
Project No: FP7-318338

Project Acronym: Optique

Project Title: Scalable End-user Access to Big Data

Instrument: Integrated Project

Scheme: Information & Communication Technologies

Deliverable D1.3
Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Due date of deliverable: (T0+24)

Actual submission date: November 14, 2014

Start date of the project: 1st November 2012 Duration: 48 months

Lead contractor for this deliverable: UiO

Dissemination level: PU – Public

Final version

Executive Summary:
Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

This document summarises deliverable D1.3 of project FP7-318338 (Optique), an Integrated Project sup-
ported by the 7th Framework Programme of the EC. Full information on this project, including the contents
of this deliverable, is available online at http://www.optique-project.eu/.

D1.3 reports on the results of the usability and performance evaluation process during Project Year 2
and on the requirements for Project Year 3.

List of Authors
Dimitris Bilidas (UoA)
Martin Giese (UiO)
Davide Lanti (FUB)
Marius Mikalsen
Ralf Möller (TUHH)
Christian Neuenstadt (TUHH)
Rudolf Schlatte (UiO)
Martin G. Skjæveland (UiO)
Ahmet Soylu (UiO)

2

http://www.optique-project.eu/

Contents

1 Introduction 5

2 Evaluation 6
2.1 Performance Evaluation . 6

2.1.1 The NPD Benchmark for OBDA Systems . 6
2.1.2 Evaluation of the Statoil Query Catalog . 8
2.1.3 Evaluation of Query Answering on Siemens Historical Data 9

2.2 Usability Evaluation . 17
2.2.1 Evaluation of the Visual Query Interface . 17
2.2.2 Results of the Statoil End-User Workshop . 23
2.2.3 Results of the Siemens End-User Workshop . 27

3 Requirements 33
3.1 End-User Requirements . 33

3.1.1 GUI Requirements . 33
3.1.2 Query Language Expressivity . 36
3.1.3 Integration in Enterprise Systems . 38
3.1.4 Administrative Interface Requirements . 38

3.2 Scientific Requirements . 39
3.3 Project Internal Requirements . 41

3.3.1 Platform Development Requirements . 41
3.3.2 Requirements for Impact-generating Activities . 42

Bibliography 42

3

List of Requirements

R2.1 Fix Minor GUI Issues (WP3) . 33
R2.2 Make it possible to browse ontology, concepts, relationships (WP3) 34
R2.3 Enhance the query catalog (WP3, WP2) . 34
R2.4 Implement easier query editing (WP3) . 34
R2.5 Better Presentation of Query Under Construction (WP3) . 35
R2.6 Better Presentation of Query Results (WP3, WP2) . 35
R2.7 Better unit handling in query formulation and result presentation (WP3, WP4) 35
R2.8 Better Presentation of the Ontology (WP3) . 35
R2.9 Clear Up Confusion Between Concepts and Relationships (WP3) 36
R2.10 Make VQI scale to big data sizes (WP3, WP6, WP7) . 36
R2.11 Implement visual query interface for streaming queries (WP3, WP5, WP8) 36
R2.12 Select Multiple Filter Values for an Attribute (WP3, WP6) . 37
R2.13 Wildcards in Attribute Queries (WP3, WP6) . 37
R2.14 Negations in Queries (WP3, WP6) . 37
R2.15 Optional Attributes in Results (WP3, WP6) . 37
R2.16 Geographical Constraints and Filters (WP3, WP6) . 37
R2.17 (Optionally) eliminate duplicates in results (WP3, WP6) . 37
R2.18 Export query results in useful formats (WP2) . 38
R2.19 Integrate import functionality of Optique platform query results in existing end-user tools

(WP2, WP9) . 38
R2.20 Offer hyperlinks in result display that connect to other systems (WP2, WP8) 38
R2.21 Help with Avoiding Mapping Update Anomalies (WP4) . 38
R2.22 Improve Ontology Development Workflow (WP2) . 38
R2.23 Query Formulation (WP3) . 39
R2.24 Ontology and Mapping Management (WP4) . 39
R2.25 Time and Streams (WP5) . 40
R2.26 Query Transformation (WP6) . 40
R2.27 Distributed Query Execution (WP7) . 40
R2.28 Configuration management (WP2) . 41
R2.29 Release management (WP2) . 41
R2.30 Create Training Material (WP10) . 42
R2.31 Create Partner Program Supporting Material (WP10, WP11) 42

4

Chapter 1

Introduction

This report contains the result of the second year usability and performance evaluation and the third-year
requirements elicitation activities of the Optique project. The evaluation activities are presented in Chapter 2,
subdivided into usability evaluation (Section 2.2) and performance evaluation (Section 2.1).

Chapter 3 presents the result of the requirements elicitation process, subdivided into end-user require-
ments (Section 3.1), scientific requirements (Section 3.2) and project-internal requirements (Section 3.3).
The end-user requirements were gathered during the end-user workshops held in cooperation with Work
Packages 8 and 9, the scientific requirements are per the Optique Description of Work.

5

Chapter 2

Evaluation

This chapter describes the evaluation activities that the project undertook during the second project year.
Section 2.1 summarizes the results of performance evaluation of different components of the Optique system,
Section 2.2 describes the results of a number of usability studies of the visual query interface.

2.1 Performance Evaluation

Section 2.1.1 summarizes published results on performance evaluation of OBDA systems. Further discussion
on performance in Ontop can also be found in Deliverable D6.2. Section 2.1.2 contains a discussion of the
WP9 query catalog. Section 2.1.3 contains an evaluation of streaming data processing.

2.1.1 The NPD Benchmark for OBDA Systems

To properly evaluate the performance of OBDA systems, benchmarks tailored for the specific requirements
and use-cases for such systems are needed. OWL benchmarks [3, 1, 7], which have been developed to test
the performance of generic SPARQL query engines, however, fail at

• exhibiting a complex real-world ontology,

• providing challenging real-world queries,

• providing large amounts of real-world data, and the possibility to test a system over data of increasing
size, and

• capturing important OBDA-specific measures related to the rewriting-based query answering approach
in OBDA.

In order to overcome these shortcomings, the Optique project with WP6 proposed in [9] the first bench-
mark specifically tailored for OBDA systems, which is based on an semantically annotated version of the
Norwegian Petroleum Directorate (NPD) FactPages,1 containing ontology, mappings, and queries [14]. In
particular, the queries have been selected by users of the NPD FactPages, whereas the dataset consists of
a MySQL database instance obtained starting from real-world data. Some of these queries and the dataset
are not directly suitable for use as an OBDA benchmark. The reasons are that (i) most of the queries are
not supported by any currently implemented OBDA system, and (ii) the dataset is too small for any useful
analysis. As for point (i), we removed unsupported constructs from the original queries (e.g., aggregate func-
tions) whenever this was possible, while for point (ii) we implemented a generator able to produce datasets
of increasing sizes starting from characteristics learned from an initial seed, mappings, and ontology. The
result of this work is what we presented under the name of NPD Benchmark, and it is available online.2

1http://factpages.npd.no/factpages/
2https://github.com/ontop/npd-benchmark

6

http://factpages.npd.no/factpages/
https://github.com/ontop/npd-benchmark

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

O1 The ontology should include rich hierarchies of classes and properties.

O2 The ontology should contain a rich set of axioms that infer new objects and could lead to inconsistency,
in order to test the reasoner capabilities.

M1 The mappings should be defined for elements of most hierarchies.

M2 The mappings should contain redundancies, and sub-optimal SQL queries to test optimizations.

Q1 The query set should be based on actual user queries.

Q2 The query set should be complex enough to challenge the query rewriter.

D1 The virtual instance should be based on real-world data.

D2 The size of the virtual instance should be tunable.

S1 The languages of the ontology, mapping, and query should be standardized, i.e., based on the standards
OWL, R2RML, and SPARQL, respectively.

Table 2.1: Benchmark requirements for ontologies, mappings, queries, datasets and languages.

