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Executive Summary:
OBDA with Temporal and Stream-Oriented Queries: Optimization
Techniques

In this deliverable we summarize the results of tasks T5.2, T5.3, and T5.5. Whereas in Task T5.1 the stream-
temporal query language framework (STARQL) was formally specified with a grammar and a semantics, the
main objective for work package WP5 in year 2 was to fit this query framework into the OBDA paradigm
by showing how to rewrite and unfold STARQL queries into queries over the backend sources (O5.2).

We show that STARQL queries can be transformed into CQL, a de-facto-standard relational stream query
language, to give a theoretical account of STARQL. For practical experiments we describe the architecture
of two implemented query transformation modules, both mapping STARQL to query languages supported
by the ADP system, which is one of the backend engines used within the Optique platform. The first one
is used for continuous queries as required by the proactive Siemens use case, the second module is used for
temporal reasoning as needed by the reactive diagnosis scenario of the Siemens use case.
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Chapter 1

Introduction

The work described in this deliverable continues the work described in deliverable D5.1 and contributes
results to recent efforts for extending the paradigm of ontology-based data access (OBDA) in order to handle
streaming data [7, 5, 16] as well as temporal data [4, 3]. In particular, in this paper we report on the results
of tasks T5.2, T5.3, and T5.5.

Considering streams the main challenge is that data cannot be processed as a whole. Hence blocking
operators such as the classical grouping operator or aggregation operators cannot be directly be applied
to it. The simple but fundamental idea as introduced by CQL [2] is to apply a (small) sliding window
which is updated as new elements from the stream arrive at the query answering system. This idea of
using stream window operators is also realized in the query language framework STARQL (Streaming and
Temporal ontology Access with a Reasoning-based Query Language). Using the window approach has some
nice consequences for the rewritability and unfoldability issues risen by previous efforts to adapt OBDA to
streams [7, 5, 16]. The simple idea of previous approaches is that answering continuous ontology-level queries
on streams can be reduced to answering ontology-level queries on dynamically updated finite window contents,
which are treated as single ABoxes. Unfortunately, this approach can lead to unintended inconsistencies,
as exemplified in our Siemens use case. For example, multiple measurement values for a sensor collected
at different time points provide for inconsistencies since the value association should be functional. In
STARQL, the idea of processing streams with a window operator is pushed further by defining a finite
sequence of consistent ABoxes for each window.

Considering temporal reasoning for reactive diagnostics in the Siemens use case we found that a window
based approach leads to elegant solutions as well. A window is used to focus on some subset of temporal
data in a temporal query. Now, over time, different foci are relevant for reactive diagnosis. Thus, foci
changes can be modelled by a window virtually “sliding” over temporal data, albeit the case that sliding
is not done in realtime. Indeed, internally, all window instances could be evaluated in parallel while, from
a user perspective, the window “slides” over temporal data (also called historical data). Obviously, in this
case start time points and end time points can be specified for analyses of temporal data. Thus, our query
language framework STARQL, for which we gave a full syntax and semantics in Deliverable D5.1 (see also
corresponding publications [12, 11]) was defined such that it can be used equally for temporal (or historical)
and stream reasoning. The semantics of STARQL does not distinguish between the realtime and the historical
querying scenario—hence querying with STARQL on historical data is going to give the same answers as if
STARQL were run on the same data in real-time.

The ABox sequencing strategy for windows required to avoid inconsistencies, as argued above, makes
rewriting and, more importantly, unfolding of STARQL queries a challenging task. In particular, one may
ask whether it is possible to rewrite and unfold one STARQL query into a single backend query formulated in
the query language provided by the backend systems. In fact, in this deliverable, we demonstrate that such
a one-to-one transformation is possible for the ADP system developed by the UoA partner, and we present
the STARQL engine prototype, integrated into the Optique platform, for realizing this transformation.

Deliverables D8.1 and D1.1, for the Siemens use case and the Siemens requirements, respectively, specify
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engineers’ information needs. In particular the deliverables contain a catalog of queries which Siemens
engineers need to get answered. We conducted tests showing that around 70 percent of the Siemens queries
can be handled right now by the STARQL prototype (see also [9]). Also, for these queries, the prototype
produces the answers in a reasonably short amount of time. For the remaining queries, the STARQL
prototype will be extended to better support numerical aggregate functions.

The deliverable is structured as follows. After this introduction we give a recap on STARQL’s syntax
and semantics (Chapter 2). Chapter 3 discusses safety conditions as introduced in [15, 14]. In Chapter 4
we sketch the transformation of STARQL into CQL-like languages. Chapter 5 describes the architecture of
the standalone STARQL prototype and discusses the experimental results for temporal reasoning with it. In
the last chapter before the conclusion (Chapter 6), we discuss the architecture and the experimental results
with STARQL prototype engine integrated into the Optique platform.
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Chapter 2

The STARQL Framework

We recap the syntax and the semantics for a fragment of STARQL, ignoring among others macro definitions,
aggregators etc. (see [13] for the full version). But note that, here, we use a slightly different syntax within
the HAVING clauses, where we overload the subgraph key word GRAPH known from SPARQL. This is a
purely syntactical decision. A full translation of STARQL into SPARQL (with some additional extensions
to handle streams), was not in the focus of the work related to the relevant tasks of this deliverable, because
the status of the Optique platform does not demand such a translation: in particular the visual interface
cannot express full SPARQL queries.

Here and in the following chapters we assume familiarity with the description logic DL-Lite [6].
For illustration purposes, our running example is a measurement scenario in which there is a (possibly

virtual) stream SMsmt of ABox assertions. Its initial part, called S≤5sMsmt here, contains timestamped ABox
assertions giving the value of a temperature sensor s0 at 6 time points starting with 0s.

S≤5sMsmt = {val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉
val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉, val(s0, 95◦)〈5s〉}

Assume further, that a static ABox contains knowledge on sensors telling, e.g., which sensor is of which type.
In particular, let BurnerT ipTempSens(s0) be in the static ABox. Moreover, let there be a pure DL-Lite
TBox with additional information such as BurnerT ipTempSens v TempSens saying that all burner tip
temperature sensors are temperature sensors.

The Siemens engineer has the following information need: Starting with time point 00:00 on 1.1.2005,
tell me every second those temperature sensors whose value grew monotonically in the last 2 seconds. A
possible STARQL representation of the information is illustrated in the following listing.

1 PREFIX : <http :// www.optique -project.eu/siemens >

2 CREATE STREAM S_out AS

3 CONSTRUCT GRAPH NOW { ?s rdf:type MonInc }

4 FROM STREAM S_Msmt [NOW -2s, NOW]->"1S"^^ xsd:duration ,

5 STATIC ABOX <http :// www.optique -project.eu/siemens/ABoxstatic >,

6 TBOX <http :// www.optique -project.eu/siemens/TBox >

7 USING PULSE WITH START = "2005 -01 -01 T00 :00:00 CET"^^xsd:dateTime ,

8 FREQUENCY = "1S"^^xsd:duration

9 WHERE { ?s rdf:type :TempSens }

10 SEQUENCE BY StdSeq AS seq

11 HAVING FORALL ?i < ?j IN seq ,?x,?y:

12 IF (GRAPH ?i { ?s :val ?x } AND GRAPH ?j { ?s :val ?y }) THEN ?x <= ?y

Though the monotonicity condition seems simple, it should be noted that recent approaches for temporal
DL-Lite logics as that of [4] cannot express it.1

1The reason in case of [4] is that it does not provide an all-quantifier or a negation operator on top of the bindings produced
in the ABoxes.
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Convention: In order to make the examples more readable, we are going to leave out sometimes the prefix
declarations. Moreover, rather than using the awkward xsd notation for durations or for the date times
we use more abstract notations. Additionally, we write variables with a leading question mark only in the
listings for STARQL queries. In the discussion of the semantics and the safety conditions, where we use the
DL oriented syntax, we leave out the question marks.

2.1 Syntax

The example demonstrates many of the syntactical possibilities within STARQL whose grammar is sketched
in Fig. 2.1. The rules for the HAVING clause are not given there but are discussed in more detail in the
following sections.

After the create expressions for the stream and the output frequency the queries’ main contents are
captured by the CONSTRUCT expressions. The head of the construct expression describes the output format
of the stream, using the named-graph notation of SPARQL for fixing a basic graph pattern (BGP) and
attaching a time expression, here NOW, for the evolving time. The general motivation for this approach is
similar to the CONSTRUCT operator in the SPARQL query language. So the actual result in the monotonicity
example (in DL notation) is a stream of ABox assertions of the form MonInc(s0)〈t〉.

