I.: Evaluating Mapping Repair Sys-
tems with Large Biomedical Ontologies. In: Description Logics. pp. 246–257 (2013)

22. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. Int’l Sem. Web Conf. (ISWC) pp. 267–280 (2007)

23. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent Classification of EL Ontologies. In:
Int’l Sem. Web Conf. (ISWC). pp. 305–320 (2011)

24. Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., et al.: Optique: Towards OBDA Systems
for Industry. In: Eur. Sem. Web Conf. (ESWC) Satellite Events. pp. 125–140 (2013)

25. Konev, B., Walther, D., Wolter, F.: The Logical Difference Problem for Description Logic
Terminologies. In: Int’l Joint Conf. on Automated Reasoning (IJCAR). pp. 259–274 (2008)

26. Lambrix, P., Dragisic, Z., Ivanova, V.: Get My Pizza Right: Repairing Missing Is-a Relations
in ALC Ontologies. In: Semantic Technology, pp. 17–32. Springer (2013)

27. Lambrix, P., Liu, Q.: Debugging the Missing Is-a Structure Within Taxonomies Networked
by Partial Reference Alignments. Data Knowl. Eng. (DKE) 86, 179–205 (2013)

28. Mascardi, V., Ancona, D., Barbieri, M., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: Endow-
ing AgentSpeak-DL Agents with Plan Exchange and Ontology Services. Web Intelligence
and Agent Systems 12(1), 83–107 (2014)

29. Meilicke, C.: Alignments Incoherency in Ontology Matching. Ph.D. thesis, University of
Mannheim (2011)

30. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning Disjointness for Debugging Mappings
between Lightweight Ontologies. In: Int’l Conf. on Knowl. Eng. (EKAW). pp. 93–108 (2008)

31. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching
Algorithm and Its Application to Schema Matching. In: IEEE Int’l Conf. on Data Eng. (2002)

32. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. J. Artif.
Intell. Res. (JAIR) 36, 165–228 (2009)

33. Nebot, V., Berlanga, R.: Efficient Retrieval of Ontology Fragments Using an Interval Label-
ing Scheme. Inf. Sci. 179(24), 4151–4173 (2009)

34. Ngo, D., Bellahsene, Z.: YAM++ : A Multi-strategy Based Approach for Ontology Matching
Task. In: Int’l Conf. on Knowl. Eng. (EKAW). pp. 421–425 (2012)

35. Pesquita, C., Faria, D., Santos, E., Couto, F.M.: To repair or not to repair: reconciling correct-
ness and coherence in ontology reference alignments. In: Ontology Matching (OM) (2013)

36. Reiter, R.: A Theory of Diagnosis from First Principles. Artif. Intell. 32(1) (1987)
37. Santos, E., Faria, D., Pesquita, C., Couto, F.: Ontology Alignment Repair Through Modular-

ization and Confidence-based Heuristics. arXiv:1307.5322 preprint (2013)
38. Schlobach, S.: Debugging and Semantic Clarification by Pinpointing. In: Eur. Sem. Web

Conf. (ESWC), pp. 226–240. Springer (2005)
39. Schlobach, S., Cornet, R.: Non-standard Reasoning Services for the Debugging of Descrip-

tion Logic Terminologies. In: Int’l Joint Conf. on Artif. Intell. (IJCAI). pp. 355–362 (2003)
40. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Challenges. IEEE

Transactions on Knowl. and Data Eng. (TKDE) (2012)
41. Skjæveland, M.G., Lian, E.H., Horrocks, I.: Publishing the Norwegian Petroleum Direc-

torate’s FactPages as Semantic Web Data. In: Int’l Sem. Web Conf. (ISWC) (2013)
42. Soylu, A., et al.: A Preliminary Approach on Ontology-Based Visual Query Formulation for

Big Data. In: 7th Research Conf. on Metadata and Semantics Research (MTSR) (2013)
43. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A Modularization-Based Approach to Finding

All Justifications for OWL DL Entailments. In: Asian Sem. Web Conf. (ASWC) (2008)
44. Tian, A., Sequeda, J., Miranker, D.P.: QODI: Query as Context in Automatic Data Integra-

tion. In: Int’l Sem. Web Conf. (ISWC). pp. 624–639 (2013)
45. Völker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Eur. Sem. Web

Conf. (ESWC). pp. 175–189 (2007)
46. Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: OntoFarm: Towards an Experimental

Collection of Parallel Ontologies. In: Int’l Sem. Web Conf. (ISWC). Poster Session (2005)
47. Wang, P., Xu, B.: Debugging Ontology Mappings: A Static Approach. Computing and In-

formatics 27(1), 21–36 (2012)
48. Zhang, S., Mork, P., Bodenreider, O.: Lessons Learned from Aligning two Representations

of Anatomy. In: Int’l Conf. on Principles of Knowl. Repr. and Reasoning (KR) (2004)

Appendix G

ISWC 2014: Repair in Ontology Alignments

This appendix reports the paper:

− Daniel Faria, Ernesto Jimenez-Ruiz, Catia Pesquita, Emanuel Santos, and Francisco M. Couto. Towards an-
notating potential incoherences in BioPortal mappings. In Proceedings of the International Semantic Web
Conference 2014

112

Towards annotating potential incoherences in
BioPortal mappings

Daniel Faria1, Ernesto Jiménez-Ruiz2, Catia Pesquita1,3,
Emanuel Santos3, and Francisco M. Couto1,3

1 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
2 Department of Computer Science, University of Oxford, UK

3 Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract. BioPortal is a repository for biomedical ontologies that also includes
mappings between them from various sources. Considered as a whole, these map-
pings may cause logical errors, due to incompatibilities between the ontologies
or even erroneous mappings.
We have performed an automatic evaluation of BioPortal mappings between 19
ontology pairs using the mapping repair systems of LogMap and AgreementMak-
erLight. We found logical errors in 11 of these pairs, which on average involved
22% of the mappings between each pair. Furthermore, we conducted a manual
evaluation of the repair results to identify the actual sources of error, verifying
that erroneous mappings were behind over 60% of the repairs.
Given the results of our analysis, we believe that annotating BioPortal mappings
with information about their logical conflicts with other mappings would improve
their usability for semantic web applications and facilitate the identification of
erroneous mappings. In future work, we aim to collaborate with BioPortal devel-
opers in extending BioPortal with these annotations.

1 Motivation

OWL ontologies are extensively used in biomedical information systems. Prominent
examples of biomedical ontologies are the Gene Ontology [1], the National Cancer
Institute Thesaurus (NCIT) [14] and the Foundational Model of Anatomy (FMA) [32].

Despite some community efforts to ensure a coordinated development of biomed-
ical ontologies [38], many ontologies are being developed independently by different
groups of experts and, as a result, they often cover the same or related subjects, but
follow different modeling principles and use different entity naming schemes. Thus,
to integrate data among applications, it is crucial to establish correspondences (called
mappings) between the entities of the ontologies they use.

In the last ten years, the semantic web and bioinformatics research communities
have extensively investigated the problem of (semi-)automatically computing corre-
spondences between independently developed ontologies, which is usually referred to
as the ontology matching problem. Resulting from this effort are the growing number of
ontology matching systems in development [8,7,37] and the large mapping repositories
that have been created (e.g., [2,10]).

One such repository, BioPortal [10,33], is a coordinated community effort which
currently provides access to more than 370 biomedical ontologies and over 12 mil-
lion mappings between them.4 While not all BioPortal ontologies were originally OWL
ontologies (e.g., some were developed in OBO format5), many have been (or can be)
converted to OWL [15]. Mappings in BioPortal are either generated automatically by
a sophisticated lexical matcher [13] or added manually by domain experts through the
Web interface or the REST APIs [29].

OWL ontologies have well-defined semantics [4] and thus the integration of inde-
pendently developed ontologies via a set of mappings (i.e., an alignment) may lead to
logical errors such as unsatisfiablities [25]. BioPortal, however, explicitly supports the
idea that alternative (i.e., created for different purposes) mapping sets may co-exist and
that they could potentially contradict each other [29].

While it is true that many logical errors in alignments are caused by incompati-
bilities between the ontologies they map [19,31], some may be caused by erroneous
mappings. Furthermore, logical soundness may be critical to some semantic web appli-
cations that integrate two or more ontologies [31]. For these reasons, we consider that it
would be advantageous to enrich BioPortal mappings with annotations about potential
logical conflicts with other mappings. This would improve the usability of BioPortal
mappings for semantic web applications and domain users, and facilitate the identifica-
tion of erroneous mappings and potential errors in the ontologies themselves.

In this paper we quantify the logical errors in the BioPortal mappings among several
ontologies by applying mapping repair algorithms. Furthermore, we manually analyze a
subset of the identified conflicting mappings in order to qualify the causes of the errors.
Our goal is to show the importance of identifying (and annotating) logical conflicts in
BioPortal and the role ontology mapping repair algorithms may play in that task.

The rest of the paper is organized as follows: Section 2 describes how mappings
are represented in BioPortal; Section 3 introduces the concept of mapping repair and
presents the repair algorithms used in this study; Section 4 details the automatic and
manual evaluations we conducted and presents and discusses their results; and finally,
Section 5 presents some conclusions and future work lines.

2 Mappings in BioPortal

Mappings are treated as first-class citizens in BioPortal [29,12], as it enables the query-
ing, upload, and retrieval of all mappings between all of its ontologies. A survey con-
ducted in 2009 revealed that 33% of BioPortal ontologies had 50% of their entities
mapped to other ontologies [12], which indicates that BioPortal ontologies are highly
interconnected.

The number of mappings in BioPortal has grown quickly in recent years, from
30,000 mappings between 20 ontologies in 2008 [29] to 9 million mappings between
302 ontologies in 2012 [33]. At the time of writing this paper, there were approximately
13 million mappings between 373 ontologies.

4 BioPortal: https://bioportal.bioontology.org/
5 http://www.geneontology.org/GO.format.obo-1_4.shtml

Mappings in BioPortal are represented as a 4-tuple of the form 〈e1, e2, Rel, Ann〉,
where e1, e2 are the URIs of two entities from the vocabulary of two BioPortal ontolo-
gies, Rel is the semantic relationship between them, and Ann is a set of annotations
or metadata associated to the mapping. The relation Rel can be of one of the follow-
ing types:6 skos:exactMatch, skos:relatedMatch, skos:closeMatch, skos:narrowMatch,
skos:broadMatch. Ann includes, among other details, important provenance informa-
tion about the mapping such as: origin (e.g., user-defined or alignment system em-
ployed), application context, creator, and creation date.

According to BioPortal authors [33], the statistics about mapping origin are the fol-
lowing: (i) 64.96% of the mappings were created by the lexical matcher LOOM [13];
(ii) 32.48% of the mappings had UMLS [2] as origin; (iii) 2.41% represented map-
pings between entities with the same URI; (iv) 0.02% came from Xref OBO Mappings;
(v) finally 0.13% of the mappings were submitted by users.

Mappings between entities with the same URI are labeled skos:exactMatch by Bio-
Portal, LOOM and UMLS mappings are labeled skos:closeMatch, and Xref OBO Map-
pings are labeled skos:relatedMatch. User submitted mappings can be labeled with any
of the relation types listed above.

BioPortal mappings can be retrieved via its REST API, being straightforward to
identify the entities involved in the mapping, its origin, and the source ontologies.7

In this paper, we have focused only on skos:closeMatch mappings, which account
for the large majority of BioPortal mappings. We represented these mappings as OWL 2
equivalence axioms since that is typically the semantic relation they convey (the tag
skos:closeMatch is used to link concepts that can be used interchangeably, at least in a
given context). Mapping annotationsAnn have (optionally) been represented as OWL 2
axiom annotations. This representation of mappings enables the reuse of the extensive
range of OWL 2 reasoning infrastructure that is currently available. Note that alterna-
tive formal semantics for ontology mappings have been proposed in the literature (e.g.,
[3,6,28]).

3 Mapping repair

The ontology resulting from the integration of O1 and O2 via a set of mappings M,
may entail axioms that do not follow from O1, O2, orM alone. These new semantic
consequences can be captured using the notion of deductive difference [24,18], and can
be divided into desired and undesired entailments. Undesired entailments are typically
introduced due to erroneous mappings in M. However, even if all mappings in M
are correct, undesired entailments may occur due to conflicting descriptions between
the overlapping entities in O1 and O2. Undesired entailment can be divided into two
groups: entailments causing unsatisfiable classes, which can be easily detected using
(automatic) logical reasoning; and entailments not causing unsatisfiable classes, which
require domain knowledge to decide whether they are indeed undesired. In this paper
we only focus on the first group of undesired entailments.

6 http://www.bioontology.org/wiki/index.php/BioPortal_Mappings
7 http://data.bioontology.org/documentation#Mapping

A set of mappings that leads to unsatisfiable classes in O1 ∪ O2 ∪M is referred to
as incoherent w.r.t. O1 and O2 [26].

Definition 1 (Mapping Incoherence). A set of mappingsM is incoherent with respect
toO1 andO2, if there exists a classA in the signature ofO1∪O2 such thatO1∪O2 6|=
A v ⊥ and O1 ∪ O2 ∪M |= A v ⊥.

An incoherent set of mappings M can be fixed by removing mappings from M.
This process is referred to as mapping repair (or repair for short).

Definition 2 (Mapping Repair). Let M be an incoherent set of mappings w.r.t. O1

and O2. A set of mappings R ⊆ M is a mapping repair for M w.r.t. O1 and O2 if
M\R is coherent w.r.t. O1 and O2.

A trivial repair is R =M, since an empty set of mappings is obviously coherent.
Nevertheless, the objective is to remove as few mappings as possible. Minimal (map-
ping) repairs are typically referred to in the literature as mapping diagnosis [25].

In the literature there are different approaches to compute a repair or diagnosis for
an incoherent set of mappings. Early approaches were based on Distributed Description
Logics (DDL) (e.g. [27,28,30]). The work presented in [30] deserves special mention,
as it reports on a preliminary coherence evaluation of BioPortal mappings using DDL.8

The authors, however, emphasized the problems of efficiency of the coherence check-
ing task due to the reasoning complexity of DDL and suggest the use of approximate
techniques in the future.

Alternatively, if mappings are represented as OWL 2 axioms, mapping repairs can
also be computed using the state-of-the-art approaches for debugging and repairing
inconsistencies in OWL 2 ontologies, which rely on the extraction of justifications for
the unsatisfiable classes (e.g. [36,22,39,18]). However, justification-based technologies
do not scale when the number of unsatisfiabilities is large (a typical scenario in mapping
repair problems [16]).

To address this scalability issue, mapping repair systems usually compute an ap-
proximate repair using incomplete reasoning techniques (e.g. [17,25,9]). An approx-
imate repair R≈ does not guarantee that M \ R≈ is coherent, but it will (in gen-
eral) reduce significantly the number of unsatisfiabilities caused by the original map-
pingsM. Indeed, approximate repair techniques have been successfully applied to audit
the UMLS metathesaurus [19,17].

In this paper, we have applied the approximate mapping repair techniques imple-
mented in LogMap [17,20,21] and AgreementMakerLight (AML) [9,35] to the BioPor-
tal mappings. As described in Section 2, we have represented the BioPortal mappings
as OWL 2 equivalence axioms. Note that, although both LogMap and AML were orig-
inally implemented as ontology matching systems, they can also operate as a stand-
alone mapping repair systems. From this point onwards, we will refer to LogMap’s and
AML’s repair modules as LogMap-Repair and AML-Repair respectively.

Algorithm 1 AML-Repair algorithm
Input: O1, O2: input ontologies;M: input mappings
Output:M′: output mappings;R≈: approximate mapping repair; CS: identified conflicting sets;
MCS : mappings involved in conflicting sets
1: M′ :=M
2: R≈ := ∅
3: 〈O′1, O′2, Checkset〉 := BuiltCoreFragments(O1,O2,M′)
4: CS := ConflictSets(O′1,O′2,M ′, Checkset)
5: MCS := MappingsInConflictSets(CS)
6: CS ′ := CS
7: while |CS ′| > 0 do
8: w := SelectMappingToRemove(CS ′)
9: CS ′ := RemoveMapping(CS ′, w)

10: M′ : =M′ \ {w};
11: R≈ := R≈ ∪ {w}
12: end while
13: return 〈M′,R≈, CS,MCS〉

3.1 Mapping repair using AML-Repair

The pseudocode of the algorithm implemented by AML-Repair is described in Algo-
rithm 1. The algorithm is divided in three main tasks:

1. The computation of the core fragments (see [34]) (step 3);
2. The search for all (minimal) conflicting sets of mappings CS , i.e. mappings that

lead to an incoherence (step 4);
3. The resolution of incoherences using a heuristic to minimize the set of mappings

removed from every conflicting set (step 8 to 11);
4. The algorithm outputs a set of repaired mappings M′, an approximate mapping

repairR≈, conflicting sets of mappings CS , and the set of all mappings involved in
at least one conflicting setMCS .

AML-Repair implementation is based on a modularization of the input ontologies,
called core fragments, that only contains the necessary classes and relations to detect
all existing incoherences [34]. This modularization is computed by the BuildCoreFrag-
ments method (Step 3 of Algorithm 1), which also computes a minimal set of classes
(the Checkset) that need to be checked for incoherences.

AML-Repair determines subsumption relations between atomic classes syntacti-
cally (i.e., without using an OWL 2 Reasoner) and it also considers disjointness axioms
between atomic classes. Unlike LogMap-Repair, equivalence mappings are considered
indivisible units and are never split into two subsumption mappings. Thus, an input
mapping is either removed or kept in the alignment during the repair procedure.

The ConflictSets method (step 4) returns all mapping sets that will lead to an inco-
herence by doing a full depth-first search in the core fragments structure for each class
in the Checkset. This way, AML-Repair determines all minimal sets of mappings, called

8 To the best of our knowledge, no automatic repair was conducted.

Algorithm 2 LogMap-Repair algorithm based on Horn propositional reasoning
Input: O1, O2: input ontologies;M: input mappings
Output:M′: output mappings;R≈: approximate mapping repair; CG: conflicting groups;
MCG : mapping average in conflicting groups
1: M′ :=M
2: R≈ := ∅
3: CG := ∅
4: 〈P1,P2〉 := PropEncoding(O1,O2)
5: for each C ∈ OrderedVariables(P1 ∪ P2) do
6: PC := P1 ∪ P2 ∪M′ ∪ {true→ C}
7: 〈sat,M⊥〉 := DowlingGallier(PC)
8: if sat = false then
9: CG := CG ∪ {M⊥}

10: Rep := ∅
11: rep size := 1
12: repeat
13: for each subsetRC ofM⊥ of size rep size do
14: sat := DowlingGallier(PC \ RC)
15: if sat = true then Rep := Rep ∪ {RC}
16: end for
17: rep size := rep size+ 1
18: until Rep 6= ∅
19: RC := element of Rep with minimum aggregated confidence.
20: M′ :=M′ \ RC

21: R≈ := R≈ ∪RC

22: end if
23: end for
24: MCG := AverageMappingsInConflictGroups(CG)
25: return 〈M′,R≈, CG,MCG〉

conflicting sets CS , which cause the incoherences. Since conflicting sets are minimal, a
conflicting set is resolved if at least one of its mappings is removed. The algorithm also
keeps the setMCS containing all mappings involved in a conflicting set (Step 5).

AML-Repair aims to minimize the number of removed mappings by determining
a minimal set of mappings that intersect all conflict sets. Given that computing this
set is NP-Complete, AML-Repair uses an efficient heuristic procedure that consists of
iteratively removing the mappings that belong to the highest number of conflicting sets
(as identified in Step 8 of Algorithm 1), and in case of tie, those that have the lowest
confidence values. This strategy typically produces near-optimal results.

3.2 Mapping repair using LogMap-Repair

Algorithm 2 shows the pseudocode of the algorithm implemented by LogMap-Repair.
Steps 1-3 initialise the output variables. LogMap-Repair encodes the input ontologies
O1 andO2 as Horn propositional theoriesP1 andP2 (Step 4) and exploits this encoding
to subsequently detect unsatisfiable classes in an efficient and sound way during the
repair process. The theory P1 (resp. P2) consists of the following Horn rules:

– A rule A → B for all distinct classes A,B such that A is subsumed by B in O1

(resp. in O2); subsumption relations can be determined using either an OWL 2
reasoner, or syntactically (in an incomplete way).

– Rules Ai ∧ Aj → false (1 ≤ i < j ≤ n) for each disjointness axiom of the form
DisjointClasses(A1, . . . , An).

– A rule A1 ∧ . . . ∧ An → B for each subclass or equivalence axiom having the
intersection of A1, . . . An as subclass expression and B as superclass.

In Step 5, propositional variables in P1 (resp. in P2) are ordered such that a variable
C in P1 (resp. in P2) comes before D whenever D is subsumed by C in O1 (resp. in
O2). This is a well-known repair strategy: subclasses of an unsatisfiable class are also
unsatisfiable and hence before repairing an unsatisfiable class one first needs to repair
its superclasses. Satisfiability of a propositional variable C is determined by checking
satisfiability of the propositional theory PC (Step 6) consisting of (i) the rule (true→
C); (ii) the propositional representations P1 and P2; and (iii) the current set of output
mappings M′ (seen as propositional implications). Note that LogMap-Repair splits
equivalence mappings into two equivalent subsumption mappings.

LogMap-Repair implements the classical Dowling-Gallier algorithm for proposi-
tional Horn satisfiability [5,11]. LogMap-Repair’s implementation of Dowling-Gallier’s
algorithm also records all mappings potentially involved in an unsatisfiability. Thus, a
call to Dowling-Gallier returns a satisfiability value sat and, optionally, the (overes-
timated) group of conflicting mappings M⊥ (see Steps 7 and 14). For statistical pur-
poses, the set CG keeps all conflicting groups for the identified unsatisfiable classes
(Step 9). An unsatisfiable class C is repaired by discarding conflicting mappings for C
(Steps 10 to 21). Thus, subsetsRC ofM⊥ of increasing size are then identified until a
repair is found (Steps 12-18). Note that, LogMap-Repair does not compute a diagnosis
for the unsatisfiable class C but rather the repairs of smallest size. If several repairs of
a given size exist, the one with the lowest aggregated confidence is selected according
to the confidence values assigned to mappings (Step 19). Steps 20 and 21 update the
output mappingsM′ and the approximate mapping repairR≈ by extracting and adding
RC , respectively. Finally, Step 24 calculates the average number of mappings in each
identified conflicting group CG.

Algorithm 2 ensures thatP1∪P2∪M′∪{true→ C} is satisfiable for eachC occur-
ring in P1 ∪P2. The propositional encoding ofO1 andO2 is, however, incomplete and
hence the algorithm does not ensure satisfiability of each class inO1∪O2∪M′. Never-
theless, the number of unsatisfiable classes remaining after computing an approximate
repairR≈ is typically small.