Another contribution of our work has been to give a first “requirements-driven” characterization of mean-
ingful benchmarks for OBDA systems. The result of this work is synthesized in Table 2.1. None of the
currently available OWL benchmarks fully satisfy these requirements, whereas the NPD Benchmark satisfies
all of them. This fact led to tests that gave interesting results [9] about the actual applicability of OBDA
in real-world scenarios, as they mostly contradict the ones obtained by using other common benchmarks. In
particular, we witnessed the fact that real-world mapping assertions are so complex that they pose a serious
challenge on the performance of an OBDA system. For example, it is quite common to have classes for which
a high number of SQL queries is required in order to retrieve all of their instances; this fact easily leads to
an unfolded SQL query whose size is an exponential of the size of the original SPARQL query, as witnessed
by the size of the unfolding given in terms of number of SQL queries in Table 2.2.

These observations led to the question whether it is possible to further push the optimizations performed
by Ontop and which make use of metadata information. Current, yet unpublished, research suggests that
this is the case when hidden dependencies on the physical data are manually imposed by domain experts,
e.g., when functional dependencies are completely specified. It is often the case that these dependencies
are not explicitly specified in the database schema, because they have a strong effect on the performance
(e.g., SQL inserts become quite slow in presence of foreign keys). However, letting Ontop know about them
(without having to change the database schema) allows the query optimization techniques to perform a much
deeper optimization, often simplifying exponential queries into very short ones.

Table 2.2: Hard Queries, Rewriting And Unfolding
Ext. reasoning disabled Ext. reasoning enabled

No. of SQL queries Time, sec. No. of SQL queries Time, sec.
query rewrite unfold rewrite unfold rewrite unfold rewrite unfold

q6 — 48 — 0.1 73 1740 1.8 1.3
q9 — 570 — 0.1 1 150 0 0.03
q10 — 24 — 0.9 1 24 0 0.01
q11 — 1 — 0.1 73 870 0.03 0.7
q12 — 1 — 0.2 10658 5220 525 139

7

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

100 101 102
0

5

10

15

20

N
o.

qu
er
ie
s

SQL/SPARQL query ratio

Figure 2.1: Effect of rewriting and unfolding wrt. query size. The diagram shows the number of queries
according to times the increase of the generated SQL query compared to the size of the input SPARQL
query.

2.1.2 Evaluation of the Statoil Query Catalog

An important part of the Optique project is to evaluate the Optique platform on real information needs
collected from end-users. In the Statoil Use Case, WP9, we have collected different queries or information
needs from Statoil personnel. Parts of these have been translated to SPARQL queries, in some cases, one
end user information need is translated into multiple SPARQL queries that describe parts of the original
need. The user information needs and SPARQL queries have been compiled into a query catalog, and all
the SPARQL queries in the catalog can be automatically executed on different configurations of the Optique
platform software, using different versions of ontologies, mappings and possibly also data sources. The
query catalog is included in full in delivery D9.2, together with descriptions of the ontologies, mappings and
databases that are relevant for the Statoil Use Case. Also, a test run of the query catalog using the latest
ontology and mappings against the most important data store in the Statoil Use Case is included. This
section presents a summarized version.

Currently, the query catalog contains 63 end-user information needs which are formulated in natural
language English. Parts of these are translated into a total of 60 SPARQL queries. All of these 60 queries
are executed in the test run. 11 of the queries do not return any answers when the timeout threshold is set
to 3600 seconds = 1 hour, and three queries do not currently execute because of errors in the query rewrite
process. Figure 2.1 shows the increase in size of queries from the input SPARQL query to the generated
SQL query which is executed over the underlying database. The figure shows that a large part of the input
queries are rewritten into SQL which is at most 10 times larger than the input. The largest increase in size
of a query is a 179 times increase compared to the input; the possible reasons for an increase in size of this
magnitude are discussed in D9.2 and D6.2.

Figure 2.2 shows the execution time of the queries in the query catalog; one plot shows the unfolding
time, and the other plot query execution time. Note that the unfolding time is given in milliseconds and the
execution time in seconds, i.e., the unfolding time is negligible for the total query answering time; the longest
unfolding time is 290 milliseconds. As for the execution time, again with a timeout set to 3600 seconds,
23 queries return answers within 10 seconds, 16 queries return answers within between 10–100 seconds, six
queries return answers within between 100–1000 seconds, and one query returns answers after more than
3000 seconds.

8

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

100 101 102
0

2

4

6

8

Time, ms.

N
o.

qu
er
ie
s

Unfolding time

100 101 102 103
0

5

10

15

20

25

Time, s.

N
o.

qu
er
ie
s

Execution time

Figure 2.2: Query answering time. The diagrams show the number of queries according to unfolding time
(in milliseconds) and execution time (in seconds), both on a logarithmic scale.

2.1.3 Evaluation of Query Answering on Siemens Historical Data

In this section we report on evaluation results related to the reactive diagnosis scenario within the Siemens
power plant use case. In order to understand the reasons for some events such as start failures or unplanned
shutdowns of turbines, the engineer has to analyze the timestamped data that are recorded by the sensors
and that are stored in a central database. In most cases, the analysis involves constructing and answering a
couple of queries that refer to a finite closed time interval, a.k.a. a window, over the historical data. For this
kind of analysis the engineer can be supported by the query language STARQL, a query language framework
that uses this central concept of a window in order to slide over data—either in real time for continuous
query processing over real-time streams or in simulated possibly hyper-real time over historical data. (See
Deliverable D5.1 regarding the formal definition of STARQL and Deliverable D5.2 for aspects of rewriting
and unfolding). There is no conceptual difference in doing the one or the other—except for the need to
specify the starting date and the end date for the portion of the historical data to taken into account. In the
following, we state the experiment setups and results for the implemented STARQL engine, in particular we
report on the performance results of query answering over the Siemens historical data.

The system is evaluated along two example queries formulated in STARQL. Following the OBDA
paradigm, the STARQL engine transforms the queries w.r.t. some predefined mappings into queries in
a SQL-like target language. In fact, we evaluated the STARQL w.r.t. two target languages. The first lan-
guage, SQLite extended with additional python functions, is the one that is provided by the ADP (Athena
Distributed Processing) system from the Optique partner UoA. The second target language is the SQL vari-
ant as provided by PostgreSQL databases. Both instances of the STARQL engine are running on a local
computer. As the ADP system is designed for distributed computing and not for running on a local machine,
we expect highly increased performance in the next evaluation step for distributed queries.

In the following we briefly introduce the used datasets, afterwards we show the specific STARQL queries
and their transformations, and finally we discuss our evaluation results on both systems.

The Datasets

The datasets we use are part of the Siemens use case in Optique. We give a short overview on the data
contained in the datasets. For more information, please consider Deliverable D1.1 and Deliverable D8.1.

The original data processed/produced by Siemens appliances are sensor measurements, event data, opera-

9

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

tion logs, and some other data stored in further tables. These data are confidential and are used internally at
Siemens. Siemens provided a small public dataset and two larger anonymized datasets for use inside Optique.
The public dataset has a simplified structure and has a size of approximately 100 MB. For the evaluation
presented here we used two datasets, denoted Dataset1 and Dataset2. Dataset1 contains public data and
has a size of approximately 546 KB. Dataset2 contains anonymous data and has a size of approximately 14,6
MB.

In order to explain the requirements on the expressivity of the query language later on, we first take a
look at the table definitions. The schema we discuss is normalized such that redundancies are avoided as far
as possible, but we note the denormalization is not supposed to give significant speed-ups. Measurements
are represented with a table measurement and consist of a timestamp, a reference to the sensor involved,
and a measurement value.

CREATE TABLE measurement (

timestamp timestamp without time zone NOT NULL,

sensor integer NOT NULL,

value numeric(12,3) NOT NULL,

CONSTRAINT measurement_pkey PRIMARY KEY ("timestamp", sensor),

CONSTRAINT measurement_fk_sensor FOREIGN KEY (sensor)

REFERENCES sensor (id) MATCH SIMPLE);

A measurement datum has timestamp, sensor, and value. For our evaluation we are using one dataset
of about 80,000 entries with a timestamp ranging over 3 days (Dataset1) and another dataset with about
400,000 entries with a timestamp ranging over 5 years (Dataset2). Both datasets contain data referring to a
number of sensors.