S≤5sout = {MonInc(s0)〈0s〉,MonInc(s0)〈1s〉,MonInc(s0)〈2s〉,MonInc(s0)〈5s〉}

Within the WHERE clause one can bind variables w.r.t. the non-streaming sources (ABox, TBox)
mentioned in the FROM clause by using (unions) of BGPs. We assume an underlying DL-Lite logic for the
static ABox, the TBox and the BGP (considered as unions of conjunctive queries UCQs) which allows for
concrete domain values, e.g., DL-LiteA [6]. In this example, instantiations of the sensors ?s are fixed w.r.t.
a static ABox and a TBox given by URIs.

The heart of the STARQL queries is the window operator in combination with the sequencing mechanism.
In the example, the operator [NOW-2s, NOW]->"1S"^^xsd:duration describes a sliding window operator,
which collects the timestamped ABox assertions in the last two seconds and then slides 1s forward in time.
Every temporal ABox produced by the window operator is converted to a sequence of (pure) ABoxes. At
every time point, one has a sequence of ABoxes on which temporal (state-based) reasoning can be applied.
This is realized in STARQL by a sorted first-order logic template in which state stamped UCQs conditions
are embedded. We use here again the GRAPH notation from SPARQL. In the example above, the HAVING
clause expresses a monotonicity condition stating that for all values ?x that are values of sensor ?s w.r.t
the ith ABox (subgraph) and for all values ?y that are values of the same sensor ?s w.r.t. the jth ABox
(subgraph), it must be the case that ?x is less than or equal to ?y.

2.2 Semantics

STARQL queries have streams of ABox assertions (RDF triples) as input and output. So, the semantics for
STARQL has to explicate how the output stream of ABox assertions is computed from the input streams.
Using compositionality, the semantics definition for STARQL can be accomplished by defining the semantic
denotations for the substructures of the query and then by composing them to the denotation of the whole
query. We sketch the semantics of the window operator, of the sequencing, and of the HAVING clause.

A stream of ABox assertions is an infinite set of timestamped ABox assertions of the form ax〈t〉. The
timestamps stem from a flow of time (T,≤) where T may even be a dense set and where ≤ is a linear order.
Let S be a stream name with its denotation JSK being such a stream of timestamped ABox assertions. We
declare the denotation of the windowed stream ws = S winExp = S [timeExp1 , timeExp2]->sl as a stream
of temporal ABoxes, where a temporal ABox is a set of timestamped assertions.

Let λt.g1(t) = JtimeExp1K and λt.g2(t) = JtimeExp2K be the functions corresponding to the time ex-
pressions. We did not explicate rules for the time expressions timeExp1, timeExp2, but mention here that
these may be any reasonable arithmetical terms using possibly the variable NOW and leading to a well defined
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starqlQuery −→ [prefixDeclaration] createExp

createExp −→ CREATE STREAM name AS constrExp

pulseExp −→ PULSE WITH START = startTime[, END = endTime], FREQUENCY = freq

constrExp −→ CONSTRUCT constrHead(~x, ~y)

FROM listWinStreamExp [ , listOfRessources]

[USING pulseExp]

WHERE whereClause(~x)

SEQUENCE BY seqMethod [HAVING safeHavingClause(~x, ~y)]

constrHead(~x, ~y) −→ GRAPH timeExp BGP(~x, ~y) [ , constrHead ]

listWinStreamExp −→ (name | constrExp)windowExp [START = startTime END = endTime]

[ , listWinStreamExp]

windowExp −→ [ timeExp1 , timeExp2 ]->sl

listOfRessources −→ typedRessourceList [ , listOfRessources]

typedRessourceList −→ STATIC ABOX listofURIstoStaticABoxes |
TEMPORAL ABOX listofURIstoTemporalABoxes |
TBOX listofURIstoTBoxes

whereClause(~x) −→ Ψ(~x) (Ψ(~x) a union of BGPs with distinguished variables ~x)
seqMethod −→ StdSeq | SeqMethod(∼)

Figure 2.1: Syntax for STARQL (without HAVING clauses)

interval. The pulse declaration defines a subset T ′ ⊆ T of the time domain. Assume, it has the following
form

1 USING PULSE WITH START = st , FREQUENCY = fr

T ′ is the set of timestamps of the stream of temporal ABoxes JwsK. Let T ′ be represented by the increasing
sequence of timestamps (ti)i∈N, where t0 is the starting point fixed in the pulse declaration.

Now, one defines for every ti the temporal ABox Ãti such that (Ãti , ti) ∈ JwSK. If ti < sl − 1, then
Ãti = ∅. Else set first tstart = bti/slc × sl and tend = max{tstart − (g2(ti) − g1(ti)), 0}, and define on that
basis

Ãti = {(ass, t) | (ass, t) ∈ JSK and tend ≤ t ≤ tstart}

In our example, timeExp1 = NOW − 2s (so JtimeExp1K = λt.t − 2), timeExp2 = NOW and sl = 1s; the
example’s results for second 4s and 5s are the following.

Time Temporal ABox
4s {val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉}
5s {val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉, val(s0, 95◦)〈5s〉}

If the STARQL query refers to more than one stream, then these are joined by time-wise union of the
temporal ABoxes of the windowed streams, which is possible as the pulse declaration synchronizes all streams
of temporal ABoxes.

This window semantics is that described in Deliverable D5.1 and mimics the window operator definition
for CQL [2]. From the implementation point of view, an operational semantics is more helpful—at least
it gives a different perspective on the intended semantics of the window. Hence, we illustrate the window
semantics within a more operational mode. Let us assume that the following query template is given:
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1 CREATE STREAM S_{out}

2

3 ...

4 FROM S [NOW -wr, NOW] -> sl

5 USING PULSE WITH START = st , FREQUENCY = fr

6 ...

So, timeExp1 = NOW-wr, where wr is a constant denoting the window range, and timeExp2 = NOW.
We distinguish a pulse time tpulse, and a stream time tstr. (For more than one stream one would have
more local stream times.) The pulse time tpulse evolves regularly according to the frequency specification,
tpulse = st −→ st + fr −→ st + 2fr −→ . . . . In contrast, the stream time tstr is jumping/sliding and is
determined by the trace of endpoints of the sliding window. More concretely, if Let t′end denotes the next
stream time, then the evolvement of tstr is specified as follows:

tstr tstr +m× sl
IF tstr +m× sl ≤ tpulse (for m ∈ N maximal)

The window contents at tpulse is given by: {ax〈t〉 ∈ SMsmt | tstr − wr ≤ t ≤ tstr}. Note that always
tstr ≤ tpulse. This a crucial point which guarantees that applying the window on real-time streams does not
give different stream elements than applying the window on a simulated stream from a DB with historical
data.

To make this more concrete assume the following instantiation of the query:

1 CREATE STREAM S_{out} AS

2 ...

3 FROM STREAM S [NOW -3s, NOW] -> "3S"^^ xsd:duration

4 USING PULSE WITH START = "2005 -01 -01 T00 :00:00 CET"^^xsd:dateTime ,

5 FREQUENCY = "2S"^^xsd:duration

6 ...

Then we get the following evolvements of the pulse time and the streaming time.

tpulse : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→
tstr : 0s→ 0s→ 3s→ 6s→ 6s→ 9s → 12s→

An example for multiple streams demonstrates the synchronization effect of the pulse.

1 CREATE STREAM Sout AS

2 CONSTRUCT { ?sens rdf:type :RecentMonInc }<NOW >

3 FROM STREAM S_{Msmt_1} [NOW -3s, NOW]->"3S"^^ xsd:duration ,

4 STREAM S_{Msmt_2} [NOW -3s, NOW]->"2S"^^ xsd:duration

5 USING PULSE WITH START = "2005 -01 -01 T00 :00:00 CET"^^xsd:dateTime ,

6 FREQUENCY = "2S"^^xsd:duration

7 SEQUENCE BY StdSeq AS seq

8 HAVING (...)

tpulse : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→
tSMsmt1

: 0s→ 0s→ 3s→ 6s→ 6s→ 9s → 12s→
tSMsmt2

: 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→

The stream of temporal ABoxes is the input for the sequencing operator which produces for every time
point of the pulse a sequence of (pure) ABoxes. The sequencing methods used in STARQL refer to an
equivalence relation ∼ to specify which assertions go into the same ABox. The equivalence classes [x]∼ for
x ∈ T form a partition of T . We restrict the class of admissible equivalence relations to those ∼ that respect
the time ordering, i.e., the equivalence classes under ∼ should be intervals on the time domain.

Now, we define the sequence of ABoxes generated by seqMethod(∼) on the stream of temporal ABoxes
as follows: Let (Ãt, t) be the temporal ABox at t. Let T ′ = {t1, . . . , tl} be the time points occurring in Ãt
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and let k the number of equivalence classes generated by the time points in T ′. Then define the sequence at
t as (A0, . . . ,Ak) where for every i ∈ {0, . . . , k} the pure ABox Ai is

Ai = {ax〈t′〉 | ax〈t′〉 ∈ Ãt and t′ in ith equivalence class}

In the example above, the equivalence is the identity (keyword StdSeq for standard sequencing), so that the
resulting sequence of ABoxes at time point 5s is trivial as there are no more than two ABox assertions with
the same timestamp: {val(s0, 92◦)}〈0〉, {val(s0, 93◦)}〈1〉, {val(s0, 95◦)}〈2〉.