4 Evaluation

In order to evaluate the coherence of BioPortal mappings, we manually selected 19 on-
tology pairs from BioPortal such that (i) each pair had at least 500 mappings listed in
BioPortal, (ii) at least one of the ontologies in the pair contained disjointness clauses
between their classes, and (iii) the domain of both ontologies was biomedical. The pur-
pose of the first two criteria is to exclude ontology pairs that are uninteresting from an
(automatic) mapping repair perspective, whereas the third criterion ensures that we are

Table 1: Ontologies comprising the 19 ontology pairs selected.
Ontology Acronym # Classes Source

Bone Dysplasia Ontology BDO 13,817 BioPortal
Cell Culture Ontology CCONT 14,663 BioPortal

Experimental Factor Ontology EFO 14,499 BioPortal
Human Developmental Anatomy Ontology, timed ver. EHDA 8,340 OBO Foundry

Cardiac Electrophysiology Ontology EP 81,957 BioPortal
Foundational Model of Anatomy FMA 83,280 BioPortal

Mouse Adult Gross Anatomy Ontology MA 3,205 OBO Foundry
NCI Thesaurus NCIT 105,347 BioPortal

Online Mendelian Inheritance in Man OMIM 76,721 BioPortal
Sleep Domain Ontology SDO 1,382 BioPortal

SNP ontology SNP 2,206 BioPortal
Sequence Types and Features Ontology SO 2,021 BioPortal

Teleost Anatomy Ontology TAO 3,372 OBO Foundry
Uber Anatomy Ontology UBERON 15,773 OBO Foundry

Zebrafish Anatomy and Development Ontology ZFA 2,955 OBO Foundry

Table 2: BioPortal mappings for the selected ontology pairs
Ontology Pair Listed Mappings Retrieved Mappings Actual Mappings Unsat. Classes

BDO-NCIT 1,637 1,636 1,636 34,341
CCONT-NCIT 2,815 2,813 2,097 (-19) 50,304

EFO-NCIT 3,289 3,287 2,507 60,347
EHDA-FMA 3,731 2,496 2,496 0

EP-FMA 79,497 78,489 78,489 210
EP-NCIT 2,468 2,465 2,465 (-1) 14,687 (-1)
MA-FMA 5,491 961 961 850

OMIM-NCIT 5,198 5,198 5,178 70,172
SDO-EP 662 135 135 44

SDO-FMA 593 529 529 (-1) 0
SNPO-SO 2,168 2,150 2,028 (-1) 0

UBERON-FMA 2,233 1,932 1,932 4,753
ZFA-CCONT 532 437 333 0

ZFA-EFO 773 538 427 913
ZFA-EHDA 2,595 1,809 1,809 0
ZFA-FMA 1,240 265 265 0
ZFA-MA 1,639 129 129 0
ZFA-TAO 1,737 1,524 1,521 0

ZFA-UBERON 817 724 724 104

able to manually evaluate the repair results as they lie within our domain of expertise.
This selection was not exhaustive, as our goal was merely to select a substantial and
representative set of ontology pairs.

The 15 ontologies comprising these 19 pairs are listed in Table 1. We retrieved the
latest OWL version of each ontology from BioPortal, except for the ontologies that

Algorithm 3 Automatic repair evaluation of BioPortal mappings
Input: O1, O2: two BioPortal ontologies;M: the set of BioPortal mappings between them
1: Compute all conflict sets of mappings CS, the total number of mappings involved in conflicts
MCS , and the approximate repairR≈ using AML-Repair system . See Algorithm 1

2: Get unsatisfiable classes of O1 ∪ O2 ∪M \R≈ using ELK reasoner
3: Compute the conflicting mapping groups CG per unsatisfiability, the average number of map-

pings per conflict groupMCG , and the approximate repairR≈ using LogMap-Repair system
. See Algorithm 2

4: Get unsatisfiable classes of O1 ∪ O2 ∪M \R≈ using ELK reasoner

were only available in OBO format. Because AML is currently not set-up to handle
ontologies in the OBO format, we retrieved the latter from the OBO Foundry9 [38] in
OWL format (making sure the versions matched those in BioPortal).

We implemented a script that, given a pair of ontologies, uses BioPortal’s REST API
to retrieve all mappings between those ontologies. We focused only on skos:closeMatch
mappings and we represented them as OWL 2 equivalence axioms. We did not consider
skos:exactMatch mappings since they represent correspondences between entities with
the same URI, which in OWL ontologies are considered equivalent (even though the
equivalence between them is not explicitly defined). We also excluded a few mappings
that had only a null source or involved only one entity.

The mappings between the 19 selected ontology pairs are listed in Table 2. We
verified that the number of retrieved mappings did not match the number of mappings
listed in the BioPortal website, and that sometimes the discrepancy was large (i.e., not
accounted for by the small fraction of mappings we excluded). BioPortal developers
confirmed that there is indeed an inconsistency between the metrics and the available
mappings. Furthermore, in several cases, some of the mappings retrieved pointed to
classes that were not found in the ontologies (possibly obsolete classes), so the actual
mappings between the ontologies were less than those retrieved. Additionally, in some
cases less mappings were found when using the Jena API to read the ontologies (used
by AML) than when using the OWL API (used by LogMap). The difference between
the two is shown in parenthesis in Table 2.

Finally, we computed the satisfiability of each alignment with the OWL 2 EL rea-
soner ELK [23], finding several unsatisfiable classes in 11 of the alignments. We opted
for ELK for the sake of efficiency, given the size of some of the ontologies. ELK is in-
complete and thus the identified unsatisfiabilities represent a lower bound of the actual
number of such logical errors.

4.1 Automatic Repair Evaluation

For each of the 11 ontology pairs that had incoherent mapping sets (as detected by ELK
and listed in Table 2), we conducted the evaluation detailed in Algorithm 3. The results
we obtained are shown in Table 3. Note that LogMap-Repair splits equivalence map-
pings into two subsumption mappings, so the value of R≈ is not directly comparable
with AML-Repair (the latter should be doubled to compare it with the former).

9 http://www.obofoundry.org/

Table 3: Automatic mapping repair using AML-Repair and LogMap-Repair

Ontology Pairs M AML-Repair LogMap-Repair
|CS| |MCS | |R≈| Unsat. |CG| MCG |R≈| Unsat.

BDO-NCIT 1,636 1,649 1,374 (84%) 53 0 125 3.2 154 0
CCONT-NCIT 2,097 1,197 1,136 (55%) 55 3,630 125 2.7 119 75
EFO-NCIT 2,507 1,731 1,541 (61%) 143 3,687 311 4.3 353 73
EP-FMA 78,489 348 109 (0.1%) 16 0 168 11.0 168 0
EP-NCIT 2,465 363 307 (12%) 69 253 136 3.8 180 0
MA-FMA 961 21 22 (2%) 1 0 1 2.0 2 0
OMIM-NCIT 5,178 1,800 1,078 (21%) 154 0 396 10.2 536 0
SDO-EP 135 3 3 (2%) 1 0 1 3.0 3 0
UBERON-FMA 1,932 486 121 (6%) 19 25 70 6.3 85 25
ZFA-EFO 427 7 11 (3%) 5 0 10 2.6 10 0
ZFA-UBERON 724 0 0 (0%) 0 104 0 0 0 104

Average 8,777 691 518 (22%) 94 700 122 5 146 25
M: number of BioPortal mappings; |CS|: number of conflict sets; |MCS |: number of distinct
mappings in conflict sets; |CG|: number of conflict groups; MCG : average number of mappings
per conflict group; |R≈|: repair size in number of equivalence mappings (AML) or number of

subsumption mappings (LogMap); Unsat.: unsatisfiable classes after repair.

The incoherence of the repaired mapping sets has been significantly reduced, and
in many cases completely removed. The one exception was the ZFA-UBERON case, as
neither AML-Repair nor LogMap-Repair could detect and repair any of the unsatisfi-
abilities in this alignment. Furthermore, the computed (approximate) repairs were not
aggressive, as they removed at most 5.7% (AML-Repair) and 7% (LogMap-Repair) of
the mappings (in the EFO-NCIT case).

In addition to producing a repair, AML-Repair also identifies the number of con-
flicting mapping sets CS and the total number of mappings that are involved in at least
one conflictMCS . For example, in the BDO-NCIT case, AML-Repair identifies 1,649
conflicting sets which involve 84% of the mappings M in this alignment. Given that
these mappings were leading to 34,341 unsatisfiable classes (see Table 2), the fact that
only 53 equivalence mappings were removed indicates that (at least) some of these
were causing several unsatisfiabilities, likely because they were in conflict with multi-
ple other mappings.

LogMap-Repair, on the other hand, identifies groups of potentially conflicting map-
pings CG (which contain one or more CS) involved in each unsatisfiability, and the
average number of mappings in each conflicting group MCG . CG represents a lower
bound of the total number of groups, since LogMap-Repair repairs on-the-fly and re-
moving one mapping may solve multiple unsatisfiabilities. For example, in the BDO-
NCIT case, LogMap-Repair only identifies 125 conflicting groups with an average of
3.2 mappings per group. Note that solving the 125 unsatisfiabilities corresponding to the
conflict groups is sufficient to repair the original 34,341 unsatisfiabilities, which again
suggests that a few mappings in the conflict groups were causing many of these errors.

4.2 Manual Analysis

To complement the automatic repair evaluation and investigate the causes behind the
incoherences identified therein, we analyzed manually the mappings removed by AML-
Repair and LogMap-Repair (up to a maximum of 100 mappings per ontology pair, and
in the case of LogMap-Repair, only the cases where the subsumption mappings were
removed in both directions).

For each removed mapping, we assessed whether it was correct or erroneous (within
the context of the ontologies). We deemed a mapping to be erroneous if it falls into one
of the following categories:

1. At least one of the entities it maps is obsolete/retired, as in the mapping: BDO#
HP 0001596 (Alopecia) ⇔ NCIT#C2865 (Alopecia), where the latter class is re-
tired in NCIT.

2. The entities it maps are not directly related, as in the mapping: BDO#PATO
0001901 (Back) ⇔ NCIT#C13062 (Back), where the former class stands for the
directional qualifier and the latter stands for the body part.

3. The entities it maps are related but the relationship between them should not be
modeled as skos:closeMatch, as in the the mapping: BDO#G0000064 (CREBP)
⇔ NCIT#C17803 (CREB-Binding Protein), which maps entities that are related
(the gene and corresponding protein) but semantically distinct. Moreover, this map-
ping conflicts with the correct (protein-protein) mapping: BDO#P000022 (CREB-
Binding Protein)⇔ NCIT#C17803 (CREB-Binding Protein).

Additionally, when the removed mapping was deemed to be correct, we analyzed
the conflict sets CS in which the removed mapping was present (computed by AML-
Repair, see Algorithm 3) and assessed whether the mappings in conflict with it were
correct or erroneous. For the purpose of our evaluation, the main issue is not whether
the repair algorithms remove erroneous mappings, but rather whether any of the unsat-
isfiabilities in which it is involved are caused by erroneous mappings. Thus, if either
the removed mapping or at least one of its conflicting mappings was erroneous, we at-
tributed the cause of removal to a mapping error. If the mapping itself and all of its
conflicting mappings were correct, we considered the cause of removal to be an incom-
patibility between the ontologies.

The results of our manual analysis are summarized in Table 4. In total, over 40%
of the mappings removed by both repair systems were indeed erroneous. Furthermore,
errors in the mappings were the cause of removal of over 60% of the mappings.

We found that category 1 errors (i.e., mappings including obsolete/retired classes)
were relatively common in all alignments that included NCIT. Furthermore, there were
two common category 3 error patterns in these alignments: gene-protein matches, and
human-mouse matches. The former pattern consists of a mapping between a gene and
its corresponding protein or vice-versa, as exemplified above. The latter pattern consists
of a mapping between a (Human) Health/Anatomy classes and a corresponding NCIT
Mouse class (from the Mouse Pathologic Diagnoses or Mouse Anatomy Concepts sec-
tions) which naturally conflicts with the mapping to the main (Human) NCIT sections.
One example of this pattern is the mapping: BDO#HP 0010786 (Urinary Tract Neo-
plasm) ⇔ NCIT#C25806 (Mouse Urinary Tract Neoplasm). Another pattern of this

Table 4: Manual evaluation of the repaired BioPortal mappings

Ontology Pairs AML-Repair LogMap-Repair
Analyzed Erroneous Err. Cause Analyzed Erroneous Err. Cause

BDO-NCIT 53 55% 83% 52 62% 83%
CCONT-NCIT 55 33% 62% 68 43% 59%
EFO-NCIT 100 53% 91% 100 54% 93%
EP-FMA 16 0% 0% 84 0% 0%
EP-NCIT 69 43% 71% 78 60% 73%
MA-FMA 1 100% 100% 1 100% 100%
OMIM-NCIT 100 48% 71% 100 49% 76%
SDO-EP 1 100% 100% 0 N/A N/A
UBERON-FMA 19 0% 0% 20 0% 0%
ZFA-EFO 5 60% 100% 4 75% 100%

Total 419 44% 71% 507 42% 62%

category that occurred in the OMIM-NCIT alignment consists of a mapping between
a disease/symptom and a corresponding adverse event, such as: OMIM#MTHU023845
(Neck Pain)⇔ NCIT#C56135 (Neck Pain Adverse Event).

Regarding category 2 errors, there were few patterns other than number mismatches,
such as in the mapping: BDO#G0000133 (TBX4) ⇔ NCIT#C101638 (TBX3 Gene).
While the cause of these mismatches was often clear, as in the ‘back’ example above,
some defy reason as the case of: EFO#CHEBI 15366 (Acetic Acid)⇔ NCIT#C37392
(C58 Mouse).

As for incompatibilities between the ontologies, one of the most interesting cases
is the EP-FMA alignment, which is actually an alignment between the OBO version
of FMA (which is imported by EP) and the BioPortal version of FMA. Indeed, it was
surprising to find that the alignment is incoherent, given that all mappings are true
equivalences. It turns out that there are a few structural differences between the two
versions of the ontology which cause the incoherences, as some entities are modeled
as ‘Material Anatomical Entity’ in the OBO version and as ‘Immaterial Anatomical
Entity’ in the BioPortal version (with the latter appearing to be more correct in most
cases). The same type of structural differences is also behind the incoherences in the
UBERON-FMA alignment. Also interesting is the OMIM-NCIT alignment, as OMIM
models diseases as subclasses of the anatomical structures where they occur, whereas
NCIT models diseases as disjoint from anatomical structures, making it impossible to
obtain a coherent alignment between the ontologies where both diseases and anatomical
structures are mapped.

4.3 Discussion

The results of our study reveal that many sets of BioPortal mappings lead to logical
incoherences when taken as a whole, and that many of these incoherences involve erro-
neous mappings. Thus, adding annotations to BioPortal mappings about potential log-

ical incompatibilities with other mappings would not only improve their usability for
semantic web applications, which require logical integrity, but also contribute to iden-
tify and discard erroneous mappings.

Our study also demonstrates that approximate repair algorithms such as AML-
Repair and LogMap-Repair can effectively identify most of the logical conflicts in Bio-
Portal mappings, as well as the mappings that cause them. Furthermore, unlike complete
repair algorithms such as those based on DDL [30], AML-Repair and LogMap-Repair
are feasible in practice (repair times in AML-Repair ranged from 10 seconds to 10
minutes, whereas in LogMap-Repair they ranged from 3 to 92 seconds, in a quad-core
computer with 8 GB allocated RAM). Thus these algorithms could play a pivotal role
in the task of identifying and annotating conflicts between BioPortal mappings.

Furthermore, in addition to the annotation of existing mappings, AML-Repair and
LogMap-Repair could be employed to screen newly submitted mappings, so that those
leading to logical conflicts can be reviewed before being integrated into BioPortal. This
could effectively preclude the addition of some erroneous mappings, and would enable
the immediate annotation of the mappings accepted for integration.

Regarding the categories of erroneous mappings found, the category 1 errors (i.e,
mappings that include retired/obsolete entities) are straightforward to identify and han-
dle automatically, even without the use of repair algorithms. These mappings should
not be maintained as ‘active’ mappings in BioPortal given that retired/obsolete entities
are no longer be considered an active part of the ontologies. However, it makes sense
to keep track of such mappings, so the best solution would be to annotate the mappings
themselves as obsolete.

Category 2 errors (i.e., mappings between unrelated classes) should definitely be
excluded from BioPortal, whereas category 3 errors (i.e., mappings between classes
that are related but not closely) can be addressed either by exclusion or by changing
the semantic relationship. For instance, a gene and its corresponding protein could be
considered skos:relatedMatch rather than skos:closeMatch, although ideally a more de-
scriptive mapping relation should be used. However, if both ontologies describe the
gene and the protein, at least one ontology describes the relation between them, and
BioPortal includes both the gene-gene and the protein-protein mappings; then main-
taining a gene-protein mapping is semantically redundant.

Although finding category 2 and 3 errors typically requires human intervention, the
use of mapping repair algorithms is critical to facilitate their detection. Note that, not
all erroneous mappings necessarily lead to logical conflicts, particularly when the on-
tologies lack disjointness definitions. Nevertheless, addressing conflict-causing errors
will surely be a significant improvement, and the common error patterns thus identified
can be employed to search for (non-conflict causing) errors, even in ontologies that lack
disjointness restrictions.

The identification of logical conflicts caused by inherent incompatibilities between
the ontologies is also critical to understand the limits of interoperability. For instance,
integrating OMIM and NCIT requires excluding either mappings between anatomic
entities or mappings between diseases (depending on the intended application), or ulti-
mately relaxing the disjointness restrictions in the NCIT. Additionally, such incompat-

ibilities may point to modeling errors in the ontologies, as in the EP-FMA case, and
enable their correction.

5 Conclusions

BioPortal fulfills a critical need of the biomedical community by promoting integration
and interoperability between the numerous biomedical ontologies with overlapping do-
mains. However, the different scopes of these ontologies often lead to incompatible
views of a given domain, placing restrictions on interoperability. Maintaining conflict-
ing mappings may best serve the needs of the community, as a wider mapping coverage
will satisfy more users and enable more applications. Nevertheless, if BioPortal map-
pings are to be usable on a large scale, and particularly by automatic applications, then
identifying those that lead to logical errors is paramount.

Another issue that affects BioPortal are mapping errors, which are inevitable on this
scale, particularly when most mappings are produced by automated ontology matching
techniques. Finding and correcting these errors is a daunting task, but one of the utmost
importance, as they are likely to propagate if used to draw inferences. While not all
errors cause logical conflicts, many do, and as our evaluation illustrates, identifying
these enables the discovery of error patterns that can be applied to identify further errors.

Identifying logical conflicts in BioPortal mappings thus serves the dual purpose of
improving usability and facilitating error detection. Given that using complete reason-
ers for this task is unfeasible, due to the scale of BioPortal, approximate mapping repair
systems such as AML-Repair and LogMap-Repair appear to be the ideal solution. In-
deed, our study has shown that these systems are both effective and efficient in tackling
large sets of mappings, and will be even more efficient considering that the goal is only
to identify conflicts rather than to repair them.

Our proposal is that BioPortal mappings be enriched with annotations about other
mappings they conflict with, a solution which fits into BioPortal’s community-driven
and multiple-perspective approach. While distinguishing mappings errors from incom-
patibilities will require manual analysis, this is a task that could be carried out gradually
by the community once mappings are annotated with logical conflicts.

There is, however, one type of error that can be addressed immediately: mappings
that include obsolete/retired entities. Despite the fact that there are different represen-
tations of these entities among BioPortal ontologies, identifying them (and their map-
pings) should be straightforward to do automatically. We propose that such mappings
be annotated as obsolete, which would enable BioPortal and its users to keep track of
them while allowing their automatic exclusion by applications.

Our next step will be to contact BioPortal developers and collaborate with them in
the process of finding and annotating mappings with information about logical conflicts,
by applying our repair algorithms to the whole BioPortal.

Acknowledgements

This work was supported by the EU FP7 IP project Optique (no. 318338), the EPSRC
project Score!, the Portuguese FCT through the SOMER project (PTDC/

EIA-EIA/119119/2010), and the LASIGE Strategic Project (PEst-OE/EEI/UI0408/
2014).