CREATE TABLE sensor (

id serial NOT NULL,

assemblypart integer,

name character varying(20),

CONSTRAINT sensor_pk PRIMARY KEY (id)

CONSTRAINT fk_assemblypart_sensor FOREIGN KEY (assemblypart)

REFERENCES assemblypart (id) MATCH SIMPLE);

The values of the attribute name hint at the purpose/function of the sensor, e.g., the “Inlet Pressure” says
that the sensor measures a particular pressure. A few sensors with the same functions are distinguished by
a numerical index, e.g., “Burner Temperature 1”, “Burner Temperature 2”. Within the OBDA paradigm, the
string values for the attribute are mapped to concepts, querying for specific sensors reduces to asking for
instances of corresponding concepts.

The STARQL Queries and their Transformations

The two example STARQL queries for the evaluation are given in the following.
The first STARQL query (Figure 2.3) builds, within each generated window, a sequence of all sensor

values in the last 24 hours and checks whether one of the sensors shows a monotonic increase during this
period of time. This query is expected to run quadratically slower as window size increases, due to the
comparisons of all pairs of values ?x and ?y for all pairs of states (i,j).

The second query (Figure 2.4) outputs, every minute, sensors that show a value higher than 90. This
query is expected to be faster because of its simple window content with at most one timestamp. So the
sequence has a simple structure as it may contain at most one ABox, and no values are compared over this
sequence as there is only one quantifier in the HAVING clause.

Both STARQL queries can be transformed into queries in an SQL variant, using mappings which are not
shown here. As discussed above, we consider the transformation into queries into ADP-SQL (SQLite with

10

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

CREATE STREAM S_out1 AS

SELECT { ?sensor rdf:type :RecentMonInc }< NOW>

FROM burner_regulator 0 seconds <- [NOW - 24 hours, NOW]-> 24 hours

SEQUENCE BY StdSeq AS stateSequence

HAVING FORALL i, j IN stateSequence

FORALL ?x,?y

IF { ?sensor :hasVal ?x }<i> AND { :Regulator :hasVal ?y } <j> AND i < j

THEN ?x <= ?y) ELSE TRUE

Figure 2.3: STARQL query Query1

CREATE STREAM S_out2 AS

SELECT { ?sens rdf:type :tooHigh }<NOW>

FROM burner_3 0 seconds <- [NOW , NOW]-> 1 minute

SEQUENCE BY StdSeq AS stateSequence

HAVING FORALL i IN stateSequence

FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90) ELSE TRUE

Figure 2.4: STARQL query Query2

additional python functions) and into PostgreSQL. So, for each query we have two corresponding transfor-
mations. The transformations into ADP-SQL for the first and the second query are shown in Figure 2.5 and
Figure 2.6, resp.

The common structure of both ADP-SQL queries is the following: In the first part of the queries, a
stream of windows is generated from the data using the timeslidingwindow operator. This operator has
three window parameters: timewindow for the width, frequency for the slide, and granularity for the
step width between each timestamp. The window stream is saved in a table with a specific index for better
performance. In the second part, the generated window data are used within the having view, which basically
is an implementation of the STARQL HAVING clause. More information about the transformation can be
found in Deliverable D5.2, Deliverable D7.2 reports on the usage of the ADP system.

11

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

ATTACH DATABASE ’database’ as ’db’;

DROP TABLE IF EXISTS burner_day;

CREATE TEMP TABLE burner_day AS

SELECT * FROM

(timeslidingwindow timecolumn:0 timewindow:3600 frequency:60 granularity:60

equivalence:floor select distinct * from db.publicdata)

WHERE wid > 0;

CREATE INDEX burner_day_index ON burner_day(wid, abox, value, sensor);

CREATE TEMP VIEW burner AS SELECT * FROM burner_day;

CREATE TEMP VIEW S_out_2_having AS

SELECT burner.wid as wid0, burner."sensor" AS _sens, max(burner.timestamp) AS now

FROM burner

WHERE NOT EXISTS(

SELECT * FROM

(SELECT * FROM

(SELECT wid AS wid1, burner."sensor" AS _sens1, burner."value" AS _x, abox as i

FROM burner

WHERE burner."value" IS NOT NULL) as triple1,

(SELECT wid AS wid2, burner."sensor" as _sens2, burner."value" AS _y, abox as j

FROM burner WHERE burner."value" IS NOT NULL) AS triple2

WHERE wid1 = wid2)

WHERE wid0 = wid1 AND wid1 = wid2 AND _x > _y AND i < j AND _sens1 = _sens2

AND _sens = _sens1)

AND burner."sensor" IS NOT NULL

AND burner."value" IS NOT NULL

GROUP BY wid0, _sens;

CREATE TEMP VIEW S_out_2_starqlout AS

SELECT DISTINCT now AS timestamp, _sens AS Subject, ’rdf:type’ AS Predicate,

’:RecentMonInc’ AS Object

FROM S_out_2_having;

SELECT * FROM S_out_2_starqlout;

Figure 2.5: Query1 in ADP-SQL

12

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

ATTACH DATABASE ’database’ AS ’db’;

CREATE TEMP TABLE burner_3 AS

SELECT * FROM

(timeslidingwindow timecolumn:0 timewindow:60 frequency:60 granularity:1

equivalence:floor select * from db.publicdata);

CREATE INDEX burner_index ON burner_3(wid, abox, value, sensor);

CREATE TEMP VIEW burner AS SELECT * FROM burner_3 WHERE sensor IS NOT NULL;

CREATE TEMP VIEW S_out_having AS

SELECT burner.wid AS wid0, burner.sensor AS s0, burner.value, burner.timestamp AS now

FROM burner WHERE NOT EXISTS(

SELECT * FROM

(SELECT burner."value" as _x, abox AS i, wid AS wid1, burner.sensor AS s1 FROM burner

WHERE burner."value" IS NOT NULL AND _x <= 90) AS triple1

WHERE wid0 = wid1 AND s0 = s1 AND burner."value" IS NOT NULL;

CREATE TEMPW VIEW S_out_starqlout AS

SELECT now AS timestamp, s0 AS Subject, ’rdf:type’ AS Predicate, ’:tooHigh’ AS Object

FROM S_out_having;

SELECT * FROM S_out_starqlout;

Figure 2.6: Query2 in ADP-SQL

13

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

The transformations of the STARQL queries into PostgreSQL are show in Figure 2.7 and in Figure 2.8.
The basic structure of the PostgreSQL queries is similar to that of the ADP-SQL queries. Windows are

not generated here by an additional operator, but instead by three different views which build a window
structure and which are joined afterwards with the data table in the val view. The two next views q1 and
q3 are adding filtering information of the STARQL HAVING clause, and finally the results are summed up.
For more information on the query transformation, especially for the window generation in the PostgreSQL

CREATE OR REPLACE VIEW window_range AS

SELECT row_number() OVER (ORDER BY x.timestamp) - 1 AS wid,

x.timestamp as left, x.timestamp + ’1 hour’::interval as right

FROM (SELECT generate_series(MIN(mp.timestamp),

MAX(mp.timestamp), ’1 hour’::interval) AS timestamp FROM measurement mp) x;

CREATE OR REPLACE VIEW wid AS

SELECT distinct wid, timestamp

FROM measurement mp, window_range w

WHERE mp.timestamp >= w.left and mp.timestamp < w.right;

CREATE VIEW win AS

SELECT wid, rank() OVER (PARTITION BY wid ORDER BY timestamp ASC) as ind,

timestamp FROM wid;

CREATE VIEW val AS

SELECT DISTINCT rel1.WID , rel2.SID , rel2.VALUE , rel1.ind

FROM win rel1 , measurement rel2

WHERE rel2.timestamp = rel1.timestamp

ORDER BY wid, ind;

CREATE VIEW sensors AS

SELECT rel1.WID , rel1.SID

FROM val rel1;

CREAT VIEW q3 AS

SELECT rel1.WID , rel1.SID AS S

FROM val rel1 , val rel2

WHERE rel2.WID = rel1.WID AND rel2.SID = rel1.SID AND

rel1.ind < rel2.ind AND

rel1.VALUE > rel2.VALUE;