A non-standard sequencing strategy may be any congruence ∼ on time domain. For example, define
x ∼ y iff bx/2c = by/2c for all x, y ∈ T = N. Then the temporal ABoxes for seconds 4 and 5 from the
example above are as follows.

Time Temporal ABox (Window contents before sequencing)
4s {val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉}
5s {val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉, val(s0, 95◦)〈5s〉}

Time Window contents after ∼ sequencing
4s {{val(s0, 94◦), val(s0, 92◦)}〈0〉, {val(s0, 93◦)}〈1〉}
5s {{val(s0, 92◦)}〈0〉, {val(s0, 93◦), val(s0, 95◦)}〈1〉}

STARQL’s semantics for the HAVING clauses relies on the certain answer semantics (see [6]) for the
embedded UCQs. The idea is to view the tuples in the certain answer sets as members of a sorted FOL
structure It. Assume that the sequence of ABoxes at some given time point t is seq = (A0, . . . ,Ak). Then
the domain of It consists of the index set {0, . . . , k} as well as the set of all individual constants and all value
constants of the signature. Now, if the HAVING clause contains, for example, the state tagged condition
query val(s, x)〈i〉 (with embedded UCQ val(s, x)), then we introduce for it a ternary relation symbol R and
replace val(s, x)〈i〉 by R(s, x, i) in the HAVING clause. This symbol is denoted in It by the certain answers
of the embedded query extended with the index i: RIt = {(a, b, i) | (a, b) ∈ cert(val(s, x),Ai ∪Astatic ∪T )}.
Constants are denoted by themselves in It. This already fixes a structure It with finite denotations of its
relation symbols. The evaluation of the HAVING clause is then nothing more than evaluating the FOL
formula (after the substitutions) on the structure It.
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Chapter 3

A Safe Fragment for STARQL HAVING
clauses

As demonstrated with the monotonicity example, STARQL allows a sorted FOL to reason on the ABox
sequences. The semantics for the HAVING clauses rests on the structure It whose domain ∆It does not
consist only of the individual and value constants in the interpretations of the relations, the so called ac-
tive domain according to database terminology [1], but the whole set Dom of individual constants, value
constants and the indices produced in the sequencing. With a safety mechanism on the HAVING clauses it
can be guaranteed that the evaluation of the HAVING clause on the ABox sequence depends only on the
active domain, i.e., HAVING clauses are domain independent (d.i.). Formally, a query q is d.i. iff for all
interpretations I1, I2 having domains ∆I1 ,∆I2 ⊆ Dom and identical denotation functions (·)I1 = (·)I2 , the
answers for q in I1 is the same as the answers for q in I2. Without a safety mechanism, a HAVING clause of
the form ?y > 3, with free concrete domain variable ?y, would be allowed: the set of bindings for ?y would
be infinite, namely, the set of all real number bigger than 3. In particular, ?y > 3 is not d.i.

Figure 3.1 contains the grammar for the HAVING clauses with its safety mechanism realized by variable
guards/adornments. This grammar was introduced in the paper [15]. The safe HAVING clauses (denoted
by the start symbol safeHavingClause) contain only those variables for individuals that have guard status
+. We illustrate the meaning of the rules with Rule (3.1) for the OR case and then go in more detail w.r.t.
adornments.

hCl(~z~g
1∨~g2) −→ hCl(~z~g

1
) OR hCl(~z~g

2
) (3.1)

This rule says the following: if during the derivation of a formula starting the term safeHavingClause(~z)
one reaches a term of the form hCl(~z~g

1
), then one may infer a disjunction of two having clauses under some

conditions on the variables ~z occurring in them. More concretely: If during production a clause hCl(~z~g)
with variables ~z and some adornment ~g for them is reached, then Rule (3.1) justifies the production of
hCl(~z~g

1
) OR hCl(~z~g

2
) if the adornment ~g can be represented as ~g = ~g1 ∨ ~g2, i.e., if ~g is the result of applying

a function ∨ on the adornment lists ~g1, ~g2.
The adornments ~g = g1, . . . , gn are lists of guard status gi (g-status for short), where gi ∈ {+,−,−−, ∅}.

We use ~z~g as an abbreviation for zg11 , . . . , z
gn
n where ~z = z1, . . . , zn and ~g = g1, . . . , gn. We assume the

ordering ∅ � −− � − � + on the guards. This ordering is relevant for the calculation of gmax in the rule
of Fig. 3.1 where the clause is constructed from an arbitrary clause hCl and an identity atom. The special
case of gi = ∅ is a convenience notation meaning for x∅ that x does not occur at all in the formula.

The meanings of the functions ¬,∨,∧,→ over vectors of g-status are fixed by the tables in Figure 3.2.
Combinations with the g-status ∅ is handled in an extra table 3.2b. So for example, assume that one has
produced a HAVING clause F (x−−1 , x+2 , x

−
3 ), where x1 has g-status −−, x2 has g-status +, and x3 has g-

status −. Then rule (3.1) and the tables allow, e.g., the production of F1(x
−−
1 , x+2 , x

−
3 ) OR F2(x

+
1 , x

+
2 , x

∅
3).

Let us verify this for the variable x1: Its g-status −− in F1 and its g-status + in F2 combines to the g-status
−− = −− ∨+ in F—according to the entry for the pair (−−,+) in the table of ∨.

Now, we will show how to transform HAVING clauses to SQL. In particular this shows that the HAV-
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safeHavingClause(~z) −→ hCl(~z+) (for ~z ∈ V arval ∪ V arind)

term(i+) −→ i

term() −→ max | 0 | 1
stateAtom(~y+, i+) −→ GRAPH i Ψ(~x, ~y)

(for a UCQ Ψ(~x, ~y) and
~x ⊆ X, ~y ⊆ V arind ∪ V arval \X)

stateAtom(x−−, y−−) −→ x = y (for y, x /∈ X ∪ V arval)
stateAtom(x+) −→ x = a | a = x

(for a ∈ (X ∩ V arind) ∪ Constconst, x ∈ V arind \X)
vAtom(z+1 ) −→ z1 = v | v = z1

(for z1 ∈ V arval \X and v ∈ Constval)
vAtom(z+1 ) −→ z1 = z2 | z2 = z1

(for z1 ∈ V arval \X, and z2 ∈ X ∩ V arval)
vAtom(z−−1 , z−−2 ) −→ z1 op z2

(for op ∈ {<,<=, >, >=, =}; z1, z2 ∈ V arval \X)

vAtom(z−−1 ) −→ z1 op z2 (for op ∈ {<,<=, >, >=}, z1 ∈ V arval \X,
z2 ∈ V alconst ∪ (X ∩ V alvar)

stateArithAtom(ig11 , i
g2
2 ) −→ term1(i

g1
1 ) op term2(i

g2
2 )

(for op ∈ {<,<=, =, >, >=})
stateArithAtom(ig11 , i

g2
2 , i

g3
3 ) −→ plus(term1(i

g1
1 ), term2(i

g2
2 ), term3(i

g3
3 ))

hCl(~z~g) −→ stateAtom(~z~g) | vAtom(~z~g) | stateArithAtom(~z~g)

hCl(~z~g
1∨~g2) −→ hCl(~z~g

1
) OR hCl(~z~g

2
)

hCl(~z~g
1∧~g2) −→ hCl(~z~g

1
) AND hCl(~z~g

2
) (both conjuncts are

not of form x = y for x, y ∈ V arind ∪ V arval)
hCl(zgmax

1 , zgmax
2 , ~z3

g3) −→ hCl(zg11 , z
g2
2 , ~z3

g3) AND zh1
1 = zh2

2

(for gmax = max{g1, g2, h1, h2})
hCl(~z¬~g) −→ NOT hCl(~z~g)

hCl(~z~g
1→~g2) −→ IF hCl(~z~g

1
) THEN hCl(~z~g

2
)

hCl(~z~g
1→~g2) −→ FORALL ỹ IF hCl(~z~g

1
, ~y+) THEN hCl(~z~g

2
, ~yg)

hCl(~z~g
1∧~g2) −→ EXISTS ỹ hCl(~z~g

1
, ~y+) AND hCl(~z~g

2
, ~yg)

Figure 3.1: Grammar for HAVING clauses
(the set of variables X is the set of variables that are bounded by the WHERE clause in the STARQL query)
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g1 g2 ¬g1 g1 ∧ g2 g1 ∨ g2 g1 → g2
−− −− −− −− −− −−
−− − −− −− − −
−− + −− + −− −−
− −− + −− − −−
− − + − − −
− + + + − +
+ −− − + −− −
+ − − + − −
+ + − + + −

(a) Variables existent in both subformulas

g1 g2 g1 ∧ g2 g1 ∨ g2 g1 → g2
−− ∅ −− −− −−
− ∅ − − −−
+ ∅ + −− −
∅ −− −− −− −−
∅ − − − −
∅ + + −− −−

(b) Variable missing in one subformula

Figure 3.2: Combination of Guards

ING clause language is d.i. as SQL is d.i.Ḟor a formula F let SRNF (F ) be the formula in safe range
normal form (SRNF) [1, S.85] resulting from applying the following normalization steps: Rename variables
such that no variable symbol occurrence is bound by different quantifiers and such that no variable occurs
bound and free; rewrite IF F THEN G to NOT F OR G; eliminate double negations; rewrite FORALLz with
NOT EXISTS z NOT; push NOT through using de Morgan rules. These steps are applied in some order until
they cannot be applied anymore. A formula F is said to be in SRNF iff F = SRNF (F ).