We would like to thank the invaluable help provided by Bernardo Cuenca Grau
and Ian Horrocks in the development of LogMap-Repair, and by Isabel F. Cruz in the
development of AML-Repair.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene Ontology: tool for the unification of
biology. Nature genetics 25(1), 25–29 (2000)

2. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical ter-
minology. Nucleic Acids Research 32, 267–270 (2004)

3. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer
sources. J. Data Sem. 1, 153–184 (2003)

4. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL
2: The next step for OWL. J. Web Sem. 6(4), 309–322 (2008)

5. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. J. Log. Prog. 1(3), 267–284 (1984)

6. Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: Int’l Joint
Conf. on Artif. Intell. (IJCAI). pp. 348–353 (2007)

7. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology alignment
evaluation initiative: Six years of experience. J. Data Sem. 15, 158–192 (2011)

8. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
9. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The agreement-

makerlight ontology matching system. In: OTM Conferences. pp. 527–541 (2013)
10. Fridman Noy, N., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Ru-

bin, D.L., Storey, M.A.D., Chute, C.G., Musen, M.A.: BioPortal: ontologies and integrated
data resources at the click of a mouse. Nucleic Acids Research 37(Web-Server-Issue) (2009)

11. Gallo, G., Urbani, G.: Algorithms for testing the satisfiability of propositional formulae. J.
Log. Prog. 7(1), 45–61 (1989)

12. Ghazvinian, A., Noy, N.F., Jonquet, C., Shah, N.H., Musen, M.A.: What four million map-
pings can tell you about two hundred ontologies. In: Int’l Sem. Web Conf. (ISWC) (2009)

13. Ghazvinian, A., Noy, N.F., Musen, M.A.: Creating mappings for ontologies in biomedicine:
Simple methods work. In: AMIA Annual Symposium (AMIA) (2009)

14. Golbeck, J., Fragoso, G., Hartel, F.W., Hendler, J.A., Oberthaler, J., Parsia, B.: The National
Cancer Institute’s Thésaurus and Ontology. J. Web Sem. 1(1), 75–80 (2003)

15. Golbreich, C., Horridge, M., Horrocks, I., Motik, B., Shearer, R.: OBO and OWL: Leverag-
ing Semantic Web Technologies for the Life Sciences. In: Int’l Sem. Web Conf. (2007)

16. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I.: On the feasibility of using OWL 2 DL
reasoners for ontology matching problems. In: OWL Reasoner Evaluation Workshop (2012)

17. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)

18. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using
mappings: Towards getting the right logical consequences. In: Eur. Sem. Web Conf. (2009)

19. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based Assessment of
the Compatibility of UMLS Ontology Sources. J. Biomed. Semant. 2(Suppl 1), S2 (2011)

20. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology
matching: Algorithms and implementation. In: Europ. Conf. on Artif. Intell. (ECAI) (2012)

21. Jiménez-Ruiz, E., Meilicke, C., Grau, B.C., Horrocks, I.: Evaluating mapping repair systems
with large biomedical ontologies. In: Description Logics. pp. 246–257 (2013)

22. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: Int’l Sem. Web Conf. (ISWC). pp. 267–280. Springer (2007)

23. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of EL ontologies. In: Int’l
Sem. Web Conf. (ISWC). pp. 305–320 (2011)

24. Konev, B., Walther, D., Wolter, F.: The Logical Difference Problem for Description Logic
Terminologies. In: Int’l Joint Conf. on Automated Reasoning (IJCAR). pp. 259–274 (2008)

25. Meilicke, C.: Alignments Incoherency in Ontology Matching. Ph.D. thesis, University of
Mannheim (2011)

26. Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontol-
ogy mappings. In: Ontology Matching Workshop (2008)

27. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: Proc. of
AAAI Conf. on Artif. Intell. pp. 1408–1413 (2007)

28. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning support for mapping revision. J.
Log. Comput. 19(5) (2009)

29. Noy, N.F., Griffith, N., Musen, M.A.: Collecting community-based mappings in an ontology
repository. In: International Semantic Web Conference (ISWC). pp. 371–386 (2008)

30. Pathak, J., Chute, C.G.: Debugging Mappings between Biomedical Ontologies: Preliminary
Results from the NCBO BioPortal Mapping Repository. In: Int’l Conf. on Biomedical On-
tology (ICBO) (2009)

31. Pesquita, C., Faria, D., Santos, E., Couto, F.M.: To repair or not to repair: reconciling correct-
ness and coherence in ontology reference alignments. In: Ontology Matching (OM) (2013)

32. Rosse, C., Mejino Jr., J.: A reference ontology for biomedical informatics: the Foundational
Model of Anatomy. J. Biomed. Informatics 36(6), 478–500 (2003)

33. Salvadores, M., Alexander, P.R., Musen, M.A., Noy, N.F.: BioPortal as a dataset of linked
biomedical ontologies and terminologies in RDF. Semantic Web 4(3), 277–284 (2013)

34. Santos, E., Faria, D., Pesquita, C., Couto, F.: Ontology alignment repair through modulariza-
tion and confidence-based heuristics. arXiv:1307.5322 preprint (2013)

35. Santos, E., Faria, D., Pesquita, C., Couto, F.M.: Ontology alignment repair through modular-
ization and confidence-based heuristics. CoRR abs/1307.5322 (2013)

36. Schlobach, S.: Debugging and semantic clarification by pinpointing. In: The Semantic Web:
Research and Applications, pp. 226–240. Springer (2005)

37. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE
Trans. Knowledge and Data Eng. (2012)

38. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck,
K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S.A.,
Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO Foundry: coordinated
evolution of ontologies to support biomedical data integration. Nat Biotech 25(11) (2007)

39. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach to finding
all justifications for OWL DL entailments. In: Asian Sem. Web Conf. (ASWC) (2008)

Appendix H

ISWC 2014: Ontology Approximation

This appendix reports the paper:

− Marco Console, Jose Mora, Riccardo Rosati, Valerio Santarelli, Domenico Fabio Savo, Effective computation of
maximal sound approximations of Description Logic ontologies. In Proceedings of the International Semantic
Web Conference 2014

129

Effective computation of maximal sound
approximations of Description Logic ontologies

Marco Console, Jose Mora, Riccardo Rosati, Valerio Santarelli, Domenico Fabio Savo

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti
Sapienza Università di Roma

lastname@dis.uniroma1.it

Abstract. We study the problem of approximating Description Logic (DL) on-
tologies specified in a source language LS in terms of a less expressive target
language LT . This problem is getting very relevant in practice: e.g., approxima-
tion is often needed in ontology-based data access systems, which are able to deal
with ontology languages of a limited expressiveness. We first provide a general,
parametric, and semantically well-founded definition of maximal sound approxi-
mation of a DL ontology. Then, we present an algorithm that is able to effectively
compute two different notions of maximal sound approximation according to the
above parametric semantics when the source ontology language is OWL 2 and
the target ontology language is OWL 2 QL. Finally, we experiment the above
algorithm by computing the two OWL 2 QL approximations of a large set of ex-
isting OWL 2 ontologies. The experimental results allow us both to evaluate the
effectiveness of the proposed notions of approximation and to compare the two
different notions of approximation in real cases.

1 Introduction

Description Logic (DL) ontologies are the core element of ontology-based data access
(OBDA) [15], in which the ontology is utilized as a conceptual view, allowing user ac-
cess to the underlying data sources. In OBDA, as well as in all the current applications
of ontologies requiring automated reasoning, a trade-off between the expressiveness
of the ontology specification language and the complexity of reasoning in such a lan-
guage must be reached. More precisely, most of the current research and development
in OBDA is focusing on languages for which reasoning, and in particular query an-
swering, is not only tractable (in data complexity) but also first-order rewritable [2,5].
This imposes significant limitations on the set of constructs and axioms allowed in the
ontology language.

The limited expressiveness of the current ontology languages adopted in OBDA
provides a strong motivation for studying the approximation of ontologies formulated
in (very) expressive languages with ontologies in low-complexity languages such as
OWL 2 QL. Such a motivation is not only theoretical, but also practical, given the
current availability of OBDA systems and the increasing interest in applying the OBDA
approach in the real world [1,6,7,16]: for instance, ontology approximation is currently

2 Console, Mora, Rosati, Santarelli, Savo

one of the main issues in the generation of ontologies for OBDA within the use cases
of the Optique EU project.1

Several approaches have recently dealt with the problem of approximating Descrip-
tion Logic ontologies. These can roughly be partitioned in two types: syntactic and
semantic. In the former, only the syntactic form of the axioms of the original ontology
is considered, thus those axioms which do not comply with the syntax of the target
ontology language are disregarded [17,18]. This approach generally can be performed
quickly and through simple algorithms. However, it does not, in general, guarantee
soundness, i.e., to infer only correct entailments, or completeness, i.e., all entailments of
the original ontology that are also expressible in the target language are preserved [14].
In the latter, the object of the approximation are the entailments of the original ontol-
ogy, and the goal is to preserve as much as possible of these entailments by means of
an ontology in the target language, guaranteeing soundness of the result. On the other
hand, this approach often necessitates to perform complex reasoning tasks over the on-
tology, possibly resulting significantly slower. For these reasons, the semantic approach
to ontology approximation poses a more interesting but more complex challenge.

In this paper, we study the problem of approximating DL ontologies specified in
a source language Ls in terms of a less expressive target language Lt. We deal with
this problem by first providing a general, parametric, and semantically well-founded
definition of maximal sound approximation of a DL ontology. Our semantic definition
captures and generalizes previous approaches to ontology approximation [4,8,11,14].
In particular, our approach builds on the preliminary work presented in [8], which pro-
posed a similar, although non-parameterized, notion of maximal sound approximation.

Then, we present an algorithm that is able to effectively compute two different no-
tions of maximal sound approximation according to the above parametric semantics,
when the source ontology language is OWL 2 and the target ontology language is OWL
2 QL. In particular, we focus on the local semantic approximation (LSA) and the global
semantic approximation (GSA) of a source ontology. These two notions of approxima-
tion correspond to the cases when the parameter of our semantics is set, respectively, to
its minimum and to its maximum. Informally, the LSA of an ontology is obtained by
considering (and reasoning over) one axiom α of the source ontology at a time, so this
technique tries to approximate α independently of the rest of the source ontology. On
the contrary, the GSA tries to approximate the source ontology by considering all its
axioms (and reasoning over such axioms) at the same time. As a consequence, the GSA
is potentially able to “approximate better” than the LSA, while the LSA appears in prin-
ciple computationally less expensive than the GSA. Notably, in the case of OWL 2 QL,
the GSA corresponds to the notion of approximation given in [14], which has been
shown to be very well-suited for query answering purposes.

Finally, we experiment the above algorithm by computing the LSA and the GSA in
OWL 2 QL of a large set of existing OWL 2 ontologies. The experimental results allow
us both to evaluate the effectiveness of the proposed notions of approximation and to
compare the two different notions of approximation in real cases. In particular, the main
properties pointed out by our experimental results are the following:

1 http://optique-project.eu

Effective computation of maximal sound approximations of DL ontologies 3

1. the computation of the LSA is usually less expensive than computing the GSA of a
given source ontology;

2. in many cases, both the LSA and the GSA of an ontology are very good approxima-
tions of the ontology, in the sense that the approximated ontologies actually entail
a large percentage of the axioms of the source ontology;

3. in many cases, the LSA and the GSA coincide. This and the previous property imply
that the computationally less expensive LSA is usually already able to compute a
high-quality sound approximation of the source ontology.

The paper is structured in the following way. First, in Section 2 we recall DL ontol-
ogy languages, in particular OWL 2 and OWL 2 QL. Then, in Section 3 we present our
formal, parameterized notion of semantic sound approximation of an ontology, and il-
lustrate some general properties of such a notion. In Section 4 we present the techniques
for computing the GSA and the LSA of OWL 2 ontologies in OWL 2 QL. Finally, we
present an experimental evaluation of the above techniques in Section 5, and draw some
conclusions in Section 6.

2 Preliminaries

Description Logics (DLs) [3] are logics that allow one to represent the domain of in-
terest in terms of concepts, denoting sets of objects, value-domains, denoting sets of
values, attributes, denoting binary relations between objects and values, and roles de-
noting binary relations over objects.

In this paper we consider the DL SROIQ [10], which is the logic underpinning
OWL 2, as the “maximal” DL considered in this paper.

Let Σ be a signature of symbols for individual (object and value) constants and
predicates, i.e., concepts, value-domains, attributes, and roles. Let Φ be the set of all
SROIQ axioms over Σ.

An ontology over Σ is a finite subset of Φ.
A DL language over Σ (or simply language) L is a set of ontologies over Σ. We

call L-ontology any ontology O such that O ∈ L. Moreover, we denote by ΦL the set
of axioms

⋃
O∈LO.

We call a language L closed if L = 2ΦL . As we will see in the following, there exist
both closed and non-closed DL languages among the standard ones.

The semantics of an ontology is given in terms of first-order (FOL) interpretations
(cf. [3]). We denote withMod(O) the set of models ofO, i.e., the set of FOL interpreta-
tions that satisfy all the axioms in O (we recall that every SROIQ axiom corresponds
to a first-order sentence). As usual, an ontologyO is said to be satisfiable if it admits at
least one model, and O is said to entail a First-Order Logic (FOL) sentence α, denoted
O |= α, if αI = true for all I ∈ Mod(O). Moreover, given two ontologies O and O′,
we say that O and O′ are logically equivalent if Mod(O) =Mod(O′).

In this work we will mainly focus on two specific languages, which are OWL 2,
the official ontology language of the World Wide Web Consortium (W3C) [9], and
one of its profiles, OWL 2 QL [12]. Due to the limitation of space, here we do not
provide a complete description of OWL 2, and refer the reader to the official W3C
specification [13].

4 Console, Mora, Rosati, Santarelli, Savo

We now present the syntax of OWL 2 QL. We use the German notation for de-
scribing OWL 2 QL constructs and axioms, and refer the reader to [12] for the OWL
functional style syntax.

Expressions in OWL 2 QL are formed according to the following syntax:

B −→ A | ∃Q | δF (U) | >C | ⊥C E −→ ρ(U)
C −→ B | ¬B | ∃Q.A F −→>D | T1 | · · · | Tn

Q −→ P | P− | >P | ⊥P V −→ U | >A | ⊥A

R −→ Q | ¬Q W −→ V | ¬V

where: A, P , and U are symbols denoting respectively an atomic concept, an atomic
role, and an atomic attribute; P− denotes the inverse of P ; ∃Q, also called unqualified
existential role, denotes the set of objects related to some object by the role Q; δF (U)
denotes the qualified domain of U with respect to a value-domain F , i.e., the set of
objects that U relates to some value in F ; ρ(U) denotes the range of U , i.e., the set
of values related to objects by U ; T1, . . . , Tn denote n unbounded value-domains (i.e.,
datatypes); the concept ∃Q.A, or qualified existential role, denotes the qualified domain
of Q with respect to A, i.e., the set of objects that Q relates to some instance of A. >C ,
>P , >A, and >D denote, respectively, the universal concept, role, attribute, and value-
domain, while ⊥C , ⊥P , and ⊥A denote, respectively, the empty concept, role, and
attribute.

An OWL 2 QL ontology O is a finite set of axioms of the form:

B v C Q v R U v V E v F ref(P) irref(P)
A(a) P (a, b) U(a, v)

From left to right, the first four above axioms denote subsumptions between concepts,
roles, attributes, and value-domains, respectively. The fifth and sixth axioms denote
reflexivity and irreflexivity on roles. The last three axioms denote membership of an
individual to a concept, membership of a pair of individuals to a role, and membership
of a pair constituted by an individual and a value to an attribute.

From the above definition, it immediately follows that OWL 2 QL is a closed lan-
guage. On the other hand, we recall that OWL 2 is not a closed language. This is due to
the fact that OWL 2 imposes syntactic restrictions that concern the simultaneous pres-
ence of multiple axioms in the ontology (for instance, there exist restrictions on the
usage of role names appearing in role inclusions in the presence of the role chaining
constructor).

3 Approximation

In this section, we illustrate our notion of approximation in a target language LT of an
ontology OS in a language LS .

Typically, when discussing approximation, one of the desirable properties is that of
soundness. Roughly speaking, when the object of approximation is a set of models, this
property requires that the set of models of the approximation is a superset of those of the
original ontology. Another coveted characteristic of the computed ontology is that it be
the “best” approximation of the original ontology. In other words, the need of keeping

Effective computation of maximal sound approximations of DL ontologies 5

a minimal distance between the original ontology and the ontology resulting from its
approximation is commonly perceived.

On the basis of these observations, the following definition of approximation in a
target language LT of a satisfiable LS-ontology is very natural.

Definition 1. Let OS be a satisfiable LS-ontology, and let ΣOS
be the set of predicate

and constant symbols occurring in OS . An LT -ontology OT over ΣOS
is a global

semantic approximation (GSA) in LT of OS if both the following statements hold:

(i) Mod(OS) ⊆Mod(OT);
(ii) there is no LT -ontology O′ over ΣOS

such that Mod(OS) ⊆ Mod(O′) ⊂
Mod(OT).

We denote with globalApx (OS ,LT) the set of all the GSAs in LT of OS .

In the above definition, statement (i) imposes the soundness of the approximation,
while statement (ii) imposes the condition of “closeness” in the choice of the approxi-
mation.

We observe that an LT -ontology which is the GSA in LT ofOS may not exist. This
is the case when, for each LT ontology O′T satisfying statement (i) of Definition 1,
there always exists an LT -ontology O′′T which satisfies statement (i), but for which we
have that Mod(OS) ⊆Mod(O′′T) ⊂Mod(O′T).

The following lemma provides a sufficient condition for the existence of the GSA
in a language LT of an ontology OS .

Lemma 1. Given a language LT and a finite signature Σ, if the set of non-equivalent
axioms in ΦLT

that one can generate over Σ is finite, then for any LS-ontology OS
globalApx (OS ,LT) 6= ∅.

In cases where GSAs exist, i.e., globalApx (OS ,LT) 6= ∅, given two ontologies
O′ and O′′ in globalApx (OS ,LT), they may be either logically equivalent or not. The
condition of non-equivalence is due to the fact that the language in which the original
ontology is approximated is not closed. We have the following lemma.

Lemma 2. Let LT be a closed language, and let OS be an ontology. For each O′ and
O′′ belonging to globalApx (OS ,LT), we have thatO′ andO′′ are logically equivalent.

Proof. Towards a contradiction, suppose that Mod(O′) 6= Mod(O′′). From this, and
from Definition 1 we have that Mod(O′) 6⊂ Mod(O′′) and Mod(O′′) 6⊂ Mod(O′).
Hence, there exist axioms α and β in ΦLT

such thatO′ |= α andO′′ 6|= α, andO′′ |= β
and O′ 6|= β. Since both O′ and O′′ are sound approximations of OS , OS |= {α, β}.
Because LT is closed, the ontology O′β = O′ ∪ {β} is an LT -ontology. From the
above considerations it directly follows that Mod(OS) ⊆ Mod(O′β) ⊂ Mod(O′).
This means that O′ does not satisfy condition (ii) of Definition 1, and therefore O′ 6∈
globalApx (OS ,LT), which is a contradiction. The same conclusion can be reached
analogously for O′′.

6 Console, Mora, Rosati, Santarelli, Savo

In other words, if the target language is closed, Lemma 2 guarantees that, up to
logical equivalence, the GSA is unique.

Definition 1 is non-constructive, in the sense that it does not provide any hint as to
how to compute the approximation in LT of an ontology OS . The following theorem
suggests more constructive conditions, equivalent to those in Definition 1, but first we
need to introduce the notion of entailment set [14] of a satisfiable ontology with respect
to a language.

Definition 2. Let ΣO be the set of predicate and constant symbols occurring inO, and
let L′ be a language. The entailment set ofO with respect to L′, denoted as ES(O,L′),
is the set of axioms from ΦL′ that only contain predicates and constant symbols from
ΣO and that are entailed by O.

In other words, we say that an axiom α belongs to the entailment set of an ontology
O with respect to a language L′, if α is an axiom in ΦL′ built over the signature of O
and for each interpretation I ∈Mod(O) we have that I |= α.

Clearly, given an ontologyO and a languageL′, the entailment set ofO with respect
to L′ is unique.

Theorem 1. Let OS be a satisfiable LS-ontology and let OT be a satisfiable LT -
ontology. We have that:

(a) Mod(OS) ⊆Mod(OT) if and only if ES(OT ,LT) ⊆ ES(OS ,LT);
(b) there is no LT -ontology O′ such that Mod(OS) ⊆ Mod(O′) ⊂ Mod(OT) if

and only if there is no LT -ontology O′′ such that ES(OT ,LT) ⊂ ES(O′′,LT) ⊆
ES(OS ,LT).

Proof. We start by focusing on the first statement. (⇐) Suppose, by way of contradic-
tion, that ES(OT ,LT) ⊆ ES(OS ,LT) and that Mod(OS) 6⊆ Mod(OT). This means
that there exists at least one interpretation that is a model forOS but not forOT . There-
fore there exists an axiom α ∈ OT such that OS 6|= α. Since OT is an ontology in LT ,
then α is an axiom in ΦLT

. It follows that α ∈ ES(OT ,LT) and that α 6∈ ES(OS ,LT),
which leads to a contradiction.

(⇒) Towards a contradiction, suppose that Mod(OS) ⊆ Mod(OT), but
ES(OT ,LT) 6⊆ ES(OS ,LT). This means that there exists at least one axiom α ∈
ES(OT ,LT) such that α 6∈ ES(OS ,LT). It follows that OT |= α while OS 6|= α,
which immediately implies that Mod(OS) 6⊆ Mod(OT). Hence we have a contradic-
tion.

Now we prove the second statement. (⇐) By contradiction, suppose that there exists
an LT -ontologyO′ such thatMod(OS) ⊆Mod(O′) ⊂Mod(OT), and that there does
not exist any LT -ontologyO′′ such that ES(OT ,LT) ⊂ ES(O′′,LT) ⊆ ES(OS ,LT).
From what shown before, we have that Mod(OS) ⊆ Mod(O′) ⊆ Mod(OT) implies
that ES(OT ,LT) ⊆ ES(O′,LT) ⊆ ES(OS ,LT). Moreover, since both O′ and OT
are LT ontologies, Mod(O′) ⊂ Mod(OT) implies that ES(OT ,LT) 6= ES(O′,LT).
Hence, ES(OT ,LT) ⊂ ES(O′,LT) ⊆ ES(OS ,LT), which contradicts the hypothe-
sis.

(⇒) Suppose, by way of contradiction, that there exists an LT -ontology O′′ such
that ES(OT ,LT) ⊂ ES(O′′,LT) ⊆ ES(OS ,LT) and there is no LT -ontology O′

Effective computation of maximal sound approximations of DL ontologies 7

such that Mod(OS) ⊆ Mod(O′) ⊂ Mod(OT). From property (a) we have that
Mod(OS) ⊆ Mod(O′′) ⊆ Mod(OT). Since both O′′ and OT are LT ontologies,
then ES(OT ,LT) ⊂ ES(O′′,LT) implies that Mod(O′′) 6= Mod(OT), which di-
rectly leads to a contradiction.

From Theorem 1 it follows that every ontology OT which is a GSA in LT of an
ontology OS is also an approximation in LT of OS according to [8], and, as we shall
show in the following section, for some languages, this corresponds to the approxima-
tion in [14].

As discussed in [8], the computation of a GSA can be a very challenging task even
when approximating into tractable fragments of OWL 2 [12]. This means that even
though a GSA is one that best preserves the semantics of the original ontology, it cur-
rently suffers from a significant practical setback: the outcome of the computation of the
approximation is tightly linked to the capabilities of the currently available reasoners
for LS-ontologies. This may lead, in practice, to the impossibility of computing GSAs
of very large or complex ontologies when the source language is very expressive.

We observe that the critical point behind these practical difficulties in computing
a GSA of an ontology is that, in current implementations, any reasoner for LS must
reason over the ontology as a whole. From this observation, the idea for a new notion
of approximation, in which we do not reason over the entire ontology but only over
portions of it, arises. At the basis of this new notion, which we call k-approximation, is
the idea of obtaining an approximation of the original ontology by computing the global
semantic approximation of each set of k axioms of the original ontology in isolation.
Below we give a formal definition of the k-approximation.

In what follows, given an ontology O and a positive integer k such that k ≤ |O|,
we denote with subsetk (O) the set of all the sets of cardinality k of axioms of O.

Definition 3. Let OS be a satisfiable LS-ontology and let ΣOS
be the set of predicate

and constant symbols occurring in OS . Let Uk = {Oji | Oji ∈ globalApx (Oi,LT),
such that Oi ∈ subsetk (OS)}. An LT -ontology OT over ΣOS

is a k-approximation in
LT of OS if both the following statements hold:

–
⋂
Oj

i∈Uk
Mod(Oji) ⊆Mod(OT);

– there is no LT -ontologyO′ overΣOS
such that

⋂
Oj

i∈Uk
Mod(Oji) ⊆Mod(O′) ⊂

Mod(OT).

The following theorem follows from Theorem 1 and provides a constructive condi-
tion for the k-approximation.

Theorem 2. Let OS be a satisfiable LS-ontology and let ΣOS
be the set of predi-

cate and constant symbols occurring in OS . An LT -ontology OT over ΣOS
is a k-

approximation in LT of OS if and only if:

(i) ES(OT ,LT) ⊆ ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT),LT);

(ii) there is no LT -ontology O′ over ΣOS
such that ES(OT ,LT) ⊂ ES(O′,LT) ⊆

ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT),LT).

8 Console, Mora, Rosati, Santarelli, Savo

Proof. (sketch) The proof can be easily adapted from the proof of Theorem 1 by
observing that in order to prove the theorem one has to show that:
(a)

⋂
Oj

i∈Uk
Mod(Oji) ⊆ Mod(OT) if and only if ES(OT ,LT) ⊆

ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT),LT);

(b) and that there is no LT -ontology O′ over ΣOS
such that

⋂
Oj

i∈Uk
Mod(Oji) ⊆

Mod(O′) ⊂ Mod(OT) if and only if there is no LT -ontology O′′ over ΣOS
such that

ES(OT ,LT) ⊂ ES(O′′,LT) ⊆ ES(
⋃
Oi∈subsetk (OS) ES(Oi,LT),LT).

We note that in the case in which k = |OS |, the k-approximation actually coincides
with the GSA. At the other end of the spectrum, we have the case in which k = 1.
Here we are treating each axiom α in the original ontology in isolation, i.e., we are
considering ontologies formed by a single axiom α. We refer to this approximation as
local semantic approximation (LSA).