CREATE VIEW q1 AS

SELECT rel1.WID , rel1.SID AS S

FROM sensors rel1

WHERE NOT EXISTS(SELECT *

FROM q3 rel2

WHERE rel2.WID = rel1.WID AND rel2.S = rel1.SID);

CREATE VIEW s_out AS

SELECT rel2.right, rel1.S AS SID

FROM q1 rel1, window_range rel2

WHERE rel1.WID = rel2.WID;

SELECT DISTINCT s.right as timestamp, s.SID as Subject, ’rdf:type’ as Predicate,

’:recentMonInc’ from s_out;

Figure 2.7: Query1 in PostgreSQL

14

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

CREATE VIEW window_range AS

SELECT row_number() OVER (ORDER BY x.timestamp) - 1 AS wid,

x.timestamp as left, x.timestamp as right

FROM (SELECT generate_series(MIN(mp.timestamp), MAX(mp.timestamp), ’1 minute’::interval)

AS timestamp FROM measurement_sample mp) x;

CREATE VIEW wid AS

SELECT DISTINCT w.wid,

mp.timestamp

FROM measurement_sample mp, window_range w

WHERE mp.timestamp between w.left and w.right;

CREATE VIEW win AS

SELECT wid, rank() OVER (PARTITION BY wid ORDER BY timestamp ASC) as ind, timestamp

FROM wid;

CREATE VIEW val AS

SELECT DISTINCT rel1.WID , rel2.SID , rel2.VALUE , rel1.ind

FROM win rel1 , measurement_sample rel2

WHERE rel2.timestamp = rel1.timestamp;

CREATE VIEW sensors AS

SELECT rel1.WID , rel1.SID

FROM val rel1;

CREATE VIEW q3 AS

SELECT rel1.WID , rel1.SID AS S

FROM val rel1

WHERE rel1.VALUE <= 90;

CREATE VIEW q1 AS

SELECT rel1.WID , rel1.SID AS S

FROM sensors rel1

WHERE NOT EXISTS (SELECT *

FROM q3 rel2

WHERE rel2.WID = rel1.WID AND rel2.S = rel1.SID) ;

CREATE VIEW s_out AS

SELECT rel2.right, rel1.S AS SID

FROM q1 rel1, window_range rel2

WHERE rel1.WID = rel2.WID;

SELECT DISTINCT s.right as timestamp, s.SID as Subject,

’rdf:type’ as Predicate, ’:tooHigh’

FROM s_out;

Figure 2.8: Query2 in PostgreSQL

15

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

case, see Deliverable D5.2.

Test Results and Evaluation

For the evaluation part we first look at the transformation time from STARQL to ADP-SQL. Both queries
can be transformed in approximately 1 second (1086 ms and 1160 ms)We believe that a transformation time
with less than a second can be achieved in Year 3.

Additionally, we tested all four query transformations on the specific systems and data sets.The tests
have been made in a virtual machine on a system with an i7 2.8 GHz CPU and 16 GB of ram. Mean values
of several test runs with cold cache are shown in Table 2.3.

The tests reported in Deliverable 5.2 were conducted with a non-optimized version of the ADP system, as
this was the last stable version at hand at that time. For the tests reported here, we used the last stable and
optimized version of the ADP system from 2014. The 2014 version uses additional indexes on the window
table. This important optimization increased the speed from minutes to seconds for some queries (see below).

Dataset Test query Test system Time
Dataset1 1 PostgreSQL 45 sec
Dataset1 1 ADP-SQL 4.7 sec
Dataset1 2 PostgreSQL 1.2 sec
Dataset1 2 ADP-SQL 4.6 sec
Dataset2 1 PostgreSQL 50 sec
Dataset2 1 ADP-SQL 44.9 sec
Dataset2 2 PostgreSQL 30.6 sec
Dataset2 2 ADP-SQL 31.7 sec

Table 2.3: Query response times for ADP and PostgreSQL transformations

As shown in Table 2.3, all results are in the range of seconds. Query1 runs on the ADP system faster
than on to the PostgreSQL system. For Query2 it is the other way around on both datasets. A crucial
point is the gap for query1 on the public dataset. We think that this indicates that the ADP system is more
capable of handling larger sequences of values. Dataset1 is the only dataset with full sequences per window,
where the one-day windows of Dataset2 are not filled up.

All in all we can say that PostgreSQL and the ADP do not show significant differences regarding perfor-
mance for the queries and datasets we evaluated. The ADP system used in Optique is even ahead several
times. We believe that the speed can be increased significantly in the context of distributed computations.
An even more optimized system will be shown in the next years’ evaluation phase.

An additional set of anonymous data (internally named anonymous 1) provided by Siemens, having a
size of 2,25GB, was also tested w.r.t. the ADP and PostgreSQL transformations, but the engines were not
able to handle this test set in a reasonable amount of time. We expect to report on query results on this
data set in Year 3; a concrete requirement to this regard was added in Chapter 3.

We are going to extend the performance evaluations in the near future along the following lines: Ex-
periments both on historical data and streaming data can be run on the anonymized dataset Dataset2.
Experiments for historical data can be run on a local ADP system; the plan is to compare various queries in
SQL against their transformed STARQL counterparts.

Experiments on streaming data can be run on the simulation server installed by FluidOps. Performance
parameters to be taken into account include the number of windows that can be evaluated, varying the
number of parallel streams and the window size. Tests will have to be adapted w.r.t. code and installation
changes of the simulation server.

16

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

2.2 Usability Evaluation

Usability evaluation (cf. [2]) is an integral part of research on visual query formulation. A set of evaluation
criteria is required to assess if a visual query system (VQS) is competent of meeting its identified aim.
VQSs are meant to enable users to formulate queries effectively. The effectiveness (cf. [4, 2]) is measured in
terms of accuracy and completeness that users can achieve (i.e., “doing the right things"). However, on the
one hand, the cost associated with the level of effectiveness achieved is a significant factor, called efficiency
(cf. [4, 2]), and is mostly measured in terms of the time spent to complete a query (i.e., “doing the things
right"). On the other hand, the perceived quality of dialog and user interface, called user satisfaction [10],
which determines the attitude of users, such as trust, engagement, acceptance, and comfort, against a VQS or
VQL, has considerable potential to cause failure, if not taken seriously. User satisfaction is usually measured
through surveys, interviews etc. [10, 6] investigating the attitude of users after experiencing with the subject
system or language.

User studies are typically realized by means of query writing and query reading tasks [5, 15] to evaluate
the tool itself alone or to compare it with others with a summative or formative perspective; various other
studies and measures (e.g., learnability [12]) can be defined for this purpose. However, consulting users only
at the end (i.e., summative evaluation) does not help much for success [8, 4]. The active participation of
users at every cycle of development, grounded on a user-centered design [13] approach with intermediary
reflective assessments with small user groups (i.e., formative evaluation), is the true contributor.

In this respect, OptiqueVQS has been evaluated in three intermediary formative experiments. The first
one has been conducted with 15 casual users on an example movie ontology, the second one at Statoil with
3 users on the NPD ontology, and the third at Siemens with 4 users on a Siemens diagnostic ontology. The
first experiment tested the usability of OptiqueVQS on a general domain with non-domain experts so as to
avoid any domain-specific effect issues. The second and third experiments were conducted over our use-case-
specific domains with smaller user groups. Remark that the smaller sample sizes in the second and third
experiments are not problematic, since in intermediary formative evaluations the number of users is typically
not large;as Nielsen [11] suggests, 3-6 users will discover about 70-90 percent of the usability problems and
at least 15 users will be needed to discover all the usability problems. In the following subsections, we report
on all three experiments in detail.

2.2.1 Evaluation of the Visual Query Interface

The experiment was designed as a think-aloud study, since the goal of the experiment is not purely summative,
but to a large extent formative. The experiment is built on a “movie ontology.” An excerpt of the vocabulary
for the music domain used is given in Figure 2.9; note that inverse properties are omitted in the figure for
the sake of brevity. In total, the ontology includes 6 concepts, 16 relationships (including inverse properties),
and 17 attributes. An ontology of this size already allows us to design complex queries. We avoided having
a larger ontology in order to omit the effect of ontology size on the query formulation for this experiment.