Domain independence for formulas in SRNF is handled in the literature [1] also by a guard concept. This
is realized by a function rr as follows.

1. rr(r(t1, . . . , tn)) = variables in t1, . . . , tn.

2. rr(x op y) = ∅ for x, y ∈ V arval, op ∈ {<,>,≤,≥}

3. rr(x op v) = rr(v op x) = ∅ for x ∈ V arval, v ∈ Constval, op ∈ {<,>,≤,≥}

4. rr(x = a) = rr(a = x) = {x} (for x ∈ V ar, a ∈ Const)

5. rr(F AND G) = rr(F ) ∪ rr(G)

6. rr(F AND (x = y)) =

{
rr(F ) ∪ {x, y} if rr(F ) ∩ {x, y} 6= ∅
rr(F ) else

7. rr(F OR G) = rr(F ) ∩ rr(G)

8. rr(NOT F ) = ∅

9. rr(EXISTS ~xF ) =

{
rr(F ) \ ~x if ~x ⊆ rr(F )
return ⊥ else

The definition of rr in [1] are simpler than our adornment technique used in the grammar because of two
main reasons: the authors in [1] assume that the formula is already in SRNF form, whereas we do not.
Moreover, we define the HAVING clause grammar in the context of the grammar for STARQL queries. So,
we have to take care of variables X that are already bounded by the WHERE clause. This leads to many
sub-cases in our grammar.

A formula F in SRNF is called range restricted iff free(F ) = rr(F ) and no subformula returns ⊥. A
well-known theorem states that range restricted formulas in SRNF are exactly as expressive as relational
algebra—which is known to be d.i. Hence it is well-known that safe range formulas are d.i. (in particular all
sets of answers are finite).

Relating our set of g-status with the set of g-status used in [1] leads to the desired theorem.

13



Optique Deliverable D5.2 OBDA with Temporal and Stream-Oriented Queries: Optimization Techniques

Theorem 3.0.1 All safe HAVING clauses (considered as queries on the DB It of certain answers within
the actual ABox sequence at t) are d.i.

Let safehCl(~u+) be a safe HAVING clause. Let safehClNF (~u) be the formula resulting from applying
the SRNF normalization rules. The status of all the guards are not changed by the rules. Now, we see that
for all subformulas G(~x+, ~y−, ~z−−) in safehClNF (~u) we have

(*) rr(G) = ~x (= all variables in G with g-status +)

The proof of (∗) is by structural induction on construction of the formula safehcLNF (~u). LetG(~x+, ~y−, ~z−−)
be an atomic clause. Then rr(G) = ~x follows from looking at the adornments of the atomic clauses G in Fig.
3.1 and checking that only those with g-status + are in rr(G). Hereby, variables x ∈ X, where X is defined in
the grammar, are treated as constants in the definition of rr(·). The case of conjunction is clear too as any +
g-status combines with any other g-status to +. Now take negation G = NOT F (~x+, ~y−, ~z−−). The definition
of rr for the negation case says rr(G) = ∅. Actually we know that F is an atomic formula. Looking at all
variables for these formulas in the grammar we see that no one of these as g-status −, hence actually ~y = ∅
and we have G(~x−, ~z−−), so there is no variable in G with g-status +, hence indeed we get that rr(G) = ∅ =
the variables in G with g-status +. The case for disjunction is clear as a positive g-status results for a variable
in a disjunction only if both variables exists in the disjuncts and are labelled +. Now the last case is that
of the existential quantifier G = EXISTS xF (~x+, ~y−, ~z−−). According to induction assumption rr(F ) = ~x.
G may result from a transformation of an exists subformula EXISTS xhCl(x+, . . . ) AND F ′ in hcl(~u+). So
the variable x is by definition in the set ~x of variables in F with g-status +, hence rr(G) = rr(F ) \ {x}.
But G does not occur as free variable in G, hence the set of variables in G with g-status + is actually ~x
without x, which proves the induction claim. Now G may also result from applying somewhere the rule
FORALL ≡ NOT EXISTS NOT. But again, there is a formula with variables that have g-status + and are
bounded by the all quantifier so that one gets again a formula of the form EXISTS xhCl(x+, . . . ) AND F ′.
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Chapter 4

Stream Reasoning by Mapping STARQL to
CQL

Having shown domain independence for the HAVING clause language is the main step towards using STARQL
for OBDA in the classical sense according to which queries on the ontology level are rewritten and unfolded
into queries over the data source. As a data source we consider any database system providing a declarative
language with stream capabilities. For the STARQL engine which is integrated into OPTIQUE platform and
which is discussed in this section, the relevant language is the one provided by the stream extended version
of the ADP system. In the standalone STARQL prototype, which (as of now) is used for temporal reasoning
only, it may be the SQL language supported by PostgreSQL or it may be Datalog. In fact the transformation
to SQL is done via Datalog (more concretely Prolog). For the details we refer the reader to Chapter 5.

4.1 CQL

CQL [2] is one of the early relational stream query languages having served as a blue print for many stream
query languages even on the ontological level (e.g., [7],[5],[16]). We are going to describe CQL in more detail
in order to understand the general idea of the unfolding strategy and in order to exactly see which additional
and necessary features the stream query language of ADP adds to CQL.

Next to streams, CQL presupposes a data structure called relation; this data structure lifts relations of
classical relational algebra to the temporal setting; formally, let be given a classical relational schema, then
a (temporal) relation R is a total function from the time domain T to the set of finite bags (multi-sets) of
tuples over the given schema. The (classical) relation at time point t ∈ T is called instantaneous relation.

CQL defines operators that map streams to relations (the most important being the window operator),
operators that map relations to streams, and moreover relation-to-relation operators, which adapt the usual
relational algebra operators to the temporal setting. Stream-to-stream operators can be simulated by the
given operators.

The most important stream-to-relation construct is that of a sliding window. Let S denote a stream and
wr be an element of the time domain T . The time-based sliding window operator with window range wr is
denoted by [Range wr] and attached to stream arguments in post-fix notation. The relation R denoted by
S [Range wr] is defined for every t ∈ T as follows:

R(t) = {s | (s, t′) ∈ S and (t′ ≤ t) and t′ ≥ max{t− wr, 0}}

So the bag of tuples at time point t consists of all tuples from S whose timestamps are in the interval
[t − wr, t]—with an intuitive handling of the cases of all t with t ≤ wr. The special case of a window with
zero window range is also denoted by [Now]; the case of an unbounded window by [Unbound].

The following example illustrates the effects of time sliding windows. Let be given a stream S of times-
tamped tuples having the form (sensor, value)〈time〉. The smallest time granularity of time measurements
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is seconds, so we can presuppose that T is given by the natural numbers standing for time points measured
in seconds. Now let the stream S start as follows:

S = {(s0, 80◦)〈0〉, (s1, 93◦)〈0〉, (s0, 81)〈1〉, (s0, 82◦)〈2〉, (s0, 83◦)〈3〉,
(s0, 85◦)〈5〉, (s0, 86◦)〈6〉....}

Then the relation R = S [Range 2] is given by:

t : 0 1 2 3 4 5 6

R(t) : {(s0, 80),
(s1, 93)}

{(s0, 80),
(s1, 93),
(s0, 81)}

{(s0, 80),
(s1, 93),
(s0, 81),
(s0, 82)}

{(s0, 81),
(s0, 82),
(s0, 83)}

{(s0, 82),
(s0, 83)}

{(s0, 82),
(s0, 83),
(s0, 85)}

{(s0, 83),
(s0, 85),
(s0, 86)}

Please note, that the bag-approach for defining the relation is not unproblematic; the bags are times-
tamp agnostic, i.e., the tuples within a bag do not contain timestamps anymore. Formulating functionality
constraints then becomes a demanding issue as these are not formulated w.r.t. a specific schema but directly
over the domain. Take, for example, in a measurement scenario the functionality dependency (fd) constraint
on measurement tuples with the content that a sensor can have maximally one value for every time point,
respectively. Applying a window operator to the stream measurement may lead to a bag of tuples where the
same sensor has more than one value. So, streaming these tuples out again (with e.g. the RStream operator
below) may lead to a stream of tuples violating the fd constraint.