We conclude this section with an example highlighting the difference between the
GSA and the LSA.

Example 1. Consider the following OWL 2 ontology O.

O = { A v B t C B v D A v ∃R.D
B u C v F C v D ∃R.D v E }.

The following ontology is a GSA in OWL 2 QL of O.

OGSA = { A v D B v D A v ∃R A v ∃R.D
A v E C v D D v F }.

Indeed, it is possible to show that, according to Theorem 1, each axiom entailed by
OGSA is also entailed byO, and that it is impossible to build an OWL 2 QL ontologyO′
such that ES(OGSA, OWL 2 QL) ⊂ ES(O′, OWL 2 QL) ⊆ ES(O, OWL 2 QL).

Computing the LSA in OWL 2 QL of O, i.e., its 1-approximation in OWL 2 QL,
we obtain the following ontology.

OLSA = { B v D A v ∃R
C v D A v ∃R.D }.

It is easy to see that Mod(O) ⊂ Mod(OGSA) ⊂ Mod(OLSA), which means that
the ontology OGSA approximates O better than OLSA. This expected result is a con-
sequence of the fact that reasoning over each single axiom in O in isolation does not
allow for the extraction all the OWL 2 QL consequences of O.

Moreover, from Lemma 2, it follows that every O′ ∈ globalApx (OS , OWL 2 QL)
is logically equivalent to OGSA. ut

4 Approximation in OWL 2 QL

In this section we deal with the problem of approximating ontologies in OWL 2 with
ontologies in OWL 2 QL.

Based on the characteristics of the OWL 2 QL language, we can give the following
theorem.

Effective computation of maximal sound approximations of DL ontologies 9

Algorithm 1: computeKApx(O, k)

Input: a satisfiable OWL 2 ontology O, a positive integer k such that k ≤ |O|
Output: an OWL 2 QL ontology OApx

begin
OApx ← ∅;
foreach ontology Oi ∈ subsetk (OS)
OApx ← OApx ∪ ES(Oi, OWL 2 QL);

return OApx;
end

Theorem 3. Let OS be a satisfiable OWL 2 ontology. Then the OWL 2 QL ontology⋃
Oi∈subsetk (OS) ES(Oi, OWL 2 QL) is the k-approximation in OWL 2 QL of OS .

Proof. (sketch) To prove the claim, we observe that Lemma 1 holds for OWL 2 QL
ontologies, and this guarantees that for every OWL 2 ontology OS , there exists at least
one OWL 2 QL ontology which is its GSA, i.e., globalApx (OS , OWL 2 QL) 6= ∅.
Moreover, we have that since OWL 2 QL is closed, for Lemma 2, all ontologies in
ES(OS , OWL 2 QL) are pairwise logically equivalent. Another consequence of the
fact that OWL 2 QL is closed is that, whichever language the original ontology OS is
expressed in, ES(OS , OWL 2QL) is an OWL 2 QL ontology. Furthermore, given a set
of OWL 2 QL ontologies, the union of these ontologies is still an OWL 2 QL ontology.
From these observations, it is easy to see that, given an OWL 2 ontology OS and an
integer k ≤ |OS |, the set

⋃
Oi∈subsetk (OS) ES(Oi, OWL 2QL) satisfies conditions (i)

and (ii) of Theorem 2. Hence, we have the claim.

Notably, we observe that for k = |OS | the k-approximation OT in OWL 2 QL of
OS is unique and coincides with its entailment set in OWL 2 QL. This means thatOT is
also the approximation in OWL 2 QL of OS according to the notion of approximation
presented in [14]. Therefore, all the properties that hold for the semantics in [14] also
hold for the GSA. In particular, the evaluation of a conjunctive query q without non-
distinguished variables over OS coincides with the evaluation of q over OT (Theorem
5 in [14]).

From Theorem 3, one can easily come up with Algorithm 1 for computing the k-
approximation of an LS-ontology OS in OWL 2 QL. The algorithm first computes
every subset with size k of the original ontology OS . Then, it computes the ontology
which is the result of the k-approximation in OWL 2 QL of the ontology in input as the
union of the entailment sets with respect to OWL 2 QL of each such subset. A naive
algorithm for computing the entailment set with respect to OWL 2 QL can be easily
obtained from the one given in [14] for DL-Lite languages. We can summarize it as
follows. Let O be an ontology and let ΣO be the set of predicate and constant symbols
occurring inO. The algorithm first computes the set Γ of axioms in ΦOWL 2 QL which
can be built over ΣO, and then, for each axiom α ∈ Γ such that O |= α, adds α to the
set ES(O, OWL 2QL). In practice, to check ifO |= α one can use an OWL 2 reasoner.

10 Console, Mora, Rosati, Santarelli, Savo

Since each invocation of the OWL 2 reasoner is N2EXPTIME, the computation of the
entailment set can be very costly [4].

A more efficient technique for its computation is given in [8], where the idea is to
limit the number of invocations to the OWL 2 reasoner by exploiting the knowledge
acquired through a preliminary exploration of the ontology. To understand the basic
idea behind this technique, consider, for example, an ontology O that entails the in-
clusions A1 v A2 and P1 v P2, where A1 and A2 are concepts and P1 and P2 are
roles. Exploiting these inclusions we can deduce the hierarchical structure of the gen-
eral concepts that can be built on these four predicates. For instance, we know that
∃P2.A2 v ∃P2, that ∃P2.A1 v ∃P2.A2, that ∃P1.A1 v ∃P2.A1, and so on. To obtain
the entailed inclusion axioms, we begin by invoking the OWL 2 reasoner, asking for
the children of the general concepts which are in the highest position in the hierarchy.
So we first compute the subsumees of ∃P2 through the OWL 2 reasoner. If there are
none, we avoid invoking the reasoner asking for the subsumees of ∃P2.A2 and so on.
Regarding the entailed disjointness axioms, we follow the same approach but starting
from the lowest positions in the hierarchy.

The following theorem establishes correctness and termination of algorithm
computeKApx.

Theorem 4. Let OS be a satisfiable OWL 2 ontology. computeKApx(OS , k) termi-
nates and computes the k-approximation in OWL 2 QL of OS .

Proof. (sketch) Termination of computeKApx(OS , k) directly follows from the
fact that OS is a finite set of axioms and that, for each Oi ∈ subsetk (OS),
ES(Oi, OWL 2 QL) can be computed in finite time. The correctness of the algorithm
directly follows from Theorem 3.

5 Experiments

In this section we present the experimental tests that we have performed for the approx-
imation of a suite of OWL 2 ontologies into OWL 2 QL through the two notions of
approximation we have introduced earlier.

We notice that by choosing a value for k different from |OS |, the computation of
the entailment set becomes easier. However, observing Algorithm 1, the number of
times that this step must be repeated can grow very quickly. In fact, the number of
sets of axioms in subsetk (OS) is equal to the binomial coefficient of |OS | over k, and
therefore for large ontologies this number can easily become enormous, and this can be
in practice a critical obstacle in the computation of the k-approximation.

For this reason, in these experiments we have focused on comparing the GSA (k-
approximation with k = |OS |) to the LSA (k-approximation with k = 1), and we
reserve the study of efficient techniques for k-approximation with 1 < k < |OS | for
future works. Furthermore, to provide a standard baseline against which to compare the
results of the GSA and LSA, we have compared both our approaches with a syntactic
sound approximation approach, consisting in first normalizing the axioms in the ontol-
ogy and then eliminating the ones that are not syntactically compliant with OWL 2 QL.
We will refer to this approach as “SYNT”.

Effective computation of maximal sound approximations of DL ontologies 11

Ontology Expressiveness Axioms Concepts Roles Attributes OWL2 QL Axioms
Homology ALC 83 66 0 0 83

Cabro ALCHIQ 100 59 13 0 99
Basic vertebrate anatomy SHIF 108 43 14 0 101

Fungal anatomy ALEI+ 115 90 5 0 113
Pmr ALU 163 137 16 0 159
Ma ALE+ 168 166 8 0 167

General formal Ontology SHIQ 212 45 41 0 167
Cog analysis SHIF(D) 224 92 37 9 213
Time event ALCROIQ(D) 229 104 28 7 170

Spatial ALEHI+ 246 136 49 0 155
Translational medicine ALCRIF(D) 314 225 18 6 298

Biopax SHIN (D) 391 69 55 41 240
Vertebrate skeletal anatomy ALER+ 455 314 26 0 434

Image S 548 624 2 0 524
Protein ALCF(D) 691 45 50 133 490
Pizza SHOIN 712 100 8 0 660

Ontology of physics for biology ALCHIQ(D) 954 679 33 3 847
Plant trait ALE+ 1463 1317 4 0 1461

Dolce SHOIN (D) 1667 209 313 4 1445
Ont. of athletic events ALEH 1737 1441 15 1 1722

Neomark ALCHQ(D) 1755 55 105 488 842
Pato SH 1979 2378 36 0 1779

Protein Modification ALE+ 1986 1338 8 0 1982
Po anatomy ALE+ 2128 1294 11 0 2064

Lipid ALCHIN 2375 716 46 0 2076
Plant S 2615 1644 16 0 2534

Mosquito anatomy ALE+ 2733 1864 5 0 2732
Idomal namespace ALER+ 3467 2597 24 0 3462

Cognitive atlas ALC 4100 1701 6 0 3999
Genomic ALCQ 4322 2265 2 0 3224

Mosquito insecticide resistance ALE+ 4413 4362 21 0 4409
Galen-A ALEHIF+ 4979 2748 413 0 3506
Ni gene SH 8835 4835 8 0 8834

Fyp SH 15105 4751 69 0 12924
Fly anatomy SH 20356 8064 72 0 20353

EL-Galen ALEH+ 36547 23136 950 0 25138
Galen full ALEHIF+ 37696 23141 950 0 25613

Pr reasoned S 46929 35470 14 0 40031
Snomed fragment for FMA ALER 73543 52635 52 0 35004

Gene SH 73942 39160 12 0 73940
FMA OBO ALE+ 119560 75139 2 0 119558

Table 1: Characteristics of the ontologies used in the GSA and LSA tests.

12 Console, Mora, Rosati, Santarelli, Savo

The suite of ontologies used during testing contains 41 ontologies and was assem-
bled from the Bioportal ontology repository2. The ontologies that compose this suite
were selected to test the scalability of our approaches both to larger ontologies and to
ontologies formulated in more expressive languages. In Table 1 we present the most
relevant metrics of these ontologies.

All tests were performed on a DELL Latitude E6320 notebook with Intel Core
i7-2640M 2.8Ghz CPU and 4GB of RAM, running Microsoft Windows 7 Premium
operating system, and Java 1.6 with 2GB of heap space. Timeout was set at eight
hours, and execution was aborted if the maximum available memory was exhausted.
The tool used in the experiments and the suite of ontologies are available at http:
//diag.uniroma1.it/˜mora/ontology_approximation/iswc2014/.

As mentioned in Section 4, the computation of the entailment set involves the use of
an external OWL 2 reasoner. Therefore, the performance and the results of the computed
approximations are greatly effected by the choice of the reasoner. For our tests, we have
used the Pellet3 OWL 2 reasoner (version v.2.3.0.6).

In Table 2 we present the results of the evaluation. An analysis of these results leads
to the following observations.

Firstly, we were able to compute the GSA for 26 out of the 41 tested ontologies.
For the remaining fifteen, this was not possible, either due to the size of the ontology,
in terms of the number of its axioms, e.g., the FMA 2.0 or Gene ontologies, which have
more than seventy thousand and one hundred thousand axioms, respectively, or due to
its high expressivity, e.g., the Dolce ontology or the General formal ontology. The LSA
approach is instead always feasible, it is quicker than the GSA approach for all but one
of the tested ontologies, and it is overall very fast: no ontology took more than 250
seconds to approximate with the LSA.

Secondly, it is interesting to observe the comparison between the quality of the ap-
proximation that one can obtain through the LSA with respect to that obtained through
the GSA. This relationship answers the question of whether the ontology obtained
through the LSA (the “LSA ontology”) is able to capture a significant portion of the
one obtained through the GSA (the “GSA ontology”). Our tests in fact confirm that
this is the case: out of the 26 ontologies for which we were able to compute the GSA,
in only four cases the LSA ontology entails less than 60 percent of the axioms of the
GSA ontology, while in twenty cases it entails more than 90 percent of them. The av-
erage percentage of axioms in the original ontologies entailed by the GSA ontologies
is roughly 80 percent, and of the axioms of the GSA ontologies entailed by the LSA
ontologies is roughly 87 percent.

Furthermore, the LSA provides a good approximation even for those ontologies for
which the GSA is not computable. In fact, Table 3 shows the percentage of axioms of the
original ontology that are entailed by the LSA ontology. Out of the twelve ontologies
for which we were able to obtain this value (the remaining three ontologies caused
an “out of memory” error), only in three cases it was less than 60 percent, while in
four cases it was higher than 80 percent. These results are particularly interesting with
respect to those ontologies for which the GSA approach is not feasible due to their

2 http://bioportal.bioontology.org/
3 http://clarkparsia.com/pellet/

Effective computation of maximal sound approximations of DL ontologies 13

Ontology
GSA

axioms
GSA entails
original (%)

LSA
axioms

LSA entails
GSA (%)

SYNT
axioms

SYNT entails
GSA (%)

SYNT entails
LSA (%)

GSA
time (s)

LSA
time (s)

Homology 83 100 83 100 83 100 100 1 4
Cabro 233 96 121 100 100 100 100 4 2

Basic vertebrate anatomy 192 93 141 97 71 56 67 3 3
Fungal anatomy 318 98 140 69 113 69 100 2 2

Pmr 162 97 159 98 159 98 100 2 2
Ma 411 99 240 95 167 96 100 4 4

General formal ontology – – 286 – 177 – 100 – 6
Cog analysis 104407 75 474 46 215 1 82 36 7
Time event 93769 71 662 99 196 1 58 45 11

Spatial 510 63 371 86 155 42 52 9 4
Translational medicine 4089 86 505 99 275 30 64 19 7

Biopax 2182057 – 3217 – 251 – 81 – 11
Vertebrate skeletal anatomy 9488 95 581 92 434 57 99 27 5

Image 1016 95 596 98 571 98 100 178 5
Protein – – 10789 – 475 – 88 – 20
Pizza 2587 91 755 92 678 92 99 7 4

Ont. of physics for biology 1789821 – 1505 – 1241 – 100 – 7
Plant trait 2370 99 1496 99 1461 100 100 10 9

Dolce – – 2959 – 1555 – 100 – 8
Ontology of athletic events 5073 99 2392 99 1731 92 100 42 9

Neomark – – 39807 – 1723 – 63 – 50
Pato 4066 89 2209 100 1976 78 99 99 18

Protein Modification 2195 99 2001 100 1982 100 100 12 19
Po anatomy 11486 96 2783 77 2078 78 100 455 18

Lipid 14659 87 3165 97 2759 89 97 47 10
Plant 18375 96 3512 80 2574 81 100 929 15

Mosquito anatomy 21303 99 4277 43 2732 44 100 214 16
Idomal namespace 67417 99 4259 98 3461 59 100 496 16

Cognitive atlas 7449 97 5324 100 1364 26 30 162 17
Genomic – – 86735 – 85037 – 98 – 54

Mosquito insecticide res. 6794 99 4502 100 4409 100 100 86 14
Galen-A – – 8568 – 4971 – 90 – 26
Ni gene 46148 99 10415 90 8834 91 100 472 32

Fyp – – 19675 – 11800 – 82 – 43
Fly anatomy 460849 99 28436 67 20346 67 100 25499 45

EL-Galen – – 70272 – 43804 – 89 – 59
Galen full – – 72172 – 44279 – 89 – 61

Pr reasoned – – 56085 – 47662 – 100 – 93
Snomed fragment for FMA – – 140629 – 101860 – 76 – 250

Gene – – 86292 – 73940 – 100 – 178
FMA OBO – – 143306 – 119558 – 100 – 113

Table 2: Results of the GSA, LSA, and SYNT. The values represent, from left to right, the number
of axioms in the ontology obtained through the GSA, the percentage of axioms of the original
ontology that are entailed by the ontology obtained through the GSA, the number of axioms
in the ontology obtained through the LSA, the percentage of axioms of the ontology obtained
through the GSA that are entailed by the LSA, the number of axioms in the ontology obtained by
the SYNT, the percentage of axioms of the ontology obtained through the GSA that are entailed
by the ontology obtained through the SYNT, the percentage of axioms of the ontology obtained
through the LSA that are entailed by the ontology obtained through the SYNT, and finally the
GSA time and the LSA time (both in seconds).

14 Console, Mora, Rosati, Santarelli, Savo

Ontology
Original
axioms

LSA
axioms

LSA entails
original (%)

LSA
time (s)

General formal ontology 212 264 67 6
Biopax 391 3204 53 11
Protein 691 10720 47 20

Ontology of physics for biology 954 1074 75 7
Dolce 1667 2914 78 8

Neomark 1755 38966 46 50
Genomic 4322 9844 65 54
Galen-A 4979 8568 70 26

Fyp 15105 19672 85 43
EL-Galen 36547 70272 – 59
Galen full 37696 72172 – 61

Pr reasoned 46929 55391 83 93
SNOMED fragment for FMA 73543 140629 – 250

Gene 73942 86289 99 178
FMA OBO 119560 143306 99 113

Table 3: LSA results for ontologies for which the GSA is not computable.

complexity, as is the case for example for the Dolce ontology, for Galen-A, and for the
Ontology of physics for biology. Indeed, even though these ontologies are expressed in
highly expressive DL languages, the structure of the axioms that compose them is such
that reasoning on each of them in isolation does not lead to much worse approximation
results than reasoning on the ontology as a whole: for the nine smallest ontologies in
Table 3, for which the GSA fails not because of the size of the ontology, the average
percentage is 68.6.

Finally, both the GSA and LSA compare favorably against the syntactic sound ap-
proximation approach. In fact, the average percentage of axioms in the LSA and GSA
ontologies that are entailed by the ontologies obtained through the SYNT approach are
respectively roughly 90 percent and 72 percent. While the latter result is to be expected,
the former is quite significant, even more so when one considers that the LSA is very
fast. Indeed, a “gain” of 10 percent of axiom entailments by the LSA with respect to
the SYNT in the case of large ontologies such as Galen and Snomed translates to tens
of thousands of preserved axioms in very little computation time.

In conclusion, the results gathered from these tests corroborate the usefulness of
both the global semantic approximation and the local semantic approximation ap-
proaches. The former provides a maximal sound approximation in the target language
of the original approach, and is in practice computable in a reasonable amount of time
for the majority of the tested ontologies. The latter instead represents a less optimal
but still very effective solution for those ontologies for which the GSA approach goes
beyond the capabilities of the currently-available ontology reasoners.

Effective computation of maximal sound approximations of DL ontologies 15

6 Conclusions

In this paper we have addressed the problem of ontology approximation in Description
Logics and OWL, presenting (i) a parameterized semantics for computing sound ap-
proximations of ontologies, (ii) algorithms for the computation of approximations (the
GSA and the LSA) of OWL 2 ontologies in OWL 2 QL, and (iii) an extensive experi-
mental evaluation of the above techniques, which empirically proves the validity of our
approach.

The present work can be extended in several ways. First, while we have focused
on sound approximations, it would be interesting to also consider complete approxi-
mations of ontologies. Also, we would like to study the development of techniques for
k-approximations different from GSA and LSA, i.e., for k such that 1 < k < |OS |, as
well as to analyze the possibility of integrating ontology module extraction techniques
in our approach. Then, this work has not addressed the case when there are differences
in the semantic assumptions between the source and the target ontology languages. For
instance, differently from OWL 2 and its profiles, some DLs (e.g., DL-LiteA [15]) adopt
the Unique Name Assumption (UNA). This makes our approach not directly applica-
ble, for instance, if we consider OWL 2 as the source language and DL-LiteA as the
target language. The reason is that the UNA implies some axioms (inequalities between
individuals) that can be expressed in OWL 2 but cannot be expressed in DL-LiteA. We
aim at extending our approach to deal with the presence of such semantic discrepancies
in the ontology languages. Finally, we are very interested in generalizing our approach
to a full-fledged ontology-based data access scenario [15], in which data sources are
connected through declarative mappings to the ontology. In that context, it might be
interesting to use both the ontology and the mappings in the target OBDA specification
to approximate a given ontology in the source OBDA specification.

Acknowledgments. This research has been partially supported by the EU under FP7
project Optique (grant n. FP7-318338).

References

1. Natalia Antonioli, Francesco Castanò, Cristina Civili, Spartaco Coletta, Stefano Grossi,
Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Domenico Fabio Savo, and
Emanuela Virardi. Ontology-based data access: the experience at the Italian Department
of Treasury. In Proc. of the Industrial Track of CAiSE 2013, volume 1017 of CEUR,
ceur-ws.org, pages 9–16, 2013.

2. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

3. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

4. Elena Botoeva, Diego Calvanese, and Mariano Rodriguez-Muro. Expressive approximations
in DL-Lite ontologies. Proc. of AIMSA 2010, pages 21–31, 2010.

5. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

16 Console, Mora, Rosati, Santarelli, Savo

6. Diego Calvanese, Martin Giese, Peter Haase, Ian Horrocks, Thomas Hubauer, Yannis E.
Ioannidis, Ernesto Jiménez-Ruiz, Evgeny Kharlamov, Herald Kllapi, Johan W. Klüwer,
Manolis Koubarakis, Steffen Lamparter, Ralf Möller, Christian Neuenstadt, T. Nordtveit,
Özgür L. Özçep, Mariano Rodriguez-Muro, Mikhail Roshchin, Domenico Fabio Savo,
Michael Schmidt, Ahmet Soylu, Arild Waaler, and Dmitriy Zheleznyakov. Optique: OBDA
Solution for Big Data. In ESWC (Satellite Events), volume 7955 of Lecture Notes in Com-
puter Science, pages 293–295. Springer, 2013.

7. Cristina Civili, Marco Console, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, Lorenzo Lepore, Riccardo Mancini, Antonella Poggi, Riccardo Rosati, Marco Ruzzi,
Valerio Santarelli, and Domenico Fabio Savo. MASTRO STUDIO: Managing ontology-
based data access applications. PVLDB, 6:1314–1317, 2013.

8. Marco Console, Valerio Santarelli, and Domenico Fabio Savo. Efficient approximation in
DL-Lite of OWL 2 ontologies. In Proc. of DL 2013, volume 1014 of CEUR Workshop
Proceedings, pages 132–143, 2013.

9. Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian
Rudolph. OWL 2 Web Ontology Language: Primer. W3C Recommendation, 2012. Available
at http://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

10. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Proc.
of KR 2006, pages 57–67, 2006.

11. Carsten Lutz, Inanç Seylan, and Frank Wolter. An Automata-Theoretic Approach to Uniform
Interpolation and Approximation in the Description Logic EL. In Proc. of KR 2012. AAAI
Press, 2012.

12. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten
Lutz. Owl 2 web ontology language: Profiles (2nd edition). W3C Recommendation, 2012.
Available at http://www.w3.org/TR/owl2-profiles/.

13. Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C Recommendation, 2012. Avail-
able at http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

14. Jeff Z. Pan and Edward Thomas. Approximating OWL-DL ontologies. In Proc. of
AAAI 2007, pages 1434–1439, 2007.

15. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data Semantics, X:133–
173, 2008.

16. Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. Ontology-
based data access: Ontop of databases. In Proc. of ISWC 2013, volume 8218 of LNCS,
pages 558–573. Springer, 2013.

17. Tuvshintur Tserendorj, Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Approxi-
mate OWL-reasoning with Screech. In Proc. of RR 2008, pages 165–180. Springer, 2008.

18. Holger Wache, Perry Groot, and Heiner Stuckenschmidt. Scalable instance retrieval for the
semantic web by approximation. In Proc. of WISE 2005, pages 245–254. Springer, 2005.

Appendix I

DL 2013: Ontology Approximation

This appendix reports the paper:

− Marco Console, Valerio Santarelli, Domenico Fabio Savo. Efficient Approximation in DL-Lite of OWL 2 On-
tologies. Description Logics 2013.

146

Efficient approximation in DL-Lite of OWL 2 ontologies

Marco Console, Valerio Santarelli, Domenico Fabio Savo

Dipartimento di Ingegneria Informatica Automatica e Gestionale “Antonio Ruberti”
SAPIENZA Università di Roma

lastname@dis.uniroma1.it

Abstract. Ontologies, as a conceptualization of a domain of interest, can be used
for different objectives, such as for providing a formal description of the domain
of interest for documentation purposes, or for providing a mechanism for reason-
ing upon the domain. For instance, they are the core element of the Ontology-
Based Data Access paradigm, in which the ontology is utilized as a conceptual
view, allowing user access to the underlying data sources. With the aim to use an
ontology as a formal description of the domain of interest, the use of expressive
languages proves to be useful. If instead the goal is to use the ontology for reason-
ing tasks which require low computational complexity, the high expressivity of
the language used to model the ontology may be of hindrance. In this scenario, the
approximation of ontologies expressed in very expressive languages through on-
tologies expressed in languages which keep the computational complexity of the
reasoning tasks low is pivotal. In this work we present our notion of ontology ap-
proximation and present an algorithm for computing the approximation of OWL
2 ontologies by means of DL-Lite TBoxes. Moreover, we provide optimization
techniques for this computation, and discuss the results of the implementation of
these techniques.

1 Introduction

Ontologies, as a shared conceptualization of a domain of interest, are commonly recog-
nized as powerful tools in support of the information systems of organizations [6,4,10].
On one hand, they can be used for providing a formal description of the domain of inter-
est, and thus represent valuable documentation for an organization. On the other hand,
they provide a mechanism for reasoning upon the domain with different objectives. For
instance, they are the core element of the Ontology-Based Data Access (OBDA) [13,4]
paradigm, in which the ontology is utilized as a conceptual view of the underlying data
sources, granting the user the ability to retrieve information without specific knowledge
on how this information is organized and where it is stored.

With the aim to use an ontology as a formal description of the domain of interest, the
use of expressive languages, such as the OWL 2 Web Ontology Language [9], proves to
be useful. The expressivity of such languages allows the ontology designer to obtain a
precise formalization of the domain. If instead the goal is to use the ontology for reason-
ing tasks, the high expressivity of the language used to model the ontology may be of
hindrance. In particular, when wishing to access large quantities of data through the on-
tology, as in OBDA, the computational cost of very expressive languages such as OWL

2 Marco Console, Valerio Santarelli, Domenico Fabio Savo

2 is prohibitive. In these cases, it is necessary to recur to less expressive languages, thus
resigning to having less complete representations of the domain of interest.

One possible solution to this issue is to allow the ontology designer the use of ex-
pressive languages to define ontologies that model the domain in great detail for the
purpose of documentation and of other tasks that do not require strong computational
effort, while adopting, for all those reasoning tasks in which particular computational
properties are required, such as OBDA, descriptions of the domain of interest obtained
through less expressive languages.

Following this approach, the notion of approximation becomes pivotal. The goal of
approximation is, given a ontology O in a language L, to compute an ontology O′ in a
target language L′, in which as much as possible of the semantics of O is preserved. In
general, various approaches can be adopted towards this goal [17,14,12,18,3]. Among
these, the approaches in which we are most interested are those which aim to obtain
the so-called semantic approximation [14,3,12]. Here, as opposed to those approaches
which aim at a syntactic approximation [17,18], the computation of the ontology which
is the approximation of the original one is obtained through the semantics of this origi-
nal ontology, and not only through its syntactic representation.

In this paper, we focus on the semantic approximation of an ontology for OBDA ap-
plications. Thus, we study approaches for approximating ontologies in very expressive
languages with ontologies in languages that, characterized by low reasoning complex-
ity, are suitable for query answering purposes. The most significant works in which this
problem is studied are [12] and [3], in which the proposed approaches can be traced
back to the work of Selman and Kautz [14].

These approaches, as is ours, are based on the notion of entailment set. Given an
ontologyO in a language L, the entailment set ofO in a target language L′ is the set of
all the assertions expressible in L′ over Σ that are entailed by O. The idea behind our
approach is that an approximation in L′ of O is an ontology O′ whose entailment set
minimally differs from the entailment set of O in L′.

Since OWL 2 is the W3C standard language for expressing ontologies, it is often
used as the expressive language for formulating ontologies describing the domain of
interest. On the other hand, in the context of OBDA, one naturally focuses on the logics
of the DL-Lite family [5]. This is a family of DLs specifically designed to keep all
reasoning tasks polynomially tractable in the size of the data, and is thus suitable for
OBDA. For this reason, in this work we study the problem of approximating OWL
2 ontologies with ontologies in DL-Lite. To this aim we provide an algorithm for the
computation of these approximations, and an optimized technique for the computation
of the entailment set of an OWL 2 ontology in DL-Lite, which can be used efficiently
in practice.

The rest of the paper is organized as follows. In Section 2, we provide some useful
notions for the paper. In Section 3 we study the problem of ontology approximation,
and introduce our notion of approximation. In Section 4 we focus on the approximation
in DL-Lite of OWL 2 ontologies. In Section 5 we describe our technique for optimizing
the computation of the entailment set of an OWL 2 ontology in DL-Lite, and present
the results of our experimentation. Finally, in Section 6 we conclude the paper.

Efficient approximation in DL-Lite of OWL 2 ontologies 3

2 Preliminaries

Description Logics (DLs) [2] are logics that allow one to represent the domain of in-
terests in terms of concepts, denoting sets of objects, value-domains, denoting sets of
values, attributes, denoting binary relations between objects and values, and roles de-
noting binary relations over objects.

Let Σ be a signature of symbols for individual (object and value) constants and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If L is a DL, then
an ontology O in L (or L ontology) over Σ is the set T ∪ A, where T , the TBox, is a
finite set of intensional assertions over Σ expressed in L, and A, the ABox, is a finite
set of instance assertions, i.e, assertions on individuals, over Σ. Different DLs allow
for different kinds of TBox and/or ABox assertions and allow for different manners in
which these can be combined for obtaining TBoxes and ABoxes in the specific DL.

The semantics of a DL ontology is given in terms of first-order (FOL) interpreta-
tions (cf. [2]). We denote with Mod(O) the set of models of O, i.e., the set of FOL
interpretations that satisfy all the assertions in T and A, where the definition of satis-
faction depends on the kind of expressions and assertions in the specific DL language
in which O is specified. As usual, a ontology O is said to be satisfiable if it admits at
least one model, and O is said to entail a First-Order Logic (FOL) sentence φ, denoted
O |= φ, if φI = true for all I ∈ Mod(O). Moreover, given to ontology O and O′, we
say that O and O′ are logically equivalent if Mod(O) =Mod(O′).

In this work we mainly focus on two specific languages, which are OWL 2, the offi-
cial ontology language of the World Wide Web Consortium (W3C) [9], and DL-LiteA, a
member of the DL-Lite family [5], which is a family of tractable DLs particularly suited
for dealing with ontologies with very large ABoxes, and is at the basis of OWL 2 QL,
one of the profiles of OWL 2.

The Web Ontology Language (version 2), or simply OWL 2, is an ontology lan-
guage for the Semantic Web with formally defined meaning. OWL 2 provides for de-
scribing the domain of interest in terms of concepts, roles, attributes, individuals, and
data values [9]. Due to the limitation of space, here we do not provide a complete de-
scription of OWL 2, but we refer the reader to the official W3C specification [11].

We now present the syntax of the DL DL-LiteA. As for the semantics, we apply the
general definitions given above, and refer the reader to [13] for the precise description
of the semantics of a DL-LiteA ontology.

In what follows we adopt the following notation: A, P , and U are symbols in
Σ denoting respectively an atomic concept, an atomic role and an atomic attribute;
T1, . . . , Tn are n pairwise disjoint unbounded value-domains; B denotes a basic con-
cept; C a general concept; Q a basic role; R a general role; V a general attribute; E a
basic value-domain; and F a value-domain expression.

Expressions in DL-LiteA are formed according to the following syntax:

B −→ A | ∃Q | δ(U) Q −→ P | P− V −→ U | ¬U
C −→ B | ¬B | ∃Q.C | δF (U) R −→ Q | ¬Q E −→ ρ(U)
F −→ T1 | · · · | Tn

where: P− denotes the inverse of P , ∃Q, or unqualified existential restriction denotes
the objects related to some object by the role Q, ¬ denotes negation, δ(U) denotes

4 Marco Console, Valerio Santarelli, Domenico Fabio Savo

the domain of U , i.e., the set of objects that U relates to values, and ρ(U) denotes
the range of U , i.e., the set of values related to objects by U . The concept ∃Q.C, or
qualified existential restriction, denotes the qualified domain of Q with respect to C,
i.e., the set of objects that Q relates to some instance of C. Similarly, δF (U) denotes
the qualified domain of U with respect to a value-domain F , i.e., the set of objects that
U relates to some value in F . We refer to the qualified existential restriction expression
∃Q1.∃Qn.C, where C is not a qualified existential restriction, as an existential role
chain of depth n.

A DL-LiteA TBox assertion is an assertion of the form:

B v C Q v R E v F U v V (funct Q) (funct U)

From left to right, the first four assertions denote inclusions between concepts, roles,
value-domains, and attributes, respectively. The last two assertions denote functionality
on roles and on attributes.

A DL-LiteA TBox is a finite set of assertions of the form above, where suitable
limitations in the combination of such assertion are imposed. Given a TBox T and a role
P (resp. an attribute U), we say that P (resp. U) is primitive in T if P does not appear
in T positively in the right-hand side of any role (resp. attribute) inclusion assertion and
in any qualified existential restriction. In a DL-LiteA TBox, a role P (resp, attribute U)
that is not primitive in T cannot appear either directly nr inversely in a functionality
assertion.

A DL-LiteA ABox A is a finite set of assertions of the form A(a), P (a, b), and
U(a, v), whereA, P , and U are as above, a and b are object constants while v is a value
constant.

3 Approximation of DL ontologies

In this section, we present our notion of approximation of an ontology expressed in a
language L in a target language L′, and then we provide a comparison between our
notion and others proposed in literature.
Ontology approximation. In what follows, O is a satisfiable L ontology, and L′ a
language not necessarily different from L.

First of all, we need to introduce the notion of entailment set [12] of a satisfiable
ontology with respect to a language.

Definition 1. Let O be a satisfiable ontology expressed in a language L over a signa-
ture Σ, and let L’ be a language, not necessarily different from L. The entailment set
of O with respect to L′, denoted as ES(O,L′), is the set which contains all L′ axioms
over Σ that are entailed by O.

In other words, we say that an axiom α belongs to the entailment set of an ontology
O with respect to a language L′, if α is an L′ axiom built over the alphabet of O and
for each interpretation I ∈ Mod(O) we have that I |= α. Clearly, given an ontology
O and a language L′, the entailment set of O with respect to L′ is unique.

With the notion of entailment set in place, we can define the notion of approximation
in L′ of O′.

Efficient approximation in DL-Lite of OWL 2 ontologies 5

Definition 2. Let O be an ontology over a signature Σ. A satisfiable L′ ontology O′
over Σ is an approximation in L′ of O if both the following statements hold:

(i) ES(O′,L′) ⊆ ES(O,L′);
(ii) there is no satisfiable L′ ontology O′′ such that ES(O′,L′) ⊂ ES(O′′,L′) ⊆

ES(O,L′).

In other words, the above definition states that a satisfiable ontology O′ is an ap-
proximation in L′ ofO , ifO′ is an ontology in L′, and there is no a satisfiable ontology
O′′ in L′ whose entailment set in L′ is “nearer” to the entailment set ofO in L′ than the
entailment set in L′ ofO, where the distance here is measured in terms of set inclusion.

Given an ontology O, it may be the case that the entailment set in a language L′
of O is infinite. If so, it may happen that the approximation in L′, in accordance with
Definition 2, does not exist. For this reason, we follow the approach proposed in [3],
where safeness restrictions on the target language are imposed, in order to guarantee
the finiteness of the entailment set. For example, in DL-LiteA, which is the language
we focus on in the following sections, the infiniteness of the entailment set arises from
the possibility of inferring infinitely-long existential chains. In this case, the safeness
restriction requires to allow, in the TBox, only existential chains of bounded length.
Therefore, in what follows we denote versions of DL-LiteA in which such restriction is
enforced as DL-Lite(k)A , where k is the bounded length of the existential chains.

Another characteristic of DL-LiteA, shared with other languages such as EL++ [1],
is that syntactic restrictions are imposed on the manner in which assertions can be com-
bined. In this case, there may exist more than one ontology which is an approximation
in L′ of O. In what follows we denote with ApxMAX(O,L′) the set of L′ ontologies
which are approximations in L′ of O in accordance with Definition 2.

Example 1. Consider the OWL 2 ontology O = {A v ∃R.B,A v ∀R.B, (funct R)}.
It is easy to see that, due to the syntactic restriction in DL-LiteA, which imposes that a
non primitive role cannot be functional, we have that, up to logical equivalence, the set
ApxMAX(O,DL-Lite(1)A) = {{A v ∃R.B}, {A v ∃R, (funct R)}}. ut

Comparison with related work. The problem of approximating ontologies for OBDA
applications has recently been faced in [12] and [3].

In [12], the authors define the approximation in L′ of a satisfiable ontologyO as the
set of L′ axioms coinciding with the entailment set of O with respect to L′.

Definition 3. Let O be a satisfiable ontology expressed in a language L. The approxi-
mation in L′ of O is ApxES(O,L′) = ES(O,L′).

Therefore, in accordance with the above definition, the approximation in L′ of the on-
tology O is a set of L′ axioms, but not necessarily a valid ontology expressed in L′.

In [3], the authors provide a more sophisticated notion of approximation, in which
it is required that the approximation in L′ of O be an ontology expressed in L′.

Definition 4. Let O be a satisfiable ontology expressed in a language L over a signa-
ture Σ. A satisfiable L′ ontology O′ over Σ is an approximation in L′ of O if both the
following statements hold:

6 Marco Console, Valerio Santarelli, Domenico Fabio Savo

(i) ES(O′,L′) ⊆ ES(O,L′);
(ii) for each α ∈ ES(O,L′) such thatO′∪{α} is anL′ ontology, then α ∈ ES(O′,L′).

In other words, an L′ ontology O′ is an approximation in L′ of O if among all the
possible maximal subsets of ES(O,L′) which are L′ ontologies, there is one which
is logically equivalent to O′. It is not unexpected, as with our approach, that there
may exist more than one ontology which is an approximation in L′ of O. We denote
with ApxSC(O,L′) set of L′ ontologies which are all approximations in L′ of O in
accordance with Definition 4.

Differently from Definition 3, Definition 4 guarantees that an approximation is al-
ways an ontology expressed in the target language L′.

Similarly to our notion of approximation, if the entailment set is infinite, it may hap-
pen that there is no ontology expressed in the target language which is an approxima-
tion. Hence, in order to guarantee the existence of an approximation, one must impose
safeness restrictions on the target language in this case as well, in order to guarantee the
finiteness of the entailment set.

We now compare our approach to those in [3] and [12] by means of some examples.

Example 2. Consider the following OWL 2 ontology: O = {∃R− v B, A v
∃R.B, (funct R)}. In accordance with Definitions 3, 4, 2, we have:

ApxES(O,DL-Lite(1)A) = {∃R− v B, A v ∃R, A v ∃R.B, A v ∃R.∃R−,
∃R v ∃R.∃R−, ∃R− v ∃R−.∃R, (funct R) }

ApxSC(O,DL-Lite(1)A) = {O′sc = {∃R− v B, A v ∃R, A v ∃R.B,A v ∃R.∃R−,
∃R v ∃R.∃R−, ∃R− v ∃R−.∃R },

O′′sc = {∃R− v B, A v ∃R, (funct R) } }

ApxMAX(O,DL-Lite(1)A) = {Omax = {∃R− v B, A v ∃R, (funct R) } } ut

Due to the syntactic restrictions enforced in DL-Lite(1)A , ontologyO of Example 2 is
not a DL-Lite(1)A ontology. However, it is logically equivalent to the DL-Lite(1)A ontology
{∃R− v B, A v ∃R, (funct R)}.

Regarding ApxES(O,DL-Lite(1)A) we only observe that it is not a valid DL-Lite(1)A

ontology. Up to logical equivalence, we can see that the set ApxSC(O,DL-Lite(1)A)
contains, along with ontology O′′sc, which is logically equivalent to O, also the unex-
pected ontology O′sc, for which we have ES(O′sc,DL-Lite(1)A) ⊂ ES(O′′sc,DL-Lite(1)A).
Finally, according to Definition 2, up to logical equivalence, the only approximation is
a DL-Lite(1)A ontology that is logically equivalent to O.

Other significant differences between these three approaches arise when the goal is
to compute the approximation of an ontology O expressed in a language L in which
the UNA is not adopted into a target language L′ in which the UNA is adopted. In
the example below, we highlight the different behavior of the three approaches in this
circumstance.

Example 3. We recall that in OWL 2 the UNA is not adopted. This means, for instance,
that given the following two ontologies O = {A v {o1}, B v {o2}} and O′ = {A v

Efficient approximation in DL-Lite of OWL 2 ontologies 7

{o1}, B v {o2}, o1 6= o2}, we have that Mod(O) 6= Mod(O′). In fact, while O does
not entail A v ¬B,O′ does. Differently, if we adopt the UNA in OWL 2, then we have
that Mod(O) =Mod(O′), and both entail the assertion A v ¬B.

From the observations above, it follows that {A v {o1}, B v {o2}} ⊆
ES(O,OWLUNA), and that A v ¬B 6∈ ES(O,OWLUNA). In what follows let us
denote with OWLUNA the version of OWL 2 where the UNA is adopted.

In accordance with Definitions 3, 4, and 2, we have that, up to logical equivalence,
the approximations in OWLUNA of O are:

– ApxES(O,OWLUNA) = ES(O,OWLUNA). In this case, ApxES(O,OWLUNA)
is a valid OWLUNA ontology. Let OES be such ontology. As shown above,
since in OWLUNA the UNA is adopted, OES |= A v ¬B. This means that
ES(OES ,OWLUNA) 6⊆ ES(O,OWLUNA).

– ApxSC(O,OWLUNA) = ∅. Indeed, since ES(O,OWLUNA) is a valid
OWLUNA ontology, any OWLUNA ontology O1 such that ES(O1,OWLUNA) ⊂
ES(O,OWLUNA), does not satisfy condition (ii) of Definition 4. Moreover, since
every OWLUNA ontology O2 that satisfies condition (ii) entails both {A v
{o1}, B v {o2}}, then it also entails A v ¬B. Hence ES(O2,OWLUNA) 6⊆
ES(O,OWLUNA), and so condition (i) of Definition 4 is not satisfied.

– ApxMAX(O,OWLUNA) = {O′max = {A v {o1}}, O′′max = {B v
{o2}} }. Indeed, it is easy to verify that both O′max and O′′max satisfy both con-
ditions (i) and (ii) of Definition 2, and that there is no other ontology O′′′ in
ApxMAX(O,OWLUNA) logically equivalent to neither O′max nor O′′max. ut

As shown in the previous example, given an L ontologyO and a target language L′,
our approach, as the one in [3], but differently from the one given in [12], guarantees
that an approximation in L′ of O is an L′ ontology, and that for each L′ ontology O′
that is an approximation in L′ of O, we have that ES(O′,L′) ⊆ ES(O,L′). Finally,
it can be shown that our approach always preserves the same or more inferences than
those obtained by adopting the approach given in [3].

Theorem 1. For each Osc ∈ ApxSC(O,L′), there is an Omax ∈ ApxMAX(O,L′)
such that ES(Osc,L′) ⊆ ES(Omax,L′). Furthermore, for each Omax ∈
ApxMAX(O,L′), there is no Osc ∈ ApxSC(O,L′) such that ES(Omax,L′) ⊂
ES(Osc,L′).

4 Approximation in DL-LiteA of OWL 2 ontologies

In this section, we study the problem of computing the approximation in DL-LiteA
of a satisfiable OWL 2 ontology O. More specifically, we aim to approximate
O with DL-LiteA TBox assertions. Therefore, in what follows we assume that
ApxMAX(O,DL-LiteA) is a set of DL-LiteA TBoxes and that ES(O,DL-LiteA) is a
set of DL-LiteA TBox assertions. To guarantee the finiteness of the entailment set, we
refer to versions of DL-LiteA allowing only for TBox assertions with existential chains
of bounded length k.

8 Marco Console, Valerio Santarelli, Domenico Fabio Savo

Given a set of DL-Lite(k)A assertions S , and a functionality assertion ϕ over a role R
(resp. attribute U), we denote with clashes(ϕ,S) the set of all assertions involving R
(resp. U) that, together with ϕ, violate the syntactic restriction imposed on DL-Lite(k)A

TBoxes. Hence, clashes(ϕ,S) is a set of role (resp. attribute) inclusion assertions and
assertions with a qualified existential role (resp. attribute) on the right hand side.

Let O be an OWL 2 ontology, and let F be the set containing all the function-
ality assertions in ES(O,DL-Lite(k)A) for which clashes(ϕ,ES(O,DL-Lite(k)A)) 6= ∅.
If F 6= ∅, then ES(O,DL-Lite(k)A) is not a valid DL-Lite(k)A TBox, and there are at
most 2|F| TBoxes Ti which are valid DL-Lite(k)A TBoxes and minimally differ from
ES(O,DL-Lite(k)A). LetMaxSubES(ES(O,DL-Lite(k)A)) be the set of such DL-Lite(k)A

TBoxes. One can compute these TBoxes in MaxSubES(ES(O,DL-Lite(k)A)) by re-
tracting, from ES(O,DL-Lite(k)A), either ϕ ∈ F or the assertions in clashes(ϕ,S), in
order to resolve the violations of the syntactic restriction.

The lemma below guarantees that a TBox in MaxSubES(ES(O,DL-Lite(k)A)) is a
candidate for being one of the TBoxes in ApxMAX(O,DL-Lite(k)A).

Lemma 1. Let O be a satisfiable OWL 2 ontology and let T be a DL-Lite(k)A TBox.
ES(T ,DL-Lite(k)A) ⊆ ES(O,DL-Lite(k)A) if and only if T ⊆ ES(O,DL-Lite(k)A).