A total of 15 participants took part in the experiment; the profiles of participants are summarized in
Table 2.4. We selected our participants particularly among non-technical people, since they are the primary
target of OptiqueVQS. A five-minute introduction of the topic and tool was delivered to the participants
along with an example, then they were asked to fill in a profile survey. The survey asks users about their
age, occupation and level of education, and asks them to rate their technical skills, such as on programming
and query languages, and their familiarity with similar tools on a Likert scale (i.e., 1 for “not familiar at all,”
5 for “very familiar”). Participants were then asked to formulate a series of information needs as queries with
OptiqueVQS, given at most three attempts for each query. Each participant performed the experiment in a
dedicated session, while being watched by an observer. Participants were instructed to think aloud, including
any difficulties they encountered (e.g., frustration and confusion), while performing the given tasks.

Table 2.5 shows the 6 tasks representing the information needs used in the experiment. Each information
need maps to a query at different level of complexity with respect to its topology and length, in an increasing
order of complexity (all conjunctive): short linear (T1), long linear (T2), short with branching (T3), long

17

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Award	

î	
 "tle:	
 string	

î	
 year:	
 date	

Company	

î	
 name:	
 string	

î	
 value:	
 integer	

Country	

î	
 name:	
 string	

î	
 language:	
 string	

Music	

î	
 "tle:	
 string	

î	
 dura"on:	
 +me	

Movie	

î	
 date:	
 date	

î	
 "tle:	
 string	

Person	

î	
 name:	
 string	

î	
 gender:	
 string	

Class	
 name	

LEGENDS	

object	
 property	

wins	

acts	
 in	

bo
rn
	
 in
	

released	
 in	

located	
 in	

di
st
rib

ut
es
	

has	
 music	

wins	

distributes	

wins	

î	
 datatype	
 property	

Figure 2.9: An excerpt of the vocabulary for the movie domain used..

Table 2.4: Profile information of the participants.
Age Occupation Education Technical

skills
Similar
tools

P1 32 Chemist PhD 2 3
P2 26 Math teacher Bachelor 1 1
P3 43 Law student Master 1 1
P4 21 Political science student Bachelor 1 2
P5 22 Criminology student Bachelor 1 3
P6 31 Hydrology student Master 2 4
P7 26 Complex systems student Master 2 3
P8 23 Psychology student Bachelor 1 3
P9 24 Finance student Bachelor 2 3
P10 21 Law student Bachelor 2 2
P11 21 Law student Bachelor 1 1
P12 21 Biology student Bachelor 1 1
P13 23 Natural sciences student Bachelor 1 1
P14 24 History student Bachelor 1 3
P15 22 Biology student Bachelor 1 1
Avg. 25 - - 1.3 2.1

18

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.5: Information needs used in the experiment.
Query type Information need

T1 Short linear Find the names of all the companies that distribute a movie titled “Ti-
tanic".

T2 Long linear Find the names of all the people who acted in a movie released between
1970 and 1980 and distributed by a company located in Germany.

T3 Short with branch-
ing

Find the titles of all the musics that won an award titled “Best of Movie
Musics" and are played in a movie titled “The Red Warrior".

T4 Long with branching Find the titles of all the movies that are distributed by a company owned
by a person born in USA and have amusic that won award between 1980
and 1990.

T5 Short with branch-
ing and type III cy-
cle

Find the names of all the companies that distribute a movie titled “Ti-
tanic" and distribute a music played in a movie released in 1980.

T6 Long with branching
and type III cycle

Find the titles of all the musics distributed by a company located in the
UK and played in a movie that has an actor named “George" who was
born in a country in the African continent and won an award in 1990.

with branching (T4), short with branching and type III cycle (T5), and long with branching and type III cycle
(T6). Here type III cycle refers to repetition of concepts, i.e., the query includes at least one instance where
a concept appears twice. Long queries are queries with a maximum tree depth of at least 3.

Once users were done with their tasks, they were asked to fill in an exit survey asking about their
experiences with the tool. The survey asks users to rate whether the questions were easy to do with the tool
(S1), the tool was easy to learn (S2), was easy to use (S3), gave a good feeling of control and awareness
(S4), was aesthetically pleasing (S5), was overall satisfactory (S6), and was enjoyable to use (S7) on a Likert
scale (again, 1 for “strongly disagree” and 5 for “strongly agree”). Users were also asked to comment on what
they did like and dislike about the tool and to provide any feedback which they deemed important.

Results

The results of the experiment are presented in Table 2.6. A total of 90 tasks was completed by the participants
with a 80 percent first-attempt correct completion rate (i.e., percentage of correctly formulated queries in
the first attempt). On average a task took 74 seconds to complete on 1.2 attempts; the first task and fourth
task took the shortest and the longest times to complete, on average 34 seconds and 93 seconds respectively.
The third task had the highest average in the number of attempts with 1.5, while the first and the sixth
tasks had the lowest average in the number of attempts with 1 and 1.1 respectively.

According to the results and our observations, participants solved the first task (i.e., short linear) quite
easily. However, when it came to the third task (short with branching), half of the participants failed in their
first attempt. This is particularly due to fact that they were mostly not expecting a branching after two
linear queries and did not pay attention to the text of the information need. Yet, as soon as they realized the
case, they did quickly recover and manipulated their queries accordingly. The average number of attempts
then decreased for the subsequent tasks (i.e., all with branching) as users became more aware. The fourth
task (i.e., long with branching) took the longest time on average, since after the third task participants paid
more attention to clearly understanding the information need. Participants solved the fifth task (i.e., short
with branching and type III cycle) comparatively quickly; this was due to the short length of the query and
due to the fact that participants did not have any confusion, when a concept appeared twice in the query
(only one participant had this confusion and raised it). Finally, participants solved the last task (i.e., long

19

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.6: The results of the experiment (c for complete, t for time in seconds, and a for attempt count).
T1 T2 T3 T4 T5 T6 Avg.

c t a c t a c t a c t a c t a c t a c t a
P1 1 50 1 1 70 1 1 94 2 1 55 1 1 53 1 1 68 1 1 65 1.2
P2 1 48 1 1 83 1 1 80 1 1 113 2 1 60 1 1 70 1 1 76 1.2
P3 1 81 1 1 87 1 1 80 2 1 180 2 1 141 2 1 145 1 1 119 1.5
P4 1 18 1 1 44 1 1 41 1 1 124 2 1 73 1 1 90 1 1 65 1.2
P5 1 32 1 1 85 1 1 62 1 1 74 1 1 82 1 1 85 1 1 70 1.0
P6 1 16 1 1 136 2 1 125 2 1 86 1 1 108 1 1 100 1 1 95 1.3
P7 1 27 1 1 105 2 1 102 2 1 126 2 1 122 2 1 135 1 1 103 1.7
P8 1 75 1 1 47 1 1 78 2 1 54 1 1 48 1 1 71 1 1 62 1.2
P9 1 23 1 1 59 1 1 54 1 1 82 1 1 45 1 1 81 1 1 57 1.0
P10 1 14 1 1 54 1 1 41 1 1 73 1 1 47 1 1 80 1 1 52 1.0
P11 1 17 1 1 42 1 1 65 1 1 53 1 1 105 2 1 60 1 1 57 1.2
P12 1 29 1 1 72 1 1 84 2 1 103 1 1 56 1 1 83 1 1 71 1.2
P13 1 38 1 1 54 1 1 44 1 1 75 1 1 46 1 1 80 1 1 56 1.0
P14 1 28 1 1 96 1 1 65 1 1 58 1 1 54 1 1 60 1 1 60 1.0
P15 1 19 1 1 125 2 1 112 2 1 144 1 1 50 1 1 168 2 1 103 1.5
Avg. 1 34 1 1 77 1.2 1 75 1.5 1 93 1.3 1 72 1.2 1 91 1.1 1 74 1.2

with branching and type III cycle) quite smoothly and with confidence, although it was the longest and the
most complex one (i.e., with two branches and one type III cycle). A snapshot from the final query is given
in Figure 2.10.