A generalized version of the sliding window allows the specification of the sliding parameter, i.e. the
frequency at which the window is slided forward in time. The semantics of R = S [Range wr Slide sl] is
as follows:

R(t) =

{
∅ if t < sl
{s | (s, t′) ∈ S and max{bt/slc · sl − wr, 0} ≤ t′ ≤ bt/slc · sl} else

So the sliding window operator takes snapshots of the stream every sl second; for all time points in between
multiples of sl the snapshot is the same. The relation of the window range parameter wr and the slide
parameter sl determines the effects of the sliding window; if twr = sl, then the window is tumbling, if
wr > sl, then the window contents are overlapping, an if sl > wr, then the operator has a sampling effect.
For other stream-to-relation operators such as the tuple based window operators or partition operators, the
reader is referred to the original article [2].

Relation-to-relation operations are the usual ones known from SQL adapted to the new temporal relation
setting by using them time-point wise on the instantaneous relations. In particular, the join of (temporal)
relations is done pointwise. For example, the CQL expression in Listing 4.1 joins the relations of the window
application results to a measurement and an event stream, filters a subset out according to a condition and
projects out the sensor IDs.

1 SELECT m.sensorID

2 FROM Msmt[Range 1] as m, Events[Range 2] as e

3 WHERE m.val > 30 AND e.category = Alarm AND

4 m.sensorID = e.sensorID

Listing 4.1: Example relation-to-relation operators in CQL

As relation-to-stream operators, the authors of [2] define Istream (giving a stream of newly inserted
tuples w.r.t. the last time point), Dstream (giving a stream of newly deleted tuples w.r.t. the last point) and
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Rstream (returning all elements in the relation). Assuming that for t < 0 one specifies R(t) = ∅ for t < 0
the formal definitions are:

Istream(R) =
⋃
tinT

(R(t) \R(t− 1))× {t}

Dstream(R) =
⋃
t∈T

(R(t− 1) \R(t))× {t}

Rstream(R) =
⋃
t∈T

R(t)× {t}

There are two observations regarding the CQL window semantics which, amongst others, have conse-
quences for realizing a transformation from STARQL to CQL (see below). First of all, the that the original
time points of the stream elements get lost by applying the window operator. All tuples in the window get
the times of the endpoint of the window. A second observation is that the CQL semantics, taken literally,
do not work for non-discrete time flows. Take, e.g., the continuos time flow (T,≤) = (R,≤) and consider
the input stream S = {i〈i〉 | i ∈ N} with unary tuples where the instantiations of the argument are their
timestamps. Then RStream(S[RANGE 1 SLIDE 1]) is not a “stream”, as it has cardinality of R.

So is the CQL semantics flawed? Actually, the “solution” is hidden int the stream engine layer, where
one assumes a heartbeat with smallest possible time granularity. So the time flow is again discrete but may
be annotated with real-time values. In STARQL (and in ADP) this granularity parameter is pushed to the
query language level, so that the user can specify the granularity (see below).

4.2 Rewriting and Unfolding

The general procedure for rewriting and unfolding STARQL queries into queries over the backend source is
illustrated below.

1 Input: STARQL Query SQ , Mappings M Output: CQL query OQ

2 SQ1 = Rewrite(SQ , TBox(SQ))

3 SQ2 = SRNF(SQ1)

4 OQ = Unfold(SQ2 , M)

Rewriting is done locally w.r.t. every embedded UCQ, using the TBox of the STARQL query SQ.
This is possible as we assume (similar to [4]) that the TBox language does not contain temporal oper-
ators. In particular, this means that the TBox cannot express inter-temporal constraints. For example,
assume that the TBox contains the role axiom tempV al v val stating that the role of having a tempera-
ture value is a sub-role of having a value. Assume further that SQ contains a HAVING clause that starts
with EXISTS i GRAPH i {?s :val ?x} . . . . Then SQ would be rewritten into SQ1 with a HAVING clause
starting with EXISTS i GRAPH i ({?s :val ?x} UNION {?s :tempVal ?x}). Here, the embedded CQ
{?s :val ?x} is perfectly rewritten with the classical perfect rewriting algorithm.

The result SQ1 is transformed to a query SQ2 in (range-restricted) SRNF, which can be unfolded to an
SQL like streaming language query OQ. In the following we illustrate the unfolding process into CQL queries.

Following the classical OBDA approach we assume that the streams to which STARQL refers are produced
by mappings. In our example, let be given a CQL stream of measurements Msmt with schema Msmt(MID,

MtimeStamp, SID, Mval). A mapping takes a CQL query over this stream and produces a stream of
assertions of the form val(x, y)〈t〉.

val(x, y)〈z〉 ←− SELECT Rstream(f(SID) as x, Mval as y,

MtimeStamp as z) FROM Msmt[NOW]

The main challenge of an unfolding strategy for STARQL is the new data structure of an ABox sequence,
which is not representable in CQL. Hence, we assume that the STARQL queries use the standard sequencing
only, so that from every state i in the sequence associated with tNOW one can reconstruct the timestamps
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of the tuples occurring in the ABox Ai. A second assumption is that all tuples in the input stream contain
an attribute timestamp the value of which is the same as the value of the timestamp. Such a method is
also discussed in [2], in order to do computations directly on the timestamps. More concretely, we assume
a default stream-to-stream operator implemented into the CQL answering system and applied directly after
every window-to-stream operator. It transforms d〈t〉 to (d, t)〈t〉, thereby extending the schema of the tuples
in the input stream by a time attribute for the output schema. If d already contains a time attribute,
then it is overwritten by the new values. In the definition of the mapping for val(x, y)〈t〉, we applied this
assumption, where we refer to the time attribute MtimeStamp of the input stream Msmt. Note that this
assumption mitigates the weakness of time-ignoring bag semantics in the window operators of CQL.

The following listing shows the unfolded CQL pendant of the STARQL query. The outer WHERE clause
is the pendant (in SRNF form) of the monotonicity formula expressed in the HAVING clause.

1 CREATE VIEW windowRelation as

2 SELECT * FROM Msmt[RANGE 2s Slide 1s];

3 SELECT Rstream(sensor , timestamp)

4 FROM windowRel , sensorRel

5 WHERE sensorRel.type = ’’BurnerTipTempSens ’’ AND

6 NOT EXISTS (

7 SELECT * FROM

8 (SELECT timestamp as i, value as x FROM windowRelation),

9 (SELECT timestamp as j, value as y FROM windowRelation)

10 WHERE i < j AND x > y );
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Chapter 5

Temporal Reasoning by Mapping STARQL
to SQL

For reactive diagnosis as investigated in Optique with the Siemens power plant use case, specific patterns,
aka events, are to be found in previously recorded data. Data represents measurement values of sensors
on the one hand, and turbines with assembly groups, mounted sensors and their properties on the other.
Reactive diagnosis deals with analyzing data in order to understand reasons for engine shutdown. Not in
all cases predefined queries lead the engineers to the right conclusion. In some cases new queries have to be
formulated.

If we consider again the information need discussed in Chapter 2, it becomes clear that in the Siemens
use case, patterns to be detected are defined w.r.t. certain time windows in which relevant event take place
(e.g., monotonically increasing in a window of 10 minutes, say). The goal is to find window instances and
representations for describing the events based on real-world data. Thus, in this context, temporal queries
are formulated using time windows in the same spirit as time windows are used for continuous queries in
stream processing systems as discussed in the previous chapter. Metrical aspects indeed play a prominent
role in these use cases. Hence, due to the requirements of the use cases, Optique focuses on developing a
window-based temporal query language for formulating “historical queries”, with the idea that windows slide
over the data in a virtual manner. Indeed, in principle, all windows can be processed in parallel if there are
no dependencies of a window on results obtained for previous window, of course.

Considering the learning effort of an engineer, we argue that “historical” window-based temporal queries
should be easy to formulate, given that the engineer is familiar with continuous queries for online stream-
based data processing. Indeed, the same queries can be registered as a continuous query or a historical query.
For the latter, it should obviously possible to specify a period of interest, i.e., a starting point and an end
point for finding answers, e.g., as discussed above, to be used for reactive diagnosis.

5.1 Transforming Historical STARQL Queries into SQL

While in Chapter 4 continuous STARQL queries are translated to CQL, here we translate historical queries
to SQL in order to provide a reference to backends well-known in the literature. In Chapter 6 we provide
translations to the ADP engine developed in Optique as part of the Optique platform, and we deal with
translations for continuous as well as for historical queries being mapped to ADP.