In other words, the above lemma guarantees that the first condition in Definition 2
is satisfied by every DL-Lite(k)A TBox in MaxSubES(ES(O,DL-Lite(k)A)), and that
in computing all the TBoxes in ApxMAX(O,DL-Lite(k)A), one can consider only the
assertions in ES(O,DL-Lite(k)A). Moreover, from the monotonicity of the DLs, it di-
rectly follows that for every TBox T in ApxMAX(O,DL-Lite(k)A) there is a TBox in
MaxSubES(ES(O,DL-Lite(k)A)) which is logically equivalent to T .

However, in order for a TBox Ti in MaxSubES(ES(O,DL-Lite(k)A)) to belong to
ApxMAX(O,DL-Lite(k)A), it must also satisfy the second condition of Definition 2,
and thus that there is no other DL-Lite(k)A TBox T ′ ⊆ ES(T ,DL-Lite(k)A) such that
ES(Ti,DL-Lite(k)A) ⊂ ES(T ′,DL-Lite(k)A) ⊆ ES(O,DL-Lite(k)A).

To explain why a TBox in MaxSubES(ES(O,DL-Lite(k)A)) does not necessarily
also satisfy the second condition in Definition 2, we refer to the ontologyO = {∃R− v
B,A v ∃R.B, (funct R)} of Example 2. It is easy to see that ES(O,DL-Lite(1)A) =
{∃R− v B, A v ∃R.B, (funct R), ∃R v ∃R.∃R−, ∃R v ∃R.B, A v ∃R.∃R−,
∃R− v ∃R−.∃R, A v ∃R}, and that clashes((funct R),ES(O,DL-Lite(1)A)) =
{A v ∃R.B, ∃R v ∃R.∃R−, ∃R v ∃R.B, A v ∃R.∃R−, ∃R− v ∃R−.∃R}.
Hence, by following the procedure described above, we have the following two TBoxes
in MaxSubES(ES(O,DL-Lite(1)A)): T1 = {∃R− v B, A v ∃R.B, ∃R v ∃R.∃R−,
∃R v ∃R.B, A v ∃R.∃R−, ∃R− v ∃R−.∃R, A v ∃R}, and T2 = {∃R− v B,
(funct R), A v ∃R}. However, it is clear that only T2 ∈ ApxMAX(O,DL-Lite(1)A). In
fact we have that ES(T1,DL-Lite(1)A) ⊂ ES(T2,DL-Lite(1)A).

We provide the algorithm isApxwhich, given a TBox T and an ontologyO, returns
true if T ∈ ApxMAX(O,DL-Lite(k)A), false otherwise. The algorithm proceeds as fol-

Efficient approximation in DL-Lite of OWL 2 ontologies 9

Algorithm 1: isApx(T ,O)
Input: a DL-Lite(k)A TBox T , a satisfiable OWL 2 ontology O
Output: true or false
begin
E ← ES(T ,DL-Lite(k)A);
S ← ES(O,DL-Lite(k)A) \ E ;
foreach α ∈ S

if T ∪ {α} is a DL-Lite(k)A TBox then return false;
foreach functionality assertion φ ∈ E
E ← E \ clashes(φ, E);

foreach functionality assertion ϕ ∈ S
if ES(E \ clashes(ϕ, E),DL-Lite(k)A) = ES(T ,DL-Lite(k)A) then return false;

return true;
end

lows. Given a satisfiable OWL 2 ontologyO and a DL-Lite(k)A TBox T , it first computes
their entailment sets in DL-Lite(k)A and then computes the set S containing all the asser-
tions in the entailment set ofO in DL-Lite(k)A which are not in the entailment set of T in
DL-Lite(k)A . Then, for every assertion α in S, it attempts to add α to T without violat-
ing any syntactic restriction. If such assertion exists, then T is not an approximation in
DL-Lite(k)A of O. If not, the algorithm continues, fixing E as the entailment set of T in
DL-Lite(k)A , and resolving every violation of the syntactic restriction in E by removing
clashes(φ, E) from E , for every functionality assertion φ in E . This operation guaran-
tees that E is a DL-Lite(k)A TBox. Then the algorithm checks, for every functionality
assertion ϕ in S, if the set obtained from E by removing clashes(ϕ, E) from E is logi-
cally equivalent to E . If this is the case, then it is possible to build a DL-Lite(k)A TBox T ′′
by adding ϕ to the set of assertions obtained in this fashion. T ′′ is a DL-Lite(k)A TBox
that proves that T does not satisfy the second condition of Definition 2. Otherwise, the
algorithm terminates by returning true.

The theorem below establishes termination and correctness of Algorithm 1.

Theorem 2. Let O be a satisfiable OWL 2 ontology, and let T be a DL-Lite(k)A TBox.
isApx(T ,O) terminates, and returns true if and only if T ∈ ApxMAX(O,DL-Lite(k)A).

Given a satisfiable OWL 2 ontology O, Lemma 1 and Theorem 2 suggest Algo-
rithm 2 for computing, up to logical equivalence, the set ApxMAX(O,DL-Lite(k)A).

The following theorem establishes termination and correctness of Algorithm 2.

Theorem 3. LetO be a satisfiable OWL 2 ontology. Then computeApx(O) terminates
and computes, up to logical equivalence, ApxMAX(O,DL-Lite(k)A).

As expected, Algorithm 2 does not return a single TBox, but instead a set of TBoxes.
For application purposes, the approximation that shall be used must be chosen from this
set. A pragmatic approach could be to choose one non-deterministically. Instead, one
could think to leave this choice to the end user, according to the use he intends to make

10 Marco Console, Valerio Santarelli, Domenico Fabio Savo

Algorithm 2: computeApx(O)
Input: a satisfiable OWL 2 ontology O
Output: a set of DL-Lite(k)A TBoxes
begin
S ←MaxSubES(ES(O,DL-Lite(k)A));
foreach Ti ∈ S

if isApx(Ti,O) = false then S ← S \ {Ti};
return S;
end

of it. A more interesting direction could be to achieve the identification of a unique
TBox by applying some preference criteria to the set returned by Algorithm 2.

5 Efficient entailment set computation in DL-Lite

In the previous sections, we have provided an algorithm for computing the set
ApxMAX(O,DL-Lite(k)A) of TBoxes for an OWL 2 ontology O. This computation is
clearly intractable. Indeed, it requires to compute the set ES(O,DL-Lite(k)A), and more-
over, due to the syntactic restriction enforced in DL-Lite(k)A , in the worst case, the cardi-
nality of the set ApxMAX(O,DL-Lite(k)A) is exponential in the number of functionality
assertions in ES(O,DL-Lite(k)A). In particular, the computation of ES(O,DL-Lite(k)A)
is in general very costly, as highlighted also in [3] and [12], since it requires the in-
vocation of reasoning services over an OWL 2 ontology O. This task is performed by
invoking an OWL 2 oracle which can be implemented by an OWL 2 reasoner.

A naive algorithm for computing ES(O,DL-Lite(k)A) is the one described in [12], in
which firstly one computes the set Γ of DL-Lite(k)A TBox assertions which can be built
over the signature Σ, and then, for each assertion α ∈ Γ such that O |= α, one adds α
to ES(O,DL-Lite(k)A).

We now show how to optimize the computation of ES(O,DL-Lite(k)A) through a
technique which drastically reduces in practice the calls to the OWL 2 oracle.

In the computation of ES(O,DL-Lite(k)A), a large portion of the invocations of the
OWL 2 oracle involve assertions in which a general conceptC∃R1...∃Rn involving a non
trivial existential role chain occurs. Empirical observation has brought to light the fact
that this kind of general concept very often does not subsume any concept inO. Hence,
all the invocations of the OWL 2 oracle involving these childless general concepts are
useless. Therefore, at the base of our strategy is the identification of all these childless
general concepts C∃R1...∃Rn , without invoking the OWL 2 oracle.

We use the function subsumed(S1, O), where S1 is a general concept (resp. general
role, general attribute) which returns the set of concepts (resp. roles, attributes) S2 such
that O |= S2 v S1. This function is efficiently performed by the most commonly-used
OWL 2 reasoners, such as Pellet [15], Racer [8], FACT++ [16], and HermiT [7].

Our technique calls, as the first step, for the computation of the classification of
basic concepts, roles, and attributes, which is encoded into a directed graph, in which the
nodes represent the predicates of the ontology, and the edges the inclusion assertions.

Efficient approximation in DL-Lite of OWL 2 ontologies 11

Ontology DL Fragment #O.A. #N.A. Total computation time (ms)
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Mouse ALCI 6.059 12.611 19.163 11.018 40.362 157.738 8.426 9.955 12.173
Pathway EL 10.191 11.999 11.999 14.294 52.374 204.694 11.975 16.498 17.553
Cognitive SHIF(D) 56.883 178.381 474.145 48.006 541.350 6.461.478 348.892 1.812.511 6.832.865
Mammalian AL+ 7.551 7.551 7.551 112.898 413.922 1.618.018 322.527 350.853 350.853
Spatial ALEHI 51.065 82.735 150.195 47.143 4.541.815 445.019.671 27.827 52.742 132.807

Table 1: Evaluation of the optimized algorithm for computing ES(O,DL-Lite(k)A).

After this initial step, the remaining invocations, which we work to minimize, are
those needed for computing the entailed inclusion assertions involving general con-
cepts C∃R1...∃Rn

, and the entailed disjointness. Regarding the former, we exploit the
graph encoding of concept, role, and attribute classification to invoke these subsump-
tion checks in a manner which follows the hierarchical order of these general concepts
C∃R1...∃Rn

, in order to avoid those checks which can be skipped. Consider, for exam-
ple, an ontology O that entails the inclusions A1 v A2 and P1 v P2, where A1 and
A2 are concepts and P1 and P2 are roles. Exploiting these inclusions we can deduce
the hierarchical structure involving general concepts that can be built on these four
predicates. For instance, we know that ∃P2.A2 v ∃P2, that ∃P2.A1 v ∃P2.A2, that
∃P1.A1 v ∃P2.A1, and so on. We begin by invoking the OWL 2 oracle, asking for
the children of the general concepts which are in the highest position in the hierarchy.
So, first we call subsumed(∃P2,O). If subsumed(∃P2,O) = ∅, we avoid invoking
the oracle asking for subsumed(∃P2.A2,O), and so on. Regarding the latter we fol-
low the same procedure, but beginning from the lowest positions in the hierarchy. The
algorithm concludes by asking the OWL 2 oracle for all functionalities entailed by O.

In Table 1 we present a sample of the evaluation tests for this strategy, performed
through a Java-based implementation of this technique. The table reports the number of
invocations to the OWL 2 oracle performed with our optimization (#O.A.), and without
(#N.A.), for computing the entailment set of the ontologies in DL-Lite(k)A , with 1 ≤ k ≤
3. It also reports, for each ontology, the total computation time of ES(O,DL-Lite(k)A).

6 Conclusion

In this paper we address the problem of ontology approximation. We illustrate our ap-
proach to this problem, and provide a comparison with other approaches provided in
literature. We deeply investigate the approximation of OWL 2 ontologies with DL-Lite
TBoxes for OBDA purposes, and provide an algorithm for its computation. Finally,
we present a technique for the optimization of the core procedure of this computation,
whose success we have shown with empirical evaluation. As future work, we plan to
improve the performances in computing the approximation in DL-Lite of OWL 2 on-
tologies by adopting more sophisticated techniques. Moreover, we aim to study reason-
able solutions for addressing the problem of multiple approximations of an ontology. In
particular, for those settings in which the approximation is used in OBDA.

Acknowledgments. This research has been partially supported by the EU under FP7
project Optique (grant n. FP7-318338), and by the EU under FP7-ICT project ACSI
(grant no. 257593).

12 Marco Console, Valerio Santarelli, Domenico Fabio Savo

References

1. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope further. In Proc.
of OWLED 2008 DC, 2008.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

3. Elena Botoeva, Diego Calvanese, and Mariano Rodriguez-Muro. Expressive approximations
in DL-Lite ontologies. Proc. of AIMSA 2010, pages 21–31, 2010.

4. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
The Mastro system for ontology-based data access. Semantic Web J., 2(1):43–53, 2011.

5. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

6. Balakrishnan Chandrasekaran, John R Josephson, and V Richard Benjamins. What are on-
tologies, and why do we need them? Intelligent Systems and Their Applications, IEEE,
14(1):20–26, 1999.

7. Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos Stoilos. A novel ap-
proach to ontology classification. J. of Web Semantics, 10(1), 2011.

8. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of IJCAR 2001,
volume 2083 of LNAI, pages 701–705. Springer, 2001.

9. Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebas-
tian Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C Recom-
mendation, 11 december 2012. Available at http://www.w3.org/TR/2012/
REC-owl2-primer-20121211/.

10. Maurizio Lenzerini. Ontoloogy-based data management. In Proc. of CIKM 2011, pages 5–6,
2011.

11. Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider, editors. OWL 2 Web On-
tology Language Structural Specification and Functional-Style Syntax. W3C Rec-
ommendation, 11 december 2012. Available at http://www.w3.org/TR/2012/
REC-owl2-syntax-20121211/.

12. Jeff Z Pan and Edward Thomas. Approximating OWL-DL ontologies. In Proc. of AAAI 2007,
page 1434, 2007.

13. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data Semantics, X:133–
173, 2008.

14. Bart Selman and Henry Kautz. Knowledge compilation and theory approximation. J. of the
ACM, 43(2):193–224, 1996.

15. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pel-
let: a practical OWL-DL reasoner. Web Semantics: science, services and agents on the World
Wide Web, 5(2):51–53, 2007.

16. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System description.
In Proc. of IJCAR 2006, pages 292–297, 2006.

17. Tuvshintur Tserendorj, Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Approxi-
mate OWL-reasoning with Screech. In Proc. of RR 2008, pages 165–180. Springer, 2008.

18. Holger Wache, Perry Groot, and Heiner Stuckenschmidt. Scalable instance retrieval for the
semantic web by approximation. In Proc. of WISE 2005, pages 245–254. Springer, 2005.

Appendix J

Empirical Evaluation of the Ontology
Approximation Module

In what follows, we present the experimental tests that have been performed to evaluate the efficiency of the optimiza-
tion technique presented in the paper in Appendix I for the computation of the entailment set of an OWL 2 ontology
in OWL 2 QL. The purpose of these tests is to compare the number of invocations to the OWL 2 reasoner that are
executed when adopting the optimized approach presented in the paper, and when adopting the naive approach [56].

The suite of ontologies used during testing contains more than twenty ontologies and was assembled from the
Bioportal ontology repository1. The ontologies that compose this suite are selected to test the scalability of this
approach both to larger ontologies and to ontologies formulated in more expressive languages. In Table J.1 we present
the most relevant metrics of these ontologies.

All tests were performed on a DELL Latitude E6320 notebook with Intel Core i7-2640M 2.8Ghz CPU and 4GB
of RAM, running Microsoft Windows 7 Premium operating system, and Java 1.6 with 2GB of heap space. Timeout
was set at two hours, and execution was aborted if maximum available memory was exhausted.

In Table J.2 we present the results of the evaluation conducted using the Pellet reasoner. Total computation times
are in milliseconds. The results of the experimentation show that this technique is successful in reducing the number
of invocations of the OWL 2 oracle for all tested ontologies.

The paper in Appendix H presents an empirical evaluation of the approximation approach presented in Section
5.5.

As one can notice, by choosing a value for 𝑘 different from ⋃︀𝒪𝑆 ⋃︀, the computation of the entailment set becomes
easier. However, observing Algorithm 2, the number of times that this step must be repeated can grow very quickly.
In fact, the number of sets of axioms in subsetk(𝒪𝑆) is equal to the binomial coefficient of ⋃︀𝒪𝑆 ⋃︀ over 𝑘, and therefore
for large ontologies this number can easily become enormous, and this can be in practice a critical obstacle in the
computation of the k-approximation.

For this reason, the experiments presented in the paper focus on comparing the GSA (k-approximation with
𝑘 = ⋃︀𝒪𝑆 ⋃︀) to the LSA (k-approximation with 𝑘 = 1). Furthermore, a syntactic sound approximation approach is
included in the evaluation, in order to provide a standard baseline against which to compare the results of the GSA
and LSA. This syntactic approximation consists in first normalizing the axioms in the ontology and then eliminating
the ones that are not syntactically compliant with OWL 2 QL.

The suite of ontologies used during testing was assembled from the Bioportal ontology repository. The ontologies
that compose this suite were selected to test the scalability of our approaches both to larger ontologies and to ontologies
formulated in more expressive languages. The implementation of the GSA and LSA used in these experiments adopts
the optimization for the computation of the entailment set presented in the previous section.

For the complete results of the experiments we refer the reader to Table 2 of the paper in Appendix H. As one
can see, these results An analysis of these results leads to the following observations.

First of all, one can observe that it was possible to compute the GSA only for 26 out of the 41 tested ontologies.
The LSA was instead always computed, was quicker than the GSA approach for all but one of the tested ontologies,
and was overall very fast.

Secondly, it is interesting to observe the comparison between the quality of the approximation that one can obtain
through the LSA with respect to that obtained through the GSA. This relationship answers the question of whether the
ontology obtained through the LSA (the “LSA ontology") is able to capture a significant portion of the one obtained

1http://bioportal.bioontology.org/

159

http://bioportal.bioontology.org/

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Ontology DL
fragment Concepts Roles Attr. Positive

inclusions
Negative
inclusions

Max
depth

Max
siblings

Vertebrate Anat. SHIF 43 14 0 58 46 9 9
Protein ALCF(D) 45 50 133 455 69 6 8
Amino Acid ALCF(D) 46 5 1 261 199 3 9
Biopax ALCF(D) 69 55 41 322 13 5 15
Patient Record ALCHI 89 37 1 132 38 12 7
Cog Analysis SHIF(D) 92 37 9 174 2 11 27
Diagnostic ALCOF(D) 96 4 5 121 121 6 9
Pizza SHOIN 100 8 0 291 398 6 23
Time Event ALCOIQ(D) 104 28 7 191 14 10 35
Spatial ALEHI 136 49 0 230 0 2 32
Translational Medicine ALCIF(D) 225 18 6 259 23 12 14
Anatomical Ent. EL 250 13 0 368 0 11 13
Physical Exer. ALCHIF(D) 634 18 9 670 5 9 103
Pediatric AL 886 0 3 893 0 9 50
Mouse Brain ALCI 913 2 0 915 2525 10 28
Pathway EL 1186 2 0 1469 0 9 27
Cognitive Atlas ALC 1701 6 0 4010 0 7 41
Mosquito Anat. EL 1864 5 0 2732 0 13 103
Mouse Anatomy EL+ 3020 2 0 3827 0 17 128
Fly Tax. AL 6599 0 0 6587 0 35 207
Worm Anat. EL 7201 12 0 12342 0 11 1025
Mammalian Phen. AL+ 9403 2 0 11095 0 15 40
Galen ALEHIF 23141 950 0 36964 0 25 1492
Gene SH 39160 12 0 73937 3 18 726
FMA 3.1 ALCOIN(D) 83284 122 63 86941 0 21 219

Table J.1: Metrics of the ontologies selected for evaluation of the optimization technique for the computation
of an entailment set. The Max depth and Max siblings fields indicate respectively the largest depth of a
concept hierarchy in the ontology, and the maximum number of children of any one concept.

through the GSA (the “GSA ontology"). Our tests in fact confirm that this is the case: out of the 26 ontologies for
which we were able to compute the GSA, in only four cases the LSA ontology entails less than 60 percent of the
axioms of the GSA ontology, while in twenty cases it entails more than 90 percent of them. The average percentage of
axioms in the original ontologies entailed by the GSA ontologies is roughly 80 percent, and of the axioms of the GSA
ontologies entailed by the LSA ontologies is roughly 87 percent.

Furthermore, the LSA provides a good approximation even for those ontologies for which the GSA is not com-
putable. In fact, Table 3 of the paper in Appendix H shows the percentage of axioms of the original ontology that are
entailed by the LSA ontology. Out of the twelve ontologies for which we were able to obtain this value (the remaining
three ontologies caused an “out of memory" error), only in three cases it was less than 60 percent, while in four cases
it was higher than 80 percent. These results are particularly interesting with respect to those ontologies for which the
GSA approach is not feasible due to their complexity, as is the case for example for the Dolce ontology, for Galen-A,
and for the Ontology of physics for biology. Indeed, even though these ontologies are expressed in highly expressive
DL languages, the structure of the axioms that compose them is such that reasoning on each of them in isolation
does not lead to much worse approximation results than reasoning on the ontology as a whole: for the nine smallest
ontologies in Table 3 of the paper in Appendix H, for which the GSA fails not because of the size of the ontology, the
average percentage is 68.6.

Finally, both the GSA and LSA compare favorably against the syntactic sound approximation approach. In fact,
the average percentage of axioms in the LSA and GSA ontologies that are entailed by the ontologies obtained through
the SYNT approach are respectively roughly 90 percent and 72 percent. While the latter result is to be expected, the
former is quite significant, even more so when one considers that the LSA is very fast. Indeed, a “gain" of 10 percent
of axiom entailments by the LSA with respect to the SYNT in the case of large ontologies such as Galen and Snomed
translates to tens of thousands of preserved axioms in very little computation time.

In conclusion, the results gathered from these tests corroborate the usefulness of both the global semantic approx-
imation and the local semantic approximation approaches. The former provides a maximal sound approximation in
the target language of the original approach, and is in practice computable in a reasonable amount of time for the
majority of the tested ontologies. The latter instead represents a less optimal but still very effective solution for those
ontologies for which the GSA approach goes beyond the capabilities of the currently-available ontology reasoners.

160

Optique Deliverable D4.2 Techniques for Ontology and Mapping Bootstrapping

Ontology # O.A.I. # N.A.I. Total time (ms)
Vertebrate Anat. 1531 4358 1570
Protein 34043 57461 19262
Amino Acid 730 1406 2126
Biopax 37069 49788 13187
Patient Record 17029 25190 5838
Cog Analysis 10945 26886 5566
Diagnostic 1802 2223 1778
Pizza 2309 4232 9199
Time Event 8766 19589 11020
Spatial 51065 77143 27827
Translational Medicine 10407 20436 15795
Anatomical Ent. 11946 15547 5275
Physical Exer. 24645 51757 14922
Pediatric 2495 14293 2999
Mouse Brain 6059 11018 8426
Pathway 10191 14294 11975
Cognitive Atlas 56883 88006 348892
Mosquito Anat. 63712 95011 4066457
Mouse Anatomy 39614 46302 2989335
Fly Taxonomy 18233 26396 582876
Worm Anat. 508805 875784 4565350
Mammalian Phen. 75551 112898 322527
Galen —— 95262614 timeout
Gene —— 2037652 timeout
FMA 3.1 —— 41127815 timeout

Table J.2: Evaluation of the optimization algorithm for the computation of ES(𝒪,𝑂𝑊𝐿 2 𝑄𝐿) with the
Pellet OWL 2 reasoner. # O.A.I. = number of Pellet reasoner invocations by optimized algorithm, # N.A.I.
= number of Pellet reasoner invocations by non-optimized algorithm. Total time of ES(𝒪,𝑂𝑊𝐿 2 𝑄𝐿)
computation expressed in milliseconds.