The feedback provided by the participants through the exit survey is presented in Table 2.7 and Table 2.8.
Participants overall rated the tool good with 4 out of 5 on average. The first statement (cf. S1 – the questions
were easy to do with the tool) had the lowest rank with 3.7; according to our observations, this was mostly
due to the texts of the information needs, rather than the tool. The texts describing the information needs
(cf. Table 2.5) include a number of relative pronouns along with a passive sentence structure, which make
them hard to understand at a first glance and to keep in short-term memory. Although this structure was
intentionally selected in order to avoid a step-by-step question form, for subsequent evaluations a different
form could be considered. As listed in Table 2.8, participants mainly found the tool orderly. Participants
liked the way that queries were visualized, i.e., a diagrammatic overview that users can interact with. They
also appreciated the fact that the tool allows them to formulate detailed information needs easily and in an
organized way. The introduction given to the users were only around five minutes with an example query,
therefore participants were mostly expected to learn on the way, since one of our goals was to have a tool
with a low learning curve and effort. This case is reflected and confirmed by the comments of participants.

Observing the participants in action allowed us to acquire some specific insights about the tool. One
major issue was that while formulating the fourth task, participants initially looked for a “birth place” field in
W2, since the information need was specifying a person born in USA. It took only a while for participants to
realize that this information is only accessible through a relationship rather than an attribute. A participant
first considered the branches as “OR” rather than “AND” and asked whether it was possible to construct
“OR” branches. Two participants realized that indeed they do not have to follow the logical order given
in the descriptions of information needs (i.e., to join the concepts in the given order), but the alternatives
exist. One of these participants solved one of the tasks successfully with an alternative order. Finally, from
a general perspective, users did not have any major difficulties in using and learning the tool and were quick
in realizing the given tasks. Participants largely stated that their experience with the tool was comparable
to the games in terms of the joy they had, raised their interest on the tool, and asked further questions after
the experiment, mostly concerning the context that the tool is going to be used.

20

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Figure 2.10: An excerpt from a query formulated by the participants during the experiment.

Table 2.7: The results of the exit survey.
S1 S2 S3 S4 S5 S6 S7 Avg.
P1 5 5 5 5 4 4 5 4.7
P2 4 4 5 5 5 4 5 4.6
P3 4 4 4 4 4 4 4 4.0
P4 3 4 2 3 4 4 4 3.4
P5 4 4 4 4 4 4 5 4.1
P6 4 5 4 5 5 4 4 4.4
P7 3 3 4 4 4 4 4 3.7
P8 5 5 5 5 4 5 5 4.9
P9 3 4 4 4 4 4 4 3.9
P10 3 3 4 4 3 4 4 3.6
P11 3 4 4 4 4 4 4 3.9
P12 4 4 4 4 4 4 4 4.0
P13 4 3 4 4 4 4 4 3.9
P14 3 3 4 3 4 4 4 3.6
P15 4 4 3 3 4 4 4 3.7
Avg. 3.7 3.9 4.0 4.1 4.1 4.1 4.3 4.0

21

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.8: The feedback given by the participants.
Like Dislike

P1 “Visual, easy to use, fast and easy to correct
mistakes."

“...can be visually improved."

P2 “Easy to jump on [diagram] and suggestions
[of the W1] were relevant"

-

P3 “Easy and organized. Good for an organized
and focused search."

“Nothing"

P4 “I like that it can make search process go faster
and make it more specific"

“It could get complicated as you have to link
and sometimes go back to previous boxes."

P5 “It was OK to find what the tasks asked for
without having to look too long for the right
variables."

-

P6 “The schematic diagram" “It has fixed options."

P7 “Good overview" -

P8 “The way you connect the nodes, the way it
was easy to incorporate a lot of information
in the right way, and it was easy to be orga-
nized."

“Maybe seems a bit simple at the first glance,
but then it was good!"

P9 “Nice visualization [for diagram]" “Many steps"

P10 “Easy to use" -

P11 “It was quite simple." “It felt I did not have much time [to learn]."

P12 “The organization in images and scheme" -

P13 “The scheme on top is pretty helpful to see
where you are actually getting to what you
are looking for"

“It took me some time to get used to it, but
then I think it works!"

P14 “You could really go in to details and ask
many things about same person/company
etc."

“It was a bit tricky to learn, but I think that
it is possible to get a hang on it if you use it
for a while"

P15 “Easy access for specific information regarding
the search options: movies, music etc."

“Some difficulties [for] managing the correct
search option"

22

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.9: Profile information of the participants.
Question P1 P2 P3

“Age” 39 40 49

“What is your occupation?” Geologist Biostrat Senior IT Advisor

“What is your level of education?” Master Master Master

“I have technical skills (i.e., computer)
such as programming and query lan-
guages (e.g., SQL, Java, PHP, SPARQL
etc.)”

Neutral (3) Disagree (2) Strongly Agree (5)

“I am familiar with tools similar to Op-
tiqueVQS”

Neutral (3) Strongly Disagree
(1)

Agree (4)

2.2.2 Results of the Statoil End-User Workshop

The experiment for the Statoil end-user workshop was designed as a think-aloud study similar to the first
experiment. The experiment is built on a bootstrapped NPD ontology. In total, the ontology includes 253
concepts, 208 relationships (including inverse properties), and 233 attributes.

A total of 3 participants took part in the experiment; the profiles of participants are summarized in
Table 2.9. A five-minute introduction of the topic and tool had been delivered to the participants along
with an example before they were asked to fill in a profile survey. The survey asks users about their age,
occupation and level of education, and asks them to rate their technical skills, such as on programming and
query languages, and their familiarity with similar tools on a Likert scale (i.e., 1 for “not familiar at all,” 5
for “very familiar”). Participants were then asked to formulate a set of information needs into queries with
OptiqueVQS, with at most three attempts for each query. Each participant performed the experiment in a
single session, while being watched by an observer. Participants were instructed to think aloud, including
any difficulties they encounter (e.g., frustration and confusion), while performing the given tasks.

There were 9 tasks, representing the information needs used in the experiment – see Table 2.10. The
task characteristics and shape of queries followed the first experiment.

Once users were done with their tasks, they were asked to fill an exit survey asking about their experiences
with the tool. The survey was built on the SUS and users were also asked to comment on what they did like
and dislike about the tool and to provide any feedback which they deemed important.

Results

The results of the experiment are presented in Table 2.11. A total of 27 tasks was completed by the
participants, with 84 percent correct completion rate and 65 percent first-attempt correct completion rate.
The first user had only one incorrect, and the second user has no incorrect result. The third user has one
missing record (task 2), therefore this has been omitted from the results. The third question was asking for
fields operated by Statoil. Instead of formulating a Field - Company pair, the third user formulated a Field
- FieldOperator pair. This confusion between FieldOperator and Company led him to incorrectly solve the
task 5 as well.

In increasing order, the task completion times and number of attempts on average are: 53 s and 1 attempt
for task 1, 90 s 1 attempt for task 2, 113 s and 1.3 attempt for task 5, 142 s and 1.6 attempts for task 3,
276 s and 1.3 attempts for task 4, 280 s and 1.6 for task 8, 391 s and 1 attempt for task 9, and 495 s and
2.3 attempts for task 7. The results suggest that queries with branching and type III cycles take longer time
compared to others. Task 7 not only takes the longest time but also the highest average attempts. This
is particularly due to conceptual mismatch between the users’ understanding of domain and the ontology,
which forced users to iterate several times.

23

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.10: Information needs used in the experiment.
Query type Information need

T1 Single concept List all fields.

T2 Single concept and
property

What is the water depth of the Snorre A platform (facility)?

T3 Short linear List all fields operated by Statoil Petroleum AS company.

T4 Short with branch-
ing

List all exploration wellbores with the field they belong to and the
geochronologic era(s) with which they are recorded.

T5 Short linear with
type III cycle

List the fields that are currently operated by the company that operates
the Alta field.

T6 Long linear List the companies that are licensees in production licenses that own
fields with a re- coverable oil equivalent over more than 300 in the field
reserve.