19



Optique Deliverable D5.2 OBDA with Temporal and Stream-Oriented Queries: Optimization Techniques

1 PREFIX : <http :// www.optique -project.eu/siemens >

2 CREATE STREAM s_out AS

3 CONSTRUCT GRAPH NOW { ?s rdf:type :MonInc }

4 FROM STREAM s_msmt [NOW -"2S"^^ xsd:duration , NOW]->"1S"^^ xsd:duration

5 WITH START = "2005 -01 -01 T01 :00:00 CET "^^ xsd:dateTime ,

6 END = "2005 -01 -01 T02 :00:00 CET "^^ xsd:dateTime

7 STATIC ABOX <http :// www.optique -project.eu/siemens/ABoxstatic >,

8 TBOX <http :// www.optique -project.eu/siemens/TBox >

9 USING PULSE WITH START = "2005 -01 -01 T01 :00:00 CET"^^xsd:dateTime ,

10 FREQUENCY = "1S"^^xsd:duration

11 WHERE { ?s rdf:type :TempSens }

12 SEQUENCE BY STDSEQ AS seq

13 HAVING FORALL ?i < ?j IN seq :

14 FORALL ?x, ?y :

15 IF (GRAPH ?i { ?s val ?x } AND GRAPH ?j { ?s val ?y })

16 THEN ?x <= ?y ;

Figure 5.1: Example STARQL query for monotonic increase

The following example for a historical query finds sensors whose readings increase monotonically within a
specified window time. The query is very similar to the continuous query explained in Chapter 2.

The example demonstrates that in STARQL window-based historical queries are built using the same
principles as continuous queries. A few changes should be discussed, however. For historical queries, for each
stream a start timestamp and an end timestamp can be specified in order to denote some range of interest in
the past1. Compared to the continuous version of the query in Chapter 2, we habe changed the start time to
an absolute value. We assume that a query is registered to the system after the stream s_msmt is declared
(see below).

In Figure 5.2 it is shown how historical STARQL queries are processed internally. The prototype is

1Despite the fact that this could in principle also be specified in the mapping declarations, we prefer not to have mappings
for particular queries and provide additional stream parameters.
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Figure 5.2: Processing pipeline for transforming a STARQL query into an SQL query.
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implemented in Prolog, and the rules sets used as inputs in Figure 5.2 are DCG rules or Prolog rules.
A query is parsed in order to produce parse tree data structures, which then are normalized. Normal-

ization converts FORALL expressions in the HAVING clause into NOT EXISTS expressions by pushing
negation inside in the obvious way (starting from NOT NOT FORALL). Our example query is converted
into the following expression.

1 PREFIX : <http :// www.optique -project.eu/siemens >

2 CREATE STREAM s_out AS

3 CONSTRUCT GRAPH NOW { ?s rdf:type :MonInc }

4 FROM STREAM s_msmt [NOW -"2S"^^ xsd:duration , NOW]->"1S"^^ xsd:duration

5 WITH START = "2005 -01 -01 T01 :00:00 CET "^^ xsd:dateTime ,

6 END = "2005 -01 -01 T02 :00:00 CET "^^ xsd:dateTime

7 STATIC ABOX <http :// www.optique -project.eu/siemens/ABoxstatic >,

8 TBOX <http :// www.optique -project.eu/siemens/TBox >

9 USING PULSE WITH START = "2005 -01 -01 T01 :00:00 CET"^^xsd:dateTime ,

10 FREQUENCY = "1S"^^xsd:duration

11 WHERE { ?s rdf:type :TempSens }

12 SEQUENCE BY STDSEQ AS seq

13 HAVING NOT EXISTS ?i < ?j IN seq :

14 EXISTS ?x, ?y :

15 ( GRAPH ?i { ?s val ?x } AND

16 GRAPH ?j { ?s val ?y } AND

17 ?x > ?y ) ;

The normalized query is then translated into a datalog program (see Figure 5.2) with fresh predicate names
being generated automatically. For every language element found in the parse tree (e.g., NOT EXISTS...),
we generate a new datalog rule. In the body of the first (outermost) rule, datalog code for the WHERE
clause is inserted (q0).

For every {?x rdf:type C} ({?x R ?y})) mentioned in the WHERE or HAVING clause we insert
C(WID, X) (R(WID, X, Y)) in the datalog program. WID is an implicit parameter representing a so-called
window ID. Correspondingly, for every GRAPH i {?x rdf:type C} (GRAPH i {?x R ?y})) mentioned in the
HAVING clause we insert R(WID, X, Y, i) (R(WID, X, Y, i)).

The WHERE expression is rewritten and unfolded due to the axioms in the TBox given in the query
and the mapping rules, respectively. How the corresponding view is computed is explained in the previous
chapter. Here we assume that sensors are created by a view defined below.

The following datalog code is generated for the HAVING clause of the query above (atom using built-in
predicates are moved to the end of the body).

1 q0( WID , S ) :- sensor( WID , S ).

2 q1( WID , S ) :- q0( WID , S ), not q2( WID , S ).

3 q2( WID , S ) :- seq( WID , I ), seq( WID , J ), q3( WID , I, J, S ), I < J.

4 q3( WID , I, J, S ) :- q4( WID , X, Y, I, J, S ).

5 q4( WID , X, Y, I, J, S ) :- val( WID , S, X, I ), val( WID , S, Y, J ), X > Y.

For the CREATE STREAM and CONSTRUCT expression in the query, a clause

1 s_out(T, S) :- q1(WID , S), window_range(WID , T).

is added to the datalog program. From the mapping specifications for the stream s_msmt, the relations val
and sensor are also defined using datalog clauses.

1 val( WID , Sensor , Value , Index ) :-

2 window( Index , Timestamp , WID ),

3 measurement( Sensor , Value , Timestamp ).

4

5 sensor( WID , Sensor ) :- val( WID , Sensor , _Value , _Index ).

6

7 seq( WID , Index ) :- window( Index , _Timestamp , WID ).
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The table measurement contains raw data. The table window is generated according to the window
specification in the query. This will be explained in the next section.

During clause generation, SQL transformation rules are generated (see Figure 5.2). Transformation rules
represent the name of the SQL relation, the number of arguments as well as the type of each parameter.
SQL transformation are statically specified also for the relations val, window, and seq.

The datalog program generated by the module Datalog Transformer (see Figure 5.2) is then optimized.
Optimization eliminates wrapper clauses (see the clause q3 in our concrete example). In addition, body
atoms are removed if bindings are already generated by other atoms. In our concrete example, it is the
case that both seq atoms can be eliminated in q2. This has the consequence that also the clause for seq is
eliminated such that the datalog program looks as follows:

1 s_out(Right , S) :- q1(WID , S), window_range(WID , _Left , _Right).

2 q1( WID , S ) :- sensor( WID , S ), not q3( WID , S ).

3 q3( WID , S ) :- val( WID , S, X, I ), val( WID , S, Y, J ), I < J, X > Y.

4 sensor( WID , Sensor ) :- val( WID , Sensor , _Value , _Index ).

5 val( WID , Sensor , Value , Index ) :-

6 window( Index , Timestamp , WID ),

7 measurement( Sensor , Value , Timestamp ).

The datalog program is non-recursive and safe, and therefore can easily be translated to SQL. The column
names for relations are given by the SQL Transformation Rules generated by the Datalog Transformer (see
above) as well as by explicit mapping rules given as input to the processing pipeline (see Figure 5.2). We
proceed from bottom to top in the above datalog program in order to produce corresponding views.

1 CREATE VIEW val AS

2 SELECT rel1.WID , rel2.SID , rel2.VALUE , rel1.INDEX

3 FROM window rel1 , measurement rel2

4 WHERE rel2.timestamp = rel1.timestamp ;

5

6 CREATE VIEW sensor AS

7 SELECT rel1.WID , rel1.SID

8 FROM val rel1 ;

9

10 CREATE VIEW q3 AS

11 SELECT rel1.WID , rel1.SID AS S

12 FROM HASVAL rel1 , HASVAL rel2

13 WHERE rel2.WID = rel1.WID AND rel2.SID = rel1.SID AND

14 rel1.INDEX < rel2.INDEX AND

15 rel1.VALUE > rel2.VALUE ;

16

17 CREATE VIEW q1 AS

18 SELECT rel1.WID , rel1.SID AS S

19 FROM sensor rel1

20 WHERE NOT EXISTS(SELECT *

21 FROM q3 rel2

22 WHERE rel2.WID = rel1.WID AND rel2.S = rel1.SID ) ;

23

24 CREATE VIEW s_out AS

25 SELECT rel2.right , rel1.S AS SID

26 FROM q1 rel1 , window_range rel2

27 WHERE rel1.WID = rel2.WID;

The translation to SQL relies on definitions for tables window and window_range. In the next section we
describe how both tables are computed.
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5.2 Generating a Window Table With PostgreSQL

The tables window and window_range are based on the stream specification(s) in the query. Given start and
end points for accessing temporal data as well as window size and window slide specifications, the goal is to
compute a representation for all possible windows (with specific time points for the window range) together
with all indexes for states that are built for the window by the sequencing method specified in the query.
For the standard sequencing method the generation of the window and window_range relations uses specific
features of PostgreSQL such as the generate_series function, and is shown below.