161

Appendix K

Optique demo: ISWC 2013 paper

This appendix reports the paper:

− E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjæveland, A. Soylu, D. Zheleznyakov, T. Bagosi, M. Console,
P. Haase, I. Horrocks, S. Marciuska, C. Pinkel, M. Rodriguez-Muro, M. Ruzzi, V. Santarelli, D. F. Savo, K.
Sengupta, M. Schmidt, E. Thorstensen, J. Trame, and A. Waaler. Optique 1.0: Semantic Access to Big Data:
The Case of Norwegian Petroleum Directorate’s FactPages. ISWC Demos 2013.

162

Optique 1.0: Semantic Access to Big Data?

The Case of Norwegian Petroleum Directorate’s FactPages

E. Kharlamov1,??, M. Giese2, E. Jiménez-Ruiz1, M. G. Skjæveland2, A. Soylu2,
D. Zheleznyakov1, T. Bagosi3, M. Console5, P. Haase4, I. Horrocks1,

S. Marciuska3, C. Pinkel4, M. Rodriguez-Muro3, M. Ruzzi5, V. Santarelli5,
D. F. Savo5, K. Sengupta4, M. Schmidt4, E. Thorstensen2, J. Trame4, and

A. Waaler2

1 University of Oxford, UK; 2 University of Oslo, Norway;
3 Free University of Bozen-Bolzano, Italy; 4 fluid Operations AG, Germany;

5 Sapienza Università di Roma, Italy

Abstract. The Optique project aims at developing an end-to-end system
for semantic data access to Big Data in industries such as Statoil ASA
and Siemens AG. In our demonstration we present the first version of the
Optique system customised for the Norwegian Petroleum Directorate’s
FactPages, a publicly available dataset relevant for engineers at Statoil
ASA. The system provides different options, including visual, to formu-
late queries over ontologies and to display query answers. Optique 1.0
offers installation wizards that allow to extract ontologies from rela-
tional schemata, extract and define mappings connecting ontologies and
schemata, and align and approximate ontologies. Moreover, the system
offers highly optimised techniques for query answering.

1 Introduction

Accessing the relevant data in Big Data scenarios is increasingly difficult both
for end-user and IT-experts, due to the volume, variety, velocity, and complexity
dimensions of Big Data. This brings a high cost overhead in data access for large
enterprises. For instance, in the oil and gas industry, engineers spend 30–70% of
their time gathering and assessing the quality of data. The Optique project1 [1,
2] advocates for a next generation of the well known Ontology-Based Data Access
(OBDA) approach to address the data access problem. The project aims at
solutions that reduce the cost of data access dramatically. In our demonstration
we present the first version of the Optique system which we customised for the
Norwegian Petroleum Directorate’s (NPD) FactPages.2

OBDA systems address the data access problem by presenting a general
ontology-based and end-user oriented query interface over heterogeneous data
sources. The core elements in a classical OBDA systems are an ontology, describing

? The research was supported by the FP7 grant Optique (n. 318338).
?? Corresponding author: evgeny.kharlamov@cs.ox.ac.uk
1 http://www.optique-project.eu/
2 http://factpages.npd.no

Ontology
Visualisation

Answer
Visualisation

Visual Query
Formulation

SPARQL
Editor

Ontology and
Mapping

Management

VisualisationQuery Formulation Interface System Interface

Query
Answering

NPD
FactPages

Triple Store

Presentation
Layer

Application
Layer

Data Layer

ReasonerReasoner

Expert
users

End
users

Automatic extract:
ontology &

Direct Mappings

Import
metadata

Semi-automat.
extract:

R2RML Mapps

Saturate ontology
from metadata

Load
ontology

Align
ontology

Add external ontology

Approximate
ontology

Import onto.
vocabulary
& metadata

Installation Wizards
AdvancedBasic

out

NPD
FactPages

Fig. 1. Left : General architecture of the Optique 1.0 system; Right : installation process

the application domain, and a set of mappings, relating the ontological terms
with the schemata of the underlying data sources. End-users formulate queries
using the ontological terms and thus they are not required to understand the
structure of the data sources. These queries are then automatically translated
using the ontology and mappings into an executable code over the data sources.

State of the art OBDA systems, however, have shown among others the
following limitations:
– The usability of OBDA systems is hampered by the need to use a formal

query language. Even if the users know the ontological vocabulary, they may
find difficult to formulate queries with several concepts and relationships.

– The prerequisites of OBDA, i.e., ontology and mappings, are in practice
expensive to obtain. Additionally, they are not static artefacts and should
evolve according to the new end-users’ information requirements.

– The efficiency of the translation process and the execution of the queries is
usually not sufficiently addressed in OBDA systems.

The first version of the Optique system, i.e., Optique 1.0, aims at partially
overcoming the above limitations. Demonstration videos are available at following
address: http://www.cs.ox.ac.uk/isg/projects/Optique/demos/iswc2013/.

2 System Overview

A general three-layer architecture of the Optique system is depicted in Fig-
ure 1 (Left). The current version of the system offers two main functionalities:
to query/visualise data and install/maintain the ontology and the mappings. At
the backend, the system also offers an efficient query processing mechanism.

Optique 1.0 allows to pose queries via a visual query formulation (VQF)
interface, a SPARQL editor, or from a query catalog. VQF exploits reasoning
in order to show both explicit and implicit domain knowledge to guide the
formulation of the query.

Queries are executed by the Query Answering module based on Ontop system.3

Ontop provides functionalities for rewriting SPARQL queries using the system’s
ontology and mappings, syntactic and semantic query optimisation, and query
unfolding. Thus, high efficiency of query answering is guaranteed. Rewritten and
unfolded queries are in SQL and they are executed over the NPD FactPages data,
which is stored in a relational database. The query answers are converted into
triples in order to confirm the format of the system’s ontology, temporally stored
in the system’s triple store, and displayed to the user in a tabular way or on
maps (using OpenStreetMap).

The installation and maintenance of the ontology and the mappings is done via
the Ontology and Mapping Management component. Currently, this component
includes two installation wizards: basic and advanced. In Figure 1 (Right) we
depict workflows of the wizards. The basic wizard exploits the relational database
metadata and automatically extracts an initial version of the ontology and direct
mappings4 to the ontology entities. The advanced wizard, unlike the basic one,
requires the user intervention and an ontology vocabulary as input in order to
(manually) create and edit R2RML mappings.5 Both the basic and advanced
wizards provide functionalities to align the bootstrapped ontology with a state of
the art domain ontology and approximate the resulting ontology if it is outside
the desired OWL 2 QL profile.6 Alignment is performed using the ontology
matching system LogMap,7 which has shown to work well in practice and also
includes mapping repair facilities.

Optique 1.0 is built on top of the Information Workbench8 (IWB), a generic
platform for semantic data management. The IWB provides a shared triple
store for managing the assets of Optique 1.0, such as, ontologies, mappings,
query logs, (excerpts of) query answers, database metadata, etc. The IWB also
provides generic interfaces and APIs for semantic data management, e.g., ontology
processing APIs. In addition to these backend data management capabilities, the
IWB provides a flexible user interface which follows a semantic wiki approach,
based on a rich, extensible pool of widgets for visualisation, interaction, mashup,
and collaboration.

Finally, Optique 1.0 is customised for the NPD FactPages, which is a public,
freely available dataset created to regulate and overlook the petroleum activities
on the Norwegian Continental Shelf (NCS) and contains information collected
from a wide range of activities on the NCS, e.g., operating companies, fields,
discoveries, facilities, pipelines, and seismic surveys—both historic and current
data. Its data has been converted and published as semantic web data [3], of
which parts have been fed into the Optique 1.0 system.

3 http://ontop.inf.unibz.it/
4 http://www.w3.org/TR/rdb-direct-mapping/
5 http://www.w3.org/2001/sw/rdb2rdf/r2rml/
6 http://www.w3.org/TR/owl2-profiles/
7 http://code.google.com/p/logmap-matcher/
8 http://www.fluidops.com/information-workbench/

Fig. 2. Optique 1.0 System, visual query formulation component

3 Demonstration Details

During the demonstration we will describe the NPD FactPages and present
functionalities of the Optique 1.0 system, with the focus on the following aspects:
query formulation and execution, and system installation. These aspects will
be illustrated on the NPD FactPages data. For the query formulation we will
stress our visual query formulation tool that currently supports construction of
tree-shaped conjunctive SPARQL queries. The demonstrated queries will be from
the oil industry domain. An example query is: “Find all fields that are operated
by ’Statoil Petroleum AS’ and which have a facility that produces oil”; it can be
seen in the screenshot of the VQF in Figure 2. We will run queries and present
results both in tables and maps, e.g., the location of “Fields” and “Oil facilities”
will be displayed on maps. Regarding the system’s installation, we will present
both basic and advanced wizards and guide through their steps, that is, loading
metadata, extraction of an ontology and mappings, alignment with the domain
ontology, and approximation of the integrated ontology. We will also show how
to edit extracted direct mappings and define new R2RML mappings.

References

1. M. Giese et al. “Scalable End-user Access to Big Data”. In: Big Data Computing.
Ed. by R. Akerkar. Chapman and Hall/CRC, 2013.

2. E. Kharlamov et al. “Optique: Towards OBDA Systems for Industry”. In: ESWC
postproceedings volume: Best Workshop Papers. 2013.

3. M. G. Skjæveland, E. H. Lian, and I. Horrocks. “Publishing the Norwegian Petroleum
Directorate’s FactPages as Semantic Web Data”. In: The Semantic Web – ISWC
2013. Ed. by H. Alani et al. Vol. 8219. LNCS. 2013.

Appendix L

Optique demo: 2014 (submitted)

This appendix reports the paper:

− E. Kharlamov, M. Giese, P. Haase, E. Jiménez-Ruiz, C. Pinkel, M. G. Skjæveland, A. Soylu, J. Trame, D.
Zheleznyakov, C. Binnig, E. Bjorge, I Horrocks, and A. Waaler. Towards Ontology Based Data Access for
Statoil. (Submitted).

167

1

Towards Ontology Based Data Access for Statoil
E. Kharlamov1 M. Giese2 P. Haase3 E. Jiménez-Ruiz1 C. Pinkel3 M. G. Skjæveland2

A. Soylu2 J. Trame3 D. Zheleznyakov1 C. Binnig4 E. Bjørge5 I. Horrocks1 A. Waaler2
1 University of Oxford; 2 University of Oslo; 3 fluid Operations AG; 4 DHBW Mannheim; 5 Statoil ASA

Abstract—Ontology Based Data Access (OBDA) is a prominent
approach to provide end users with high-level access to data
via an ontology that is ‘connected’ to the data via mappings.
State-of-the-art OBDA systems, however, suffer from limitations
restricting their applicability in industry. Existing solutions focus
on separate critical components of OBDA systems, while, to the
best of our knowledge, there is no end-to-end OBDA solution al-
lowing to deploy an OBDA system in an enterprise from scratch,
effectively maintain and use it. In particular, development of
necessary prerequisites to deploy an OBDA system, i.e., ontologies
and mappings, as well as end user oriented query interfaces, are
poorly addressed. The Optique platform provides an integrated
end-to-end OBDA solution that addresses a number of practical
challenges including the ones above. During the demonstration
the attendees can try the platform with preconfigured scenarios
from the petroleum industry and music domain, and try its
end-to-end functionality: from deployment to query answering.

I. INTRODUCTION

The growth of available information sources in enterprises
requires new efficient methods for data access by domain
experts whose ability to understand and analyse data is at
the core of making business decisions. Currently in Statoil1
and other data intensive companies there is a domination of
centralised approaches, where an IT-expert translates informa-
tion requests of domain experts into Extract-Transform-Load
(ETL) processes to first integrate the data and then to apply
predefined analytical reporting tools [8]. At the same time, in
many scenarios an interactive data exploration, where domain
experts want to access and analyse available data sources
directly, without involving IT-experts, is of a high importance
and centralised approaches are too heavy-weight and inflexible
to do the job [7, 14]. In the Optique project [14] we aim
at developing a direct data access solution that on the one
hand would provide such access to Statoil’s Exploration and
Production Data Store (EPDS) and on the other hand would
be generic enough to be applied in similar industries.

Challenges in providing domain experts with the direct data
access include (i) the complexity of schemata that could con-
tain hundreds and thousands of tables, e.g., EPDS has 3,000
tables with about 37,000 columns, and (ii) the conceptual
mismatch between the language and structures that the domain
experts use to describe the data, and the way the data is de-
scribed and structured by database schema languages. Indeed,
schemata are often integrated from autonomously evolving
systems (yielding schema complexity), that have been adapted
over years to the purpose of the applications they underly—
EPDS was created 15 years ago–and not to the purposes of
being intuitive for domain experts (yielding the conceptual
mismatch). Further important practical challenges in providing
direct data access are (iii) formal query languages, e.g., to

1The Norwegian oil and gas company, http://www.statoil.com/.

access EPDS domain experts should be proficient in SQL,
and (iv) data incompleteness. Regarding the latter challenge,
considerable amount of Statoil exploration data are results of
measurements taken during exploration activities by different
teams and they are often incomplete and fragmented. Thus,
a SQL encoding of a given information need over such data
is inevitably complex, it may involve multiple data sources
and tables referring to conceptually the same data stored
in different places, e.g., queries over EPDS often contain
thousands of words and have 50–200 joins.

Ontology Based Data Access (OBDA) [17] is a prominent,
so-called virtual, approach to direct data access for end users,
i.e., it provides an integration and access layer on top of
databases while the data stays in the original stores. In OBDA
users and data are mediated by an ontology, a semantically
rich conceptual model,2 and users formulate their information
needs as queries over the ontology. These queries are enriched
via logical reasoning over the ontology, translated into SQL
over the underlying databases with the help of mappings
(declarative specifications describing the relationship between
the ontological vocabulary, e.g., ‘wellbore’ or ‘oilfield’, and
the elements of the database schema) and finally executed over
these databases automatically, without IT-experts intervention.

OBDA naturally addresses three out of four challenges
above. Indeed, in contrast to a DB schema, an ontology
describes a domain of interest rather than a structure of a
DB and do it on a high level of abstraction in terms that are
clear for domain experts, thus, avoiding the complexity of
DB schemata required of Challenge (i), and the conceptual
mismatch of Challenge (ii). Challenge (iv) can be addressed
with the help of both mappings and ontologies. Indeed, an
ontology is written in a logic based formal language e.g.,
W3C Web Ontology Language (OWL 2) as a set of OWL 2
axioms, and admits logical reasoning that allows to enrich
ontological queries and address the incompleteness;3 while
mappings can relate one ontological term, e.g., ‘wellbore’, to
many different parts of a DB.

State-of-the art OBDA systems, despite success stories
in various scenarios, e.g. [5], have a number of important
limitations. To the best of our knowledge there is no end-to-
end OBDA solution providing both IT-experts and end users
with the necessary tools to deploy an OBDA system in an
enterprise from scratch, effectively maintain and use it. The
existing solutions, e.g., [4, 5, 18, 19] focus on separate critical
components of OBDA systems, and do not offer sufficient
support for end users oriented query formulation discussed
in Challenge (iii), as well as deployment and maintenance of
OBDA systems, which is in practice expensive.

2Ontologies are common in many areas, e.g., medicine, Semantic Web [11].
3Many efficient off-the-shelf reasoning tools are available, e.g., [9, 19].

2

Databases
External

Ontologies

Metadata
Store

Query
Transformation

Visualisation
Engine

Query
Formulation

Backend

ReasonerBootstrapping
Importing
Layering
Editing

Answer
Visualisation

Query
Formulation

Ontology and
Mapping

Management

Data
Layer

Application
Layer

Presentation
Layer

Fig. 1: General architecture of the Optique system

In the Optique project we have been developing an
end-to-end OBDA system that satisfies Statoil requirements
and addresses a number of practical challenges, including
Challenges (i)-(iv) above. Our solution integrates in a unified
platform a number of existing and novel components and
allows one to deploy, maintain, and use the Optique platform
in enterprises. Among the novel components, there is a
deployment and maintenance module allowing to extract
ontologies and mappings from relational databases in a
semi-automatic fashion, integrate preexisting ontologies in an
existing OBDA deployment instance, and edit mappings. We
also developed a component for query formulation support that
relies on novel techniques of projecting ontologies on graphs
as well as components to visualise and browse query answers.
We evaluated the platform with Statoil over EPDS and with
other real world databases with encouraging results [22].

In this demonstration we show the platform’s end-to-end
functionality with the focus on its novel components. We
demonstrate the platform on two preconfigured scenarios and
allow the attendees to deploy it over either of the two
databases underlying the scenarios, improve the deployment
using the mapping editor, query the resulting deployment, see
and browse query answers on maps, in tables, etc. Our first
demo scenario is inspired by Statoil data:4 we demonstrate
the system on the NPD FactPages database [20], a publicly
available data about petroleum activities on the Norwegian
Continental Shelf that overlaps with EPDS. Since under-
standing NPD FactPages requires basic knowledge about the
petroleum domain, we also demonstrate the platform over a
large open music encyclopedia MusicBrainz [1]. The demo
video illustrating the functionalities of our system and the
demo system is available in [2].5

II. OVERVIEW OF THE OPTIQUE PLATFORM

The general three-layer architecture of the Optique platform
is illustrated in Figure 1. To deploy the platform over a
relational DB, one can use its tools to extract ontologies and
mappings from the DB, incorporate external ontologies, edit
and author mappings of the resulting OBDA instance. After
the system is deployed, the underlying DB can be queried
using our visual query formulation tool that allows to compose
queries by navigation over the system’s ontology. Visually
formulated queries are translated into SPARQL and sent to
the query transformer for processing: query enrichment using
the ontology and further unfolding with the mappings into

4Due to privacy we cannot demo our solution on Statoil’s corporate data.
5A very preliminary version of the Optique platform was presented in [13].

bootstrapped

bootstrapped

imported

layered

alignment

Database

Ontologies

Mappings

Fig. 2: Semi-automatic deployment approach

SQL queries. We rely on the Ontop [19] query transformer,
which is an integral component of the Optique platform. SQL
queries are executed over the data sources underlying the
system by the DBMSs of the sources. We offer a number
of templates and widgets such as tables, timelines, maps,
charts, etc., depending on the data modalities, to visualise
and browse resulting query answers (see two screenshots of
platform’s answer visualisation in the bottom of Figure 3).
The integration of the Optique platform is based on the Infor-
mation Workbench [10], a generic and extensible platform for
semantic data management, providing the platform with many
base components, including interfaces and APIs as well as a
triple store for managing ontologies, mappings, query logs,
(excerpts of) query answers, DB metadata, etc.

III. DEPLOYMENT AND MAINTENANCE

The Optique platform provides semi-automatic support for
deployment, which is schematically depicted in Figure 2. The
platform supports different deployment scenarios. For example
one can start with bootstrapping, i.e., a semi-automatic extrac-
tion of an ontology and mappings from the database. Then,
one can import a pre-existing ontology and ‘connect’ it to the
bootstrapped one via alignment with our LogMap ontology
alignment system [12], which we have been developing during
the last four years. This scenario can be applied, e.g., when
the database schema or some of its fragments have a good
correspondence with the domain of interest, or the available
pre-existing ontology has a limited coverage of the domain of
interest. Another possible scenario is to layer a pre-existing
ontology directly over the database, i.e., to ‘connect’ it to the
database schema with semi-automatically generated mappings.
This scenario can address the case when there are several
good ontologies available and they can serve as entry points
to data for users with potentially different needs. The Optique
platform supports ontologies expressible in the OWL 2 QL
profile of OWL 2 ontology language, which was specifically
designed for efficient data access. Imported or layered, OWL 2
ontologies that cannot be captured in OWL 2 QL are automat-
ically approximated in OWL 2 QL using the technique of [6].
For mapping maintenance the platform offers a novel mapping
editor. We now discuss Optique’s modules in detail.

Mapping Bootstrapping Module automatically extracts so
called direct mappings by relying on and extending the W3C
specification, i.e., it extracts an ontological vocabulary from
a relational schema, and it extracts mappings relating this
vocabulary to the schema via SQL queries. The vocabulary
consists of one class for each table that is not many-to-many,
one property for each attribute and many-to-many table,
and a special property for each foreign key (FK). The

3

bootstrapped mappings are similar to view definitions, but
serve a different purpose and technically more involved. In
particular, mappings address a so-called impedance mismatch
problem: ontologies are object oriented and objects are
identified by URIs, while relational DBs contain tuples of
values. We implemented several strategies to generate URIs
for tuples that rely on heuristics as well as DB constraints,
e.g., primary and foreign keys guarantee coherent URI
generation for tuples from different tables. Figure 3 contains
a screenshot of one of our bootstrapping wizards.

Ontology Bootstrapping Module enriches the bootstrapped
vocabulary with OWL 2 axioms extracted from databases
and implements a number of novel ontology bootstrapping
techniques that are both schema (i.e., transforming explicit
and implicit database constraints into ontological axioms) and
data driven. For example, we turn FKs into OWL 2 axioms
of domain and range restrictions on properties. Here we rely
on FKs that are explicitly in schemas and candidate FKs
that we derive by checking containment between attribute
values in different tables. Computation of implicit FKs is
motivated by our observation that in EPDS some FKs are not
specified. We proposed several techniques to induce OWL 2
class and property hierarchies, as well as disjointness axioms
over bootstrapped vocabularies. For example, by checking that
all attribute names of a table T1 occur in the attributes of a
table T2, we create a candidate OWL 2 class inclusion axiom
saying that the class C[T1] corresponding to T1 is a subclass
of C[T2]. We verify these candidate axioms by looking at
the data instances and return a ranked list of axioms. By
looking at the common set of attributes A between similar
tables T1 and T2 (we have several notions of similarity), we
induce a candidate class C[A] corresponding to A and axioms
that C[T1] and C[T2] are subclasses of C[A]; then, the user
should assign a meaningful name to C[A]. By looking at
tables T1 and T2 with similar structure while non-overlapping
tuples we induce candidate disjointness axioms between C[T1]
and C[T2]. Each primary key that is not null or each unique
attribute is represented as a functional property axiom. We
developed a number of other techniques that we do not present
here due to space limit. After the bootstrapper computes the
set of all candidate axioms, it checks the set for logical
consistency using the ontology reasoner HermiT [9], repairs
the ontology if it is inconsistent, and presents the remaining
candidate axioms to the users for verification, i.e., the user can
edit, accept, or discard candidate axioms.

Ontology Importing Module allows to incorporate an exist-
ing ontology O1 in the system by aligning it with the ontology
O2 already used by the system, e.g., with the bootstrapped
one. Alignment introduces subclass and equivalence axioms
between O1’s and O2’s classes and properties. Based on our
experience with bootstrapping and importing for EPDS, we
extended LogMap so that it guarantees that the resulting
aligned ontology does not violate the so-called conservativity
principle wrt the vocabulary of O2, i.e., it does not add
(potentially) undesired inclusions among O2 classes [21].