T7 Short with branch-
ing

List all production licenses that have a field with a wellbore completed
between 1970 and 1980 and recoverable oil equivalent greater than 100
in the company reserve.

T8 Long linear List the blocks that contain wellbores that are drilled by a company that
is a field operator.

T9 Short with branch-
ing and type III cy-
cle

List all producing fields operated by Statoil Petroleum AS that has a
wellbore containing gas and a wellbore containing oil.

24

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.11: The results of the experiment.
Participant Task Correct Attempt Time

1 1 1 1 87.9

1 2 1 1 91.6

1 3 1 1 121

1 4 1 1 286.6

1 5 1 1 143

1 6 1 1 281.1

1 7 0 3 507

1 8 1 1 162

1 9 1 1 525

2 1 1 1 45.1

2 2 1 1 89.2

2 3 1 1 109.2

2 4 1 2 437

2 5 1 2 102.6

2 6 1 1 490

2 7 1 2 521.6

2 8 1 3 454

2 9 1 1 311.5

3 1 1 1 26.7

3 2 * * *

3 3 0 3 197

3 4 1 1 105.4

3 5 0 1 94.9

3 6 0 2 266

3 7 1 2 456.5

3 8 1 1 224.7

3 9 1 1 339.4

25

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.12: The results of the exit survey.
Question P1 P2 P3

“I think that I would like to use this sys-
tem frequently.”

Neutral (3) Agree (4) Agree (4)

“I found the system unnecessarily com-
plex.”

Agree (4) Agree (4) Neutral (3)

“I thought the system was easy to use. Disagree (2) Disagree (2) Neutral (3)

“I think that I would need the support of
a technical person to be able to use this
system.”

Agree (4) Neutral (3) Agree (4)

“I found the various functions in this sys-
tem were well integrated.”

Neutral (3) Neutral (3) Agree (4)

“I thought there was too much inconsis-
tency in this system.”

Neutral (3) Agree (4) Disagree (2)

“I would imagine that most people would
learn to use this system very quickly.”

Disagree (2) Disagree (2) Agree (4)

“I found the system very cumbersome to
use.”

Neutral (3) Agree (4) Neutral (3)

“I felt very confident using the system.” Disagree (2) Neutral (3) Disagree (2)

“I needed to learn a lot of things before
I could get going with this system.”

Agree (4) Neutral (3) Neutral (3)

26

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.13: The feedback given by the participants.
“What did you like about the tool?” Person

“Ability to explore new relationships” P1

“Flexibility” P1

“Graphic front-end” P2

“Idea of searching different content” P2

“Easy graphical interface” P3

“Responsive” P3

“understandable functionality between windows” P3

“What didn’t you like about the tool?” Person

“Similar concept names” P1

“Mappings are not so easy to understand” P1

“The meaning of branches” P1

“Delete node” P2

“Lack of drag & drop” P2

“I probably missed some understanding of how to express some of the relations and
constraints”

P3

“I needed some training.” P3

The feedback provided by the participants through the exit survey is presented in Table 2.12 and Ta-
ble 2.13. The usability scores given by participants are considerably low despite high completion rates.
According to our observations this is particularly due to: the quality of ontology (i.e., ontology was boot-
strapped with little manual fine tuning), the size of the ontology, incomplete mappings (i.e., for some cases
users found alternative means to formulate a given task for which there was no mapping support), insensible
information needs (i.e., some of the query tasks did not make sense for the users), and finally lack of training
(which has been intentional to observe learnability of the tool).

2.2.3 Results of the Siemens End-User Workshop

The experiment design follows the first and second experiments – i.e., think-aloud. The experiment is built
on a Siemens diagnostic ontology. In total, the ontology includes 5 concepts, 5 relationships (excluding
inverse properties), and 9 attributes.

A total of 4 participants took part in the experiment; the profiles of participants are summarized in
Table 2.14. A five-minute introduction of the topic and tool was delivered to the participants along with an
example before they were asked to fill in a profile survey. The survey asks users about their age, occupation
and level of education, and asks them to rate their technical skills, such as on programming and query
languages, and their familiarity with similar tools on a Likert scale (i.e., 1 for “not familiar at all,” 5 for
“very familiar”). Participants were then asked to formulate a set of information needs into queries by using
OptiqueVQS and the Optique platform, given at most three attempts for each OptiqueVQS task. Each
participant performed the experiment in a single session, while being watched by an observer. Participants
were instructed to think aloud, including any difficulties they encounter (e.g., frustration and confusion),
while performing the given tasks.

There were 8 tasks, representing the information needs used in the experiment – see Table 2.15. Five of

27

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.14: Profile information of the participants.
Question P1 P2 P3 P4

“Age” 33 27 60 45

“What is your occupation?” Software Engi-
neer

Diagnostic En-
gineer

Mechanical
Engineer

Engineer

“What is your level of education?” Bachelor Bachelor Master Bachelor

“I have technical skills (i.e., computer)
such as programming and query lan-
guages (e.g., SQL, Java, PHP, SPARQL
etc.)”

Strongly
Agree (5)

Strongly
Agree (5)

Neutral (3) Strongly Dis-
agree (1)

“I am familiar with tools similar to Op-
tiqueVQS”

Disagree (2) Strongly
Agree (5)

Strongly Dis-
agree (1)

Disagree (2)

these tasks require OptiqueVQS, the remaining three were meant to be solved using the dashboard.
Once users were done with their tasks, they were asked to fill an exit survey asking about their experiences

with the tool. The survey was built on the SUS and users were also asked to comment on what they did like
and dislike about the tool and to provide any feedback, which they deemed important.

Results

The results of the experiment are presented in Table 2.16. A total of 28 tasks was completed by the
participants, with 92 percent correct completion rate and 78 percent first-attempt correct completion rate.
The third and fourth users have one incorrect task. The third user exceeded the allocated time for the session
and could not attempt the last three tasks, therefore these tasks have been omitted from the results for the
third user.

In increasing order, the task completion times and number of attempts on average are: 33 s and 1 attempt
for task 1, 36 s 1 attempt for task 6, 162 s and 1.25 attempt for task 5, 168 s and 2 attempts for task 7, and
258 s and 2 attempts for task 2. No time data was recorded for the tasks involving the dashboard as they
were rather exploratory.

The feedback provided by the participants through the exit survey is presented in Table 2.17 and Ta-
ble 2.18. The usability scores given by participants are considerably higher compared to Statoil study. The
Siemens diagnostic ontology used in the experiment is small in size and is manually created (i.e., of higher
quality). This resulted in a coherent picture, where both task completion rates and usability scores given
by the users were in line. User’s comment suggest that they did like the design of interface, while they had
minor issues such as date format consistency and ambiguity in result presentation. In the informal discussion
session, users also highlighted that they would prefer a longer training session.

28

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.15: Information needs used in the experiment.
Query type Information need

T1 VQS Find all assemblies that exist in system.

T2 VQS Show all messages that tribune NA0101/01 generated from 01.12.2009 to
02.12.2009.

T3 Dashboard Show all messages that turbine NA0101/01 generated from 01.12.2009 to
02.12.2009.

T4 Dashboard Find all messages generated by turbine NA0101/01 between 01.12.2009 and
02.12.2009 that contain the text “Trip”.

T5 VQS Show all turbines that sent a message containing the text “Trip” between
01.12.2009 and 02.12.2009.

T6 VQS Show all event categories known to the system.

T7 VQS Show all turbines that sent a message category “Shutdown” between
01.12.2009 and 02.12.2009.

T8 Dashboard Find out whether turbine NA0101/01 is currently running.