1 CREATE TABLE window_range AS

2 SELECT row_number () OVER (ORDER BY x.timestamp) - 1 AS wid ,

3 x.timestamp as left

4 x.timestamp + $window_size$ as right

5 FROM (SELECT generate_series($start$ , $end$ , $slide$) AS timestamp) x ;

6

7 CREATE VIEW wid AS

8 SELECT DISTINCT r.wid , mp.timestamp

9 FROM measurement mp, window_range r

10 WHERE mp.timestamp BETWEEN r.left AND r.right ;

11

12 CREATE TABLE window AS

13 SELECT wid , rank() OVER (PARTITION BY wid ORDER BY timestamp ASC) as ind , timestamp

14 FROM wid ;

The expressions in $s are parameter for which concrete values are inserted. $slide$, $window_size$,
$start$, and $end$ are taken from the stream specification of the historical query. If $start$, and $end$

all data and the minimum and maximum time point is computed automatically, as shown in the following
query:

1 CREATE TABLE window_range AS

2 SELECT row_number () OVER (ORDER BY x.timestamp) - 1 AS wid ,

3 x.timestamp as timestamp

4 FROM ( SELECT generate_series(MIN(mp.timestamp),

5 MAX(mp.timestamp),

6 $slide$) AS timestamp

7 FROM measurement mp

8 ) x ;

5.3 Summary of Evaluation Using PostgreSQL

The table window is generated in less than 10 minutes for all sensors and measurement data in the database
SiemensAnonymous2. The table s_out is computed for this database in a few minutes.

Separating the computation of the window and window_range table from the computation of s_out has
a big advantage. Different WHERE and HAVING clauses can be specified, which, in turn, lead to different
s_out queries, which are evaluated fast because the window and window_range table need not be recomputed.
In addition, further optimizations are possible in case the window and window_range table can be computed
by a selection due to a containment relation. For multiple queries made available to the system, window and
window_range tables can be shared. This will be investigated as part of Task T5.4 in the next year.

Please note that PostgreSQL per se is an RDBMS and not a data stream management system (DSMS).
The window table generation above is a one-step generation; but it could be made dynamical in order to
get a real relational DSMS on top of PostgreSQL. The stream-enhanced ADP language already offers the
operators needed for a DSMS.
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Chapter 6

Stream Reasoning and Temporal Reasoning
by Mapping STARQL to ADP

6.1 ADP

As explained above, we had to make some restrictions on the STARQL language and assume additional
features for CQL to make the STARQL-CQL transformation possible. ADP has some nice features that ease
the transformation.

ADP [17] is a system for large scale elastic data processing on the cloud. It follows the relational data
model and it offers a high level language which is based on SQL92, extended with a wide variety of UDFs,
offering a high-level and flexible syntax for expressing data pipelines. The user can easily extend the query
language of ADP by writing their own UDFs in Python, and these UDFs are eventually executed efficiently
inside the system. Into this direction, ADP, to which we will refer by ADPStream in the following, was
extended with stream functionalities, offering a very flexible means to unfold STARQL queries as it provides
window indexing operators with which sequences of ABoxes can be simulated. ADP adopts state of the art
techniques for the efficient execution of complex dataflows in a distributive environment. So it provides the
high distributability capabilities that are needed for performant OBDA applications as the one developed
in Optique. ADPs specific stream capabilities are extended within this project in order to deal also with
the demands of the stream query language STARQL within the Optique project. So, regarding the point
of expressivity, the query language of ADPStream offers more operators than other relational DSMS—and of
course more than RDBMs such as PostgreSQL.

ADP already extends the SQL query language with the possibility to generate virtual tables without
explicitly formulating the create expressions. This capability is also used in ADPStream in order to read out
from csv-files (e.g., with measurement data) the data and represent them in a virtual table (keyword file

in the listing.) In ADP, one can specify any source as input for the file constructor, not only a file as
the constructor name may suggest. In particular, it is possible to specify a TCP socket—a feature that is
relevant for applying ADP for real streaming scenarios.

Listing 6.1 demonstrates the stream capabilities of ADPStream that are of relevance for the unfolding of
STARQL queries to ADP queries in synchronous settings. (ADP also has a non-temporal row based window
which is useful for processing streams with out of order arrival of stream elements). A stream SMsmtADP

is constructed from the .csv file using a timesliding window for which one can explicitly specify the time
column (here 0). The time window parameter sets the size of the window (also called the range); the frequency
parameter sets the sliding parameter (here one second) and the granularity parameter in combination with
the equivalence parameter defines the granularity according to which tuples are gathered in the same window
content. The value floor just hints to a strategy for labeling the wid with some timestamp. The window
operator works here by attaching to the tuples of the input table an additional column with a window ID
(wid). If one were to apply a window operator twice then this would result in the addition of another wid.

The ADP query in Listing 6.2 is the unfolded counterpart of the monotonicity STARQL query as produced
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1 CREATE STREAM SMsmtADP AS

2 SELECT sensor AS x, value AS y, timestamp AS z}

3 FROM (ordered timeslidingwindow timecolumn :0 timewindow :0 frequency :1 granularity :1

equivalence:floor select * from (file ’burner3.csv ’ header:t));

Listing 6.1: ADP Stream Generated From a File

1 CREATE stream s_out_1 AS select * from

2 (ordered timeslidingwindow timecolumn :0 timewindow :2 frequency :1 granularity :1 equivalence

:floor SELECT * FROM (file ’burner3.csv ’ header:t));

3

4 CREATE STREAM s_out_1_having AS

5 SELECT wid AS wid0 , max(timestamp) AS now

6 FROM s_out_1

7

8 WHERE NOT EXISTS(

9

10 SELECT * FROM

11 (SELECT value as x, timestamp as i, wid as wid1 FROM s_out_1) as triple1

12

13 NATURAL JOIN

14

15 (SELECT value as y, timestamp as j, wid as wid2 FROM s_out_1) as triple2

16 WHERE wid0 = wid1 AND wid1 = wid2 AND i < j AND x > y)

17 AND (s_out_1 ." sensor" = ’TC255 ’) AND s_out_1 ." value" IS NOT NULL

18 GROUP BY wid;

19

20 SELECT ’:s0’ as Subject , ’rdf:type ’ as Predicate , ’:RecentMonInc ’ as Object , now as ts

21 FROM s_out_1_having;

Listing 6.2: Monotonicity STARQL query unfolded into ADP

by the STARQL engine prototype. In lines 1, 2 a stream view is built which is in essence the result of the
STARQL window operator to the stream produced by the mapping. In line 4 a stream of tuples (with
window IDs) is generated that mimics the stream of ABox sequences. As the window IDs are not labelled
with timestamps—but these are needed in the STARQL query—the max(timestamp) expression in line refers
to maximal timestamp in the window content. Line 8 to 18 just realize the SRNF form of the HAVING
clause (see section on HAVING clause). The conjunction of the atoms are handled by joins. Lines 20,21
output the stream in the format as prescribed by the STARQL query.

6.2 A Stream-Temporal Implementation for Optique

In Chapter 5 we described a general tranformation strategy for transforming historical queries to SQL. In
this chapter we will show how we transform continous STARQL queries to the ADP system used in Optique
as part of the Optique platform. Later, we will evaluate the performance of our example query on the
ADP-system.

As an example for a continous query we consider again the query from Figure 5.1. The query finds sensors
whose values increase monotonically within a specified time window. In this case we want to translate a
continous query, therefore we have to change the query and drop the information on start and end time for
evaluating all available data. The modified query is shown in Figure 6.1.

The Optique STARQL to ADP-SQL translator is implemented in Java and makes use of specific features
of the ADP-system; e.g., the translator uses several integrated Python operators such as the integrated
sliding window operator. ADP-SQL describes the internal query language of the ADP which actually is a
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1 PREFIX : <http :// www.optique -project.eu/siemens >

2 CREATE STREAM s_out AS

3 CONSTRUCT GRAPH NOW { ?s rdf:type :MonInc }

4 FROM STREAM s_msmt [NOW -"2S"^^ xsd:duration , NOW]->"1S"^^ xsd:duration

5 STATIC ABOX <http :// www.optique -project.eu/siemens/ABoxstatic >,

6 TBOX <http :// www.optique -project.eu/siemens/TBox >

7 USING PULSE WITH FREQUENCY = "1S"^^xsd:duration

8 WHERE { ?s rdf:type :TempSens }

9 SEQUENCE BY STDSEQ AS seq

10 HAVING FORALL ?i < ?j IN seq :

11 FORALL ?x, ?y :

12 IF (GRAPH ?i { ?s val ?x } AND GRAPH ?j { ?s val ?y })

13 THEN ?x <= ?y ;

Figure 6.1: Example continous STARQL query for monotonic increase

combination of SQLite with custom Python operators.
Figure 6.2 shows the internal translation process for queries into ADP-SQL. The query translation is

analog to the SQL translation from chapter 5.1. The STARQL query is parsed into an object data structure
with an ANTLR-Parser and specific grammar.