Ontology Layering Module offers layering of an input
ontology over an input DB schema resulting in a set of direct
mappings between the ontology and the schema, by relying
on the IncMap system [16] that we developed for the Optique
platform. The module represents the ontology and schema as

graphs ‘preserving’ their structure, computes ranked corre-
spondences between elements of the graphs using lexical and
structural similarities as in the Similarity Flooding algorithm
of Melnik et al. converts the correspondences into direct map-
pings between the ontology and schema, and finally offer the
mappings to the user for verification. Different to bootstrap-
ping and importing, layering can map user-specified fragments
of DB schemata to user-specified fragments of ontologies.

R2RML Mapping Editor of the Optique platform is tailored
towards W3C R2RML mappings for which direct mappings
is a special case, and was evaluated with encouraging re-
sults [15]. It provides an intuitive mapping visualisation, semi-
automatic suggestions of mapping corrections, and step-by-
step wizards for writing complex (non direct) mappings.

IV. QUERY FORMULATION

Visual query formulation component of the platform, Op-
tiqueVQS [23], allows to compose conjunctive tree-shaped
queries by navigation over ontologies, has a widget-based ar-
chitecture, and exploits multiple representation and interaction
paradigms for query composition. Ontologies are object ori-
ented and data conforming to an ontology is a set of statements
of the form ‘wellbore(uri123)’, ‘locatedIn(uri123,uri456)’, and
‘oilfield(uri456)’ that are instantiations of classes and proper-
ties with (URIs representing) objects. These data can be seen
as a data-graph where nodes correspond to objects and labeled
with classes, while edges correspond to properties and labeled
with property names. Data-graphs are often enriched with extra
nodes and edges to encode class and property hierarchies, thus,
they can partially include information from ontological ax-
ioms. Furthermore, it is common to design query formulation
interfaces over an ontology by visualising (relevant fragments
of) its data-graph and the query formulation process boils
down to navigation through the data-graph. For OBDA, where
the ontological data is virtual and the user has access only
to the ontological axioms, data-graph driven query interfaces
are not appropriate. Thus, we developed novel techniques
to ‘project’ axioms rather than data in a graph structure as
an axiom-graph: an OWL 2 axiom is projected into a set
of nodes and edges relating them, where nodes correspond
to classes and edges to properties [3]. Projecting axioms to
graphs is not a trivial task since axioms are first-order logic
formulae and do not have an immediate correspondence to
graphs. In OptiqueVQS query construction is iterative, i.e.,
users construct queries step-by-step, and it boils down to
navigation over an axiom-graph. At the moment the system
supports axiom-graphs encoding those types of axioms which
can be bootstrapped by the deployment module, including
class hierarchies, and domain and range restrictions. E.g.,
consider two axioms saying that the classes ‘wellbore’ and
‘oilfield’ are respectively a domain and range of a property
‘locatedIn’, then the corresponding axiom-graph contains two
nodes labeled respectively with ‘wellbore’ and ‘oilfield’, and
one edge connecting these nodes labeled with ‘locatedIn’. In
Figure 3 there is a screenshot of OptiqueVQS, where in the
upper part there is a query constructed by the user and in the
lower-left part there is a fragment of axiom-graph relevant to
the constructed query. Important feature of OptiqueVQS is that
it does not require to store the axiom-graph: during each query
construction session we compute (using logical reasoning with

422/03/2014 09:39Bootstrapping

Page 1 of 2http://fact-pages.fluidops.net/resource/Bootstrapping

Ontology and Direct Mapping Bootstrapping
1. RDBS to Ontology
1.a. Direct mapping
ontology
2. Ontology alignment
2.a. Aligned ontology
3. OWL 2 QL
approximation
4. Ontology and
Mapping editing

1 - 6 / 70 Show 6 rows (max. 1000)

RDB Schema to Ontology

Available schemata:

http://www.optique-project.eu/resource/factpages-luxembourg/npd-all

licence_oper_hst prlOperDateValidFrom,prlOperDateValidTo,prlNpdidLicence,cmpNpdidCompany 2 8

wellbore_shallow_all wlbNpdidWellbore 3 38

wellbore_exploration_all wlbNpdidWellbore 9 79

licence_transfer_hst prlTransferDirection,cmpNpdidCompany,prlNpdidLicence,prlTransferDateValidFrom 2 11

licence_petreg_message prlNpdidLicence,ptlMessageDocumentNo 1 8

facility_moveable fclNpdidFacility 1 10

Suggest new super classes?

Compact ontology? (columns with the same name will be represented with an unique property)

Table name Primary key #Foreign keys #Attributes

cancel next >

Bootstrapping

Print Query Admin Help Login

Bootstrapping Wizard Visual Query Interface

Query Answers: Table View Query Answers: Map View

Fig. 3: Screenshots of the Optique platform

HermiT) relevant fragments of axiom-graph on-the-fly and
present to the user. As we observed in our user studies [22],
a purely axiom driven query interface suffers from important
practical limitations, e.g., it does not allow users to set specific
data values in queries, e.g., company names. To address this
issue we enrich axiom-graphs with data annotations which we
precompute, i.e., materialise, from the DBs underlying a given
OBDA deployment instance by ‘executing’ relevant mappings.
E.g., for EPDS we precomputed values that are frequently
used, rarely changed, and from relatively small domains; this
includes names of companies and oilfield, geolocations, ranges
of numerical values, e.g., min/max possible depth of wellbores.
Data values are visualised using sliders, drop boxes, etc., see
the lower-right part of the interface in Figure 3.

V. DEMONSTRATION SCENARIO

We will demonstrate the Optique platform end-to-end, i.e.,
from deployment to query answering over two databases.
Moreover, for these databases we prepared OBDA deploy-
ments with fine tuned ontologies and mappings and the at-
tendees of the demo will be able to formulate queries over
these deployments, load queries from query catalogs, execute
queries and browse query answers on maps and in tables. We
next describe the demonstration scenarios in detail.
Demonstration on NPD FactPages One deployment of the
Optique platform is made over the NPD FactPages [20], an
important public dataset heavily used in the oil and gas indus-
try. This DB has 70 tables, 276 different attributes, 96 foreign
keys, and about 50 MB of mostly aggregated data, e.g., seismic
surveys. The choice of this demo database was motivated by
its importance for the oil and gas industry and our work with
Statoil within the Optique project. This deployment was tested
by Statoil engineers who gave us positive feedback. Usage of
this deployment requires a basic knowledge of geophysics.
Demonstration on MusicBrainz Database The other deploy-
ment of the Optique platform is made over the MusicBrainz
database [1], which is an open music encyclopaedia that
contains music information about roughly 830,000 artists, 1.2
million releases, and 13.2 million recordings. This domain
does not require any special knowledge, so it is easy for
anyone to use. This deployment was tested by students and
the results were encouraging, e.g., students were able to
accomplish query formulation tasks using OptiqueVQS.

End-to-End Demonstration Besides querying the two pre-
configured deployments, the demo attendees will be able to
deploy the Optique platform over both NPD FactPages and
MusicBrainz databases and then query their own deployments.
Specifically, one will be able to bootstrap an ontology and
mappings from these databases, either (i) in a ‘simple’ mode,
suitable for inexperienced users, with bootstrapping performed
in an automatic regime using default parameters, or (ii) in a
step-by-step mode that allows a user to tune the deployment
parameters, e.g., to discover implicit database constraints and
propagate them to the bootstrapped ontology. Then, one will
be able to import pre-existing ontologies from our ontology
catalogue. This can be performed in two ways: (i) either after
the bootstrapping, in which case the imported and bootstrapped
ontologies will be aligned, or (ii) using our ontology layering
component, thus, skipping the bootstrapping step. Moreover,
the attendees of the demo will be able to manually edit
mappings with our mapping editor. Finally, they will be able
to query the resulting deployments and browse query answers.

VI. REFERENCES

[1] URL: http://musicbrainz.org/statistics.
[2] URL: http://fact-pages.fluidops.net/resource/demoICDE.
[3] M. Arenas et al. Faceted Search over Ontology-Enhanced RDF

Data. In: CIKM. 2014.
[4] C. Bizer and A. Seaborne. D2RQ—treating non-RDF

databases as virtual RDF graphs. In: ISWC. 2004.
[5] D. Calvanese et al. The MASTRO System for Ontology-Based

Data Access. In: Semantic Web 2.1 (2011).
[6] M. Console et al. Efficient Approximation in DL-Lite of OWL

2 Ontologies. In: DL. 2013.
[7] J. Crompton. Keynote talk at the W3C Workshop on Sem. Web

in Oil & Gas Industry. http://www.w3.org /2008/12/ogws-
slides/Crompton.pdf. 2008.

[8] A. Doan et al. Principles of Data Integration. Morg. Kauf.’12.
[9] Glimm et al. Optimising Ontology Classification. In: ISWC’10.

[10] P. Haase et al. The Information Workbench as a Self-Service
Platform for Linked Data Applications. In: WWW. 2012.

[11] I. Horrocks. What are ontologies good for? In: Evolution of
Semantic Systems. Springer, 2013.

[12] E. Jimenez-Ruiz et al. Large-Scale Interactive Ontology
Matching: Algorithms and Implementation. In: ECAI’12.

[13] E. Kharlamov et al. Optique 1.0: Semantic Access to Big Data:
The Case of Norwegian Petroleum Directorate’s FactPages. In:
ISWC (Posters & Demos). 2013.

[14] E. Kharlamov et al. Optique: Towards OBDA Systems for
Industry. In: ESWC (SE). 2013.

[15] C. Pinkel et al. How to Best Find a Partner? An Evaluation
of Editing Approaches to Construct R2RML Mappings. In:
ESWC. 2014.

[16] C. Pinkel et al. IncMap: Pay as You Go Matching of Relational
Schemata to OWL Ontologies. In: OM. 2013.

[17] A. Poggi et al. Linking Data to Ontologies. In: J. Data
Semantics 10 (2008).

[18] F. Priyatna et al. Formalisation and Experiences of R2RML-
based SPARQL to SQL query translation using Morph. In:
WWW. 2014.

[19] M. Rodriguez-Muro et al. Onto-logy-Based Data Access:
Ontop of Databases. In: ISWC. 2013.

[20] M. G. Skjæveland et al. Publishing the NPD FactPages as
Semantic Web Data. In: ISWC. 2013.

[21] A. Solimando et al. Detecting and Correcting Conservativity
Principle Violations in Onto-to-Onto Mappings. In: ISWC’14.

[22] A. Soylu et al. Experiencing OptiqueVQS: A Multi-paradigm
and Ontology-based Visual Query System for End Users. In:
Under Review.

[23] A. Soylu et al. OptiqueVQS: Towards an Ontology-Based
Visual Query System for Big Data. In: MEDES. 2013.

Appendix M

ISWC 2014: Ontology Alignment for Query
Answering

This appendix reports the paper:

− Alessandro Solimando, Ernesto Jimenez-Ruiz, Christoph Pinkel. Evaluating Ontology Alignment Systems in
Query Answering Tasks. In Proceedings of the International Semantic Web Conference 2014 (Poster paper)

172

Evaluating Ontology Alignment Systems in
Query Answering Tasks

Alessandro Solimando1, Ernesto Jiménez-Ruiz2, and Christoph Pinkel3

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi,
Università di Genova, Italy

2 Department of Computer Science, University of Oxford, UK
3 fluid Operations AG, Walldorf, Germany

Abstract. Ontology matching receives increasing attention and gained
importance in more recent applications such as ontology-based data ac-
cess (OBDA). However, query answering over aligned ontologies has not
been addressed by any evaluation initiative so far. A novel Ontology
Alignment Evaluation Initiative (OAEI) track, Ontology Alignment for
Query Answering (OA4QA), introduced in the 2014 evaluation cam-
paign, aims at bridging this gap in the practical evaluation of matching
systems w.r.t. this key usage.

1 Introduction

Ontologies play a key role in the development of the Semantic Web and are being
used in many application domains such as biomedicine and energy industry. An
application domain may have been modeled with different points of view and
purposes. This situation usually leads to the development of different ontologies
that intuitively overlap, but they use different naming and modeling conventions.

The problem of (semi-)automatically computing mappings between indepen-
dently developed ontologies is usually referred to as the ontology matching prob-
lem. A number of sophisticated ontology matching systems have been developed
in the last years [5]. Ontology matching systems, however, rely on lexical and
structural heuristics and the integration of the input ontologies and the map-
pings may lead to many undesired logical consequences. In [1] three principles
were proposed to minimize the number of potentially unintended consequences,
namely: (i) consistency principle, the mappings should not lead to unsatisfiable
classes in the integrated ontology; (ii) locality principle, the mappings should
link entities that have similar neighbourhoods; (iii) conservativity principle, the
mappings should not introduce alterations in the classification of the input on-
tologies. The occurrence of these violations is frequent, even in the reference
mapping sets of the Ontology Alignment Evaluation Initiative4 (OAEI) [6].

Violations to these principles may hinder the usefulness of ontology map-
pings. The practical effect of these violations, however, is clearly evident when
ontology alignments are involved in complex tasks such as query answering [4].

4 http://oaei.ontologymatching.org/

QF-Ontology DB-Ontology

Query

Vocabulary

Query Evaluation Engine

Fig. 1. Ontology Alignment in an OBDA Scenario

The traditional tracks of OAEI evaluate ontology matching systems w.r.t. scala-
bility, multi-lingual support, instance matching, reuse of background knowledge,
etc. Systems’ effectiveness is, however, only assessed by means of classical infor-
mation retrieval metrics (i.e., precision, recall and f-measure) w.r.t. a manually-
curated reference alignment, provided by the organisers. The new OA4QA track5

evaluates those same metrics, but w.r.t. the ability of the generated alignments
to enable the answer of a set of queries in an OBDA scenario, where several
ontologies exist. Figure 1 shows an OBDA scenario where the first ontology pro-
vides the vocabulary to formulate the queries (QF-Ontology) and the second is
linked to the data and it is not visible to the users (DB-Ontology). Such OBDA
scenario is presented in real-world use cases (e.g., Optique project6 [2, 6]). The
integration via ontology alignment is required since only the vocabulary of the
DB-Ontology is connected to the data. The OA4QA will also be key for inves-
tigating the effects of logical violations affecting the computed alignments, and
evaluating the effectiveness of the repair strategies employed by the matchers.

2 Ontology Alignment for Query Answering

This section describes the considered dataset and its extensions (Section 2.1), the
query processing engine (Section 2.2), and the evaluation metrics (Section 2.3).

2.1 Dataset

The set of ontologies coincides with that of the conference track,7 in order to
facilitate the understanding of the queries and query results. The dataset is
however extended with synthetic ABoxes, extracted from the DBLP dataset.8

Given a query q expressed using the vocabulary of ontology O1, another
ontology O2 enriched with syntethic data is chosen. Finally, the query is executed
over the aligned ontology O1 ∪M∪O2, where M is an alignment between O1

and O2. Referring to Figure 1, O1 plays the role of QF-Ontology, while O2 that
of DB-Ontology.

5 http://www.cs.ox.ac.uk/isg/projects/Optique/oaei/oa4qa/
6 http://www.optique-project.eu/
7 http://oaei.ontologymatching.org/2014/conference/index.html
8 http://dblp.uni-trier.de/xml/

2.2 Query Evaluation Engine

The evaluation engine considered is an extension of the OWL 2 reasoner Her-
miT, known as OWL-BGP9 [3]. OWL-BGP is able to process SPARQL queries
in the SPARQL-OWL fragment, under the OWL 2 Direct Semantics entailment
regime.10 The queries employed in the OA4QA track are standard conjunctive
queries, that are fully supported by the more expressive SPARQL-OWL frag-
ment. SPARQL-OWL, for instance, also support queries where variables occur
within complex class expressions or bind to class or property names.

2.3 Evaluation Metrics and Gold Standard

As already discussed in Section 1, the evaluation metrics used for the OA4QA
track are the classic information retrieval ones (i.e., precision, recall and f-
measure), but on the result set of the query evaluation. In order to compute
the gold standard for query results, the publicly available reference alignments
ra1 has been manually revised. The aforementioned metrics are then evaluated,
for each alignment computed by the different matching tools, against the ra1, and
manually repaired version of ra1 from conservativity and consistency violations.

Three categories of queries will be considered in OA4QA: (i) basic, (ii) queries
involving violations, (iii) advanced queries involving nontrivial mappings.

2.4 Impact of the Mappings in the Query Results

As an illustrative example, consider the aligned ontology OU computed us-
ing confof and ekaw as input ontologies (Oconfof and Oekaw, respectively),
and the ra1 reference alignment between them. OU entails ekaw:Student v
ekaw:Conf Participant, while Oekaw does not, and therefore this represents a
conservativity principle violation. Clearly, the result set for the query q(x) ←
ekaw:Conf Participant(x) will erroneously contain any student not actually
participating at the conference. The explanation for this entailment in OU is
given below, where Axioms 1 and 3 are mappings from the reference alignment.

confof :Scholar ≡ ekaw:Student (1)

confof :Scholar v confof :Participant (2)

confof :Participant ≡ ekaw:Conf Participant (3)

The softening of Axiom 3 into confof :Participant w ekaw:Conf Participant
represents a possible repair for the aforementioned violation.

3 Preliminary Evaluation

In Table 1 11 a preliminary evaluation using the alignments of the OAEI 2013
participants and the following queries is shown: (i) q1(x) ← ekaw:Author(x),

9 https://code.google.com/p/owl-bgp/
10 http://www.w3.org/TR/2010/WD-sparql11-entailment-20100126/#id45013
11 #q(x) refers to the cardinality of the result set.

Category Query #M Reference Alignment Repaired Alignment
#q(x) Prec. Rec. F-meas. #q(x) Prec. Rec. F-meas.

Basic q1 5 98 1 1 1 98 1 1 1
Violations q2 4 53 0.8 1 0.83 38 0.57 1 0.68
Advanced q3 7 - - - - 182 1 0.5 0.67

Table 1. Preliminary query answering results for the OAEI 2013 alignments

over the ontology pair 〈cmt, ekaw〉; (ii) q2(x) ← ekaw:Conf Participant(x),
over 〈confof, ekaw〉, involving the violation described in Section 2.4; (iii) and
q3(x) ← confof :Reception(x) ∪ confof :Banquet(x) ∪ confof :Trip(x), over
〈confof, edas〉. The evaluation12 shows the negative effect on precision of logical
flaws affecting the computed alignments (q2) and a lowering in recall due to
missing mapping (q3). For q3 the results w.r.t. the reference alignment (ra1) are
missing due to the unsatisfiability of the aligned ontology Oconfof ∪Oedas∪ra1.

4 Conclusions and Future Work

We have presented the novel OAEI track addressing query answering over pairs
of ontologies aligned by a set of ontology-to-ontology mappings. From the prelim-
inary evaluation the main limits of the traditional evaluation, for what concerns
logical violations of the alignments, clearly emerged. As a future work we plan
to cover increasingly complex queries and ontologies, including the ones in the
Optique use case [6]. We also plan to consider more complex scenarios involving
a single QF-Ontology aligned with several DB-Ontologies.

Acknowledgements. This work was supported by the EU FP7 IP project Optique
(no. 318338), the MIUR project CINA (Compositionality, Interaction, Negotia-
tion, Autonomicity for the future ICT society) and the EPSRC project Score!.

References

1. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based Assess-
ment of the Compatibility of UMLS Ontology Sources. J. Biomed. Semant. (2011)

2. Kharlamov, E., et al.: Optique 1.0: Semantic Access to Big Data: The Case of
Norwegian Petroleum Directorate’s FactPages. ISWC (Posters & Demos) (2013)

3. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over OWL ontologies.
In: The Semantic Web: Research and Applications, pp. 382–396. Springer (2011)

4. Meilicke, C.: Alignments Incoherency in Ontology Matching. Ph.D. thesis, Univer-
sity of Mannheim (2011)

5. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Challenges.
IEEE Transactions on Knowl. and Data Eng. (TKDE) (2012)

6. Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: Detecting and Correcting Conser-
vativity Principle Violations in Ontology-to-Ontology Mappings. In: International
Semantic Web Conference (2014)

12 Out of the 26 alignments of OAEI 2013, only the ones shown in column #M were
able to produce a result (either for logical problems or for an empty result set due
to missing mappings). Reported precision/recall values are averaged values.

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Relational database
	3.2 Ontologies and the Web Ontology Language (OWL)
	3.2.1 The OWL 2 QL profile

	3.3 Ontology-to-Schema (OBDA) Mappings
	3.3.1 Direct Mapping Specification and R2RML language

	3.4 Ontology-to-Ontology Alignments
	3.4.1 Representation of Ontology Alignments
	3.4.2 Semantic Consequences of the Integration

	3.5 Provenance
	3.6 Preliminaries for ontology approximation
	3.6.1 Basic Definitions

	4 Installation Scenarios
	5 Bootstrapping Techniques
	5.1 Running example
	5.2 Bootstrapping of Mappings
	5.2.1 Layering an Existing Ontology

	5.3 Bootstrapping of Ontologies
	5.3.1 Adding hierarchy to the ontology classes
	5.3.2 Dealing with multiple properties with the same name
	5.3.3 Annotation Schema for the Query Formulation Interface

	5.4 Enhancing Bootstrapping with External Ontology
	5.4.1 Ontology Alignment
	5.4.2 Alignment Repair

	5.5 Ontology Approximation
	5.5.1 Global semantic approximation
	5.5.2 K-approximation
	5.5.3 Approximation in OWL 2 QL
	5.5.4 Computing the entailment set in OWL 2 QL

	5.6 Provenance in Bootstrapped Mappings
	5.6.1 Provenance model
	5.6.2 Provenance at URI level
	5.6.3 Provenance at triple level
	5.6.4 Provenance at graph level

	6 Post-Bootstrapping Analysis
	6.1 Semi-Automatic Ontology Layering
	6.2 Validation of the boostrapped ontology and mappings
	6.3 Guidelines for the manual construction of an OBDA specification

	7 Integration with the Optique Platform
	7.1 RDB Schema Selection and Bootstrapping
	7.1.1 Ontology Alignment
	7.1.2 Ontology approximation
	7.1.3 Ontology an Mapping Storage
	7.1.4 Integrated O&M boostrapper

	8 Evaluation
	8.1 Installing Optique Platform at Statoil
	8.1.1 The database
	8.1.2 Experiments

	8.2 Installing Optique Platform at Siemens
	8.2.1 Siemens Schemata and Ontologies
	8.2.2 Coverage of Query Terms by the Ontologies

	9 Ongoing Work
	9.1 Benchmark for Ontology Alignment
	9.2 Benchmark for Ontology and Mapping Bootstrapping
	9.3 Bootstrapping of Complex Mappings
	9.3.1 Basic Definitions
	9.3.2 Finding classes based on joins
	9.3.3 Finding classes based on clusters of attributes

	Bibliography
	Glossary
	A R2RML direct mapping cases
	B OM 2013: IncMap
	C Initial guidelines for OBDA specification
	D LogMap: OM 2013 paper
	E LogMap: OM 2014 paper
	F ISWC 2014: Conservativity in Ontology Alignments
	G ISWC 2014: Repair in Ontology Alignments
	H ISWC 2014: Ontology Approximation
	I DL 2013: Ontology Approximation
	J Empirical Evaluation of the Ontology Approximation Module
	K Optique demo: ISWC 2013 paper
	L Optique demo: 2014 (submitted)
	M ISWC 2014: Ontology Alignment for Query Answering