In the next step the HAVING clause is normalized, which is identical to the process in the standard SQL
translation from chapter 5.1, where we replace the FOR ALL structure by a NOT EXISTS NOT construct.

For the further processing we handle different parts of the query differently and build a pipeline of
streams, which together represent one single STARQL query.

The first stream that has to be translated into ADP-SQL consists of two parts. It reads the data and
splits it into windows. The ADP version of 2013 that is used here loads data directly by using a file operator
implemented in Python. The window generation—which was done in the SQL implementation using a
specific SQL query—is realized here also by an additional Python operator called timeslidingwindow. It uses
parameter for frequency, granularity, slide and range of each window. The generated input stream is shown
in Listing 6.2 line 1 and 2.

We have to consider that the input data can be built of more than one stream. The idea that is used
in the processing is that for each input stream windows are generated separately and the data is joined in
the next step of the pipeline by an internal ADP process. For further information on data streams please
consider Optique Deliverable 7.1 [10] and D7.2.

The next stream part are aggregator streams. Tuples can only grouped once per subquery in SQL,
therefore we need to implement one additional stream for each aggregation or grouping. Thus, aggregators
are also are handled separately in the implementation, however they are not part of the example.

The generation of the output is also done in a separate process. As we are generating streams of (times-
tamped) RDF triples, we are using a specific convention for the triple output format of 4 columns (Times-
tamp, Subject, Predicate, Object). It allows us to use the output of any STARQL query as input for another
STARQL query. The output stream is shown in Listing 6.2 line 20 and 21.

The most important partial stream is translated from the having clause. After the normalization process
a treewalker walks through the object tree of the having clause and translates every FORALL with time
indices into joined tables with columns for each variable. All logical constraints from STARQL are now
handled in an additional WHERE clause.

For the mapping of SQL tables and columns to RDF triples, respectively, the unfolding in the reverse
direction, we use the Ontop system as a third party library. Each triple of the STARQL query is translated
into table and column specifications separately. Necessary constraints of the unfolded WHERE clause are
also imported from the Ontop unfolding. Additionally ontology and mapping files have to be provided for
Ontop. This process differs from the corresponding one for the SQL implementation of Chapter 5.1 where
an additional conversion of datalog rules is implemented.

The translated example of the having clause is shown in Listing 6.2 line 4 to 18.
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6.3 Evaluation

In this section we will evaluate the runtime of two STARQL queries. A simple one with a temperature
threshold in Figure 5.1 and the already mentioned recent monotonically increase query from Figure 6.1 in
Section 5.1 with different sizes of data. Therefore, we use two different SQL translations and platforms each.
First we measure the time for query answers on a classical PostgreSQL server with the translation strategy
from Chapter 5.1. Second, we evaluate the same queries on different sizes of data on a ADP system installed
on a virtual machine. The tests have been made on a system with a i7 2.8 ghz cpu and 16 GB of ram.

Please note that the tests regarding ADP have been conducted with its 2013 version in a virtual machine
run on the PC system with the specifications above. At the time of writing this deliverable, the 2014 version
of the ADP system could not be robustly setup in our testing environment. Evaluations of the 2014 version
in comparison with PostgreSQL are now being conducted within the Optique platform on the same (server)
conditions. Results of this evaluation are going to be described in Deliverable D1.3.

The first test query in Listing 6.3 shows a simple threshold check and returns a warning if the temperature
for too high for a period of time. The corresponding SQL- and ADP-SQL queries are shown in Listing 6.4
and 6.5.

The dataset we use are simple sensor data provided by Siemens to the Optique project. It consists of
timestamp, sensor, and value information. For more about the dataset compare Optique Deliverable 8.1 [8].
We use two different sizes of datasets here. A public set with 82080 rows over 3 days and a larger anonymized
set with 420000 rows of data over 5 years.

The results for all 8 testcases can be seen in Figure 6.6.
Although the queries on the public data can be run in acceptable time on both systems, we see a gap

between the ADP system and PostgreSQL. Query 1 is about 10 times and query 2 about 100 times faster
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Figure 6.2: Processing pipeline for transforming a STARQL query into an ADP-SQL query.
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1 CREATE STREAM S_out AS

2 SELECT { :TC255 rdf:type :tooHigh }< NOW >

3 FROM burner_3 0 seconds <- [ NOW - 180 seconds , NOW ]->1 seconds

4 SEQUENCE BY StdSeq AS SEQ1

5 HAVING FORALL i in stateSequence (

6 FORALL ?x (

7 IF { :TC255 :hasVal ?x }< i> THEN ?x > 90));

Figure 6.3: STARQL Testquery1

1 CREATE OR REPLACE VIEW q3 AS

2 SELECT rel1.WID , rel1.SID AS S

3 FROM HASVAL rel1

4 WHERE rel1.VALUE <= 90;

5

6 CREATE OR REPLACE VIEW q1 AS

7 SELECT rel1.WID , rel1.SID AS S

8 FROM sensors rel1

9 WHERE NOT EXISTS(SELECT *

10 FROM q3 rel2

11 WHERE rel2.WID = rel1.WID AND rel2.S = rel1.SID );

Figure 6.4: HAVING clause of Testquery1 (SQL)

1 CREATE STREAM S_out_having AS

2 SELECT burner.wid as wid0 , max(burner.timestamp) AS now

3 FROM burner

4 WHERE Not Exists(

5

6 SELECT * FROM

7 (SELECT burner ."value" as _x , abox as i, wid as wid1 FROM burner WHERE burner ." value" IS

NOT NULL) as triple1

8 WHERE wid0 = wid1 AND _x <= 90)

9

10 AND burner ." value" IS NOT NULL

11 GROUP BY wid0;

Figure 6.5: HAVING clause of Testquery1 (ADP-SQL)

Dataset Testquery Testsystem Time
Public 1 SQL 0.361 sec
Public 1 ADP-SQL 3 min 19 sec
Public 2 SQL 30 sec
Public 2 ADP-SQL 53 min
Anonym 1 SQL 3 sec
Anonym 1 ADP-SQL 1m53s (1 day), 7m22s (2 days), 17m9s (3 days)
Anonym 2 SQL 25 sec
Anonym 2 ADP-SQL 36 min 40 sec (1 month of data)

Figure 6.6: Results for tests 1 and 2 (ADP-SQL)
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on the PostgreSQL system.
When it comes to the larger anonymized data set the gap increases. Both queries on the ADP system

had to be aborted after 24 hours and the dataset to be shrunk to a max of 1 month of data. Even though,
the query still takes a lot of time to be computed.

As a conclusion we have two results. The PostgreSQL system shows that it is possible to implement
STARQL queries fast and efficiently, on the other hand the current system and implementation does not get
close to these performance results. Which makes several optimization strategies necessary for the next years.

Please note that these experimental results regarding ADP are made w.r.t. to its 2013 version. Experi-
ments conducted by the partners from Athens (see D7.2) with the 2014 version of ADP show by far better
results.
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Chapter 7

Conclusion

The main objective in designing a query language that is intended to be used in industry is to find the right
balance between expressibility and feasibility. OBDA (in the classical sense) goes for a weak expressibility
and high feasibility by choosing rewriting and unfolding (transforming for short) as methodology for query
answering. But even in OBDA, feasibility is not a feature one gets for free; rather it has to be achieved with
optimizations. So, for engines that are implemented according to the OBDA paradigm one has to show that
such a transformation is theoretically possible and practically feasible.

In this deliverable we argued that the (new) STARQL query language extended with a safety mechanism
provides an adequate solution for streamified and temporalized OBDA scenarios as that of Siemens. Indeed,
first of all, STARQL offers a semantics that allows a unified treatment of querying temporal and streaming
data. Second, the Siemens use case requires a language providing logical constructors such as negation,
disjunction, and quantifiers in combination with infinite domains for numerical values in order to reason over
the (ABox sequences in the) window. These constructors would immediately lead to infinite sets of answers,
if their use were not restricted by safety conditions. So, we provided a new safety mechanism for STARQL
guaranteeing domain independence and hence also finite sets of answers.

Transformations of STARQL queries in the temporal scenarios (reactive diagnosis) and the continuous
scenarios (proactive diagnosis) are possible, as argued for with proofs and implementations of the transforma-
tions from STARQL to ADP and from STARQL to PostgreSQL, respectively. Regarding the feasibility—at
least w.r.t. the queries of the SIEMENS query catalogue, the standalone STARQL prototype shows accept-
able query execution times, if run with the optimization mentioned here. Regarding the integrated prototype
with the old ADP 2013 version, there are still some optimization needed w.r.t. to temporal processing. Pre-
liminary experiments of the 2014 version of APD are more promising. But even here, many optimization
possibilities, in particular w.r.t. the parallelization aspects within ADP still have to be investigated and
implemented.
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