29

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.16: The results of the experiment.
Participant Task Correct Attempt Time

1 1 1 1 68.7

1 2 1 1 89.8

1 3 1 1 *

1 4 1 1 *

1 5 1 2 189.8

1 6 1 1 20.1

1 7 1 3 167

1 8 1 1 *

2 1 1 1 20.7

2 2 1 1 136.7

2 3 1 1 *

2 4 1 2 *

2 5 1 1 279

2 6 1 1 60.3

2 7 1 1 67.6

2 8 1 1 *

3 1 1 1 20.1

3 2 0 3 557

3 3 1 1 *

3 4 1 1 *

3 5 1 1 59.2

3 6 * * *

3 7 * * *

3 8 * * *

4 1 1 1 25

4 2 0 3 250

4 3 1 1 *

4 4 1 1 *

4 5 1 1 120

4 6 1 1 30

4 7 1 2 270

4 8 * * *

30

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.17: The results of the exit survey.
Question P1 P2 P3 P4

“I think that I would like to use this
system frequently.”

Disagree (2) Strongly
Agree (5)

Strongly Dis-
agree (1)

Agree (4)

“I found the system unnecessarily com-
plex.”

Neutral (3) Disagree (2) Disagree (2) Neutral (3)

“I thought the system was easy to use. Neutral (3) Agree (4) Agree (4) Neutral (3)

“I think that I would need the support
of a technical person to be able to use
this system.”

Agree (4) Neutral (3) Disagree (2) Disagree (2)

“I found the various functions in this
system were well integrated.”

Neutral (3) Agree (4) Agree (4) Neutral (3)

“I thought there was too much inconsis-
tency in this system.”

Agree (4) Disagree (2) Strongly Dis-
agree (1)

Agree (4)

“I would imagine that most people
would learn to use this system very
quickly.”

Neutral (3) Agree (4) Strongly
Agree (5)

Agree (4)

“I found the system very cumbersome
to use.”

Neutral (3) Neutral (3) Disagree (2) Neutral (3)

“I felt very confident using the system.” Neutral (3) Agree (4) Strongly
Agree(5)

Agree (4)

“I needed to learn a lot of things before
I could get going with this system.”

Agree (4) Disagree (2) Neutral (3) Disagree (2)

31

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

Table 2.18: The feedback given by the participants.
“What did you like about the tool?” Person

“Very easy to build queries if not SQL expert” P1

“Good visual confirmation” P2

“Nice UI design” P2

“MediaWiki integration is good’ P2

“Nodes make the query understandable” P2

“Nice interface” P3

“Visual interface” P4

“Quick response searching the database’ P4

“What didn’t you like about the tool?” Person

“Case sensitive’ P1

“How do you query and/or?” P1

“Deleting is tiddy’ P2

“Input field need validation’ P2

“No SELECT DISTINCT or GROUP BY” P2

“Keep going this is the future...” P2

“Took a couple of minutes to have a feeling about the structure” P3

“Dashboard should filter the assemblies in different ways” P4

“Dates shall have same format in all views” P4

“Explain in the headers what the results are” P4

“Explain what is expected to be filled in the cells” P4

32

Chapter 3

Requirements

This chapter lists the requirements that were identified for the prototype for the third project year. Two end
user workshops were held to gather end-user requirements for WP8 and WP9. The results are presented in
Section 3.1. Furthermore, input from the scientific work packages and the Description of Work was used to
summarize project-internal requirements for Project Year 3 in Section 3.2.

All requirements in this section stem from a need expressed by some stakeholder (end user, project
member, or the Description of Work of the Optique project). Thus, requirements in this deliverable are an
essential input towards formulating the Year 3 goals and beyond, rather than a list of concrete steps that
should be implemented.

The end user requirements for Year 2, as reported in D1.1, contained four “must-have” items essential
for end user acceptance. In general, end user acceptance was higher in the Year 2 end user workshops, and
the requested features align with the project work plan for Year 3; no “must-have” items deviating from the
work plan were identified.

Hence, following both the work plan and end user input, the project intends to focus on the areas of
Streaming and Federation in Year 3. In general, work package leaders and scientific leadership will coordinate
in prioritizing the requirements and coordinating implementation efforts; requirements touching high-focus
areas will be given higher priority.

3.1 End-User Requirements

This section summarizes the requirements that were identified following the usability evaluations held during
the end user workshops at Siemens and Statoil. The identified requirements fall into four groups: modi-
fications of the user interface (Section 3.1.1), requirements concerning the query language (Section 3.1.2),
requirements concerning interaction with existing end user tools (Section 3.1.3), and requirements for man-
aging the Optique system (Section 3.1.4). The requirements are presented in terms of the user need, without
prescribing a solution (except when there exists one obvious solution to the end user need). For some
requirements, editorial notes typeset in italics give additional commentary.

3.1.1 GUI Requirements

I Requirement R2.1: Fix Minor GUI Issues WP3

• Do not display a default icon when there is no icon available. The “Cogwheel” icon used by default
looks so distinctive that the user thinks it does something special.

• Make it clear what the little icon with the “>” (right arrow shape) in the concept browser does.

33

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

• When going from concept A to concept B, then focussing back on A, the search field content is restored
but the list of relations is not filtered according to the search field’s content. Either filter the list, or
clear the search field.

• The displayed text “(inv)” is unclear and confusing

• The delete button should work on the selected node instead of switching to “delete” mode where the
user needs to click on the node again.

• The search input field should stay visible at the top, currently it scrolls out of sight when scrolling
through the concept or attribute list.

• Make it possible to enter constraints both as drop-down list and freetext for one attribute - currently
it’s one or the other. (Ed. note: part of this requirement is fulfilled by the standard behavior of drop-
down lists, which can be searched by typing a prefix of the item, but this behavior is not discoverable and
was observed to have issues with focus (user types prefix, selecting desired item → user moves mouse
to click on item → list selection changes before user can click on desired item).)

I Requirement R2.2: Make it possible to browse ontology, concepts, relationships WP3

Sometimes the user wants to browse a concept, not add it to the query being built. It should be possible
to display a concept’s attributes and related concepts without adding it to the query immediately. (The user
says “We want to drag & drop instead of adding the concept to the query when clicking.”)

I Requirement R2.3: Enhance the query catalog WP3, WP2

• It should be possible to share queries with a colleague (“you’re the expert, please look at this output”)

• The query catalog should offer to save the current query before loading another one.

• The query catalog should show “related queries,” by similarity of query or affinity in workflow. (Ed.
note: the user conceptualized workflow affinity as a “Query path”: To diagnose this behavior, use
query 1, then query 2 or query 3 depending on what you see, etc. The query cataloger could offer
“Breadcrumbs” through a diagnostic decision tree.)

I Requirement R2.4: Implement easier query editing WP3

• Make it easy to always / automatically / easily select relevant attributes to display for a concept

• drag-and-drop editing of query structure

The user wants to “drag and drop” to rearrange the query instead of deleting a concept in one place
and recreating it in the other. (Ed. note: this is difficult in general since two concepts can be connected
in more than one way, i.e., via one of many attributes.)

34

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

I Requirement R2.5: Better Presentation of Query Under Construction WP3

• After refining the query by restricting a concept by attribute value, show the filter value in the graph,
not only the name of the filtered attribute. (Ed. note: the end user formulated this as “Constraints
in the graph, like ‘name(c)’, could be more concrete, and give that value of the constraint too, e.g.
‘name=ATLA’. Maybe: more info about constraints when hovering over a node?)

• It should be possible to see the name of the relation that connects two concepts in the query graph.

I Requirement R2.6: Better Presentation of Query Results WP3, WP2

• The header labels in the results table should be descriptive, not always A, B, C, D.

• When no attribute is selected to display for a given concept, pick one that is meaningful to display in
the results table. (Ed. note: Currently the “label” or else the “title” attribute is always displayed; if this
attribute is selected for display in the query, it is displayed a second time. One way to solve this would
be to have this attribute always selected for display.

I Requirement R2.7: Better unit handling in query formulation and result presentation WP3, WP4

Units (e.g., feet vs meters) should be handled properly both in query formulation and result presentation.

• It should be possible to set attribute constraints in meters when the table contains attributes in feet.

• Presentation of numbers in the result table should carry the unit, either in the header or in each row.

I Requirement R2.8: Better Presentation of the Ontology WP3

• Handle big list of concepts better: group concepts, rank concepts, . . . – The current presentation as
alphabetical list of concept names does not scale, especially when starting with a new query (where all
concepts are available).

• When searching for a concept, e.g. “Field,” make sure the exact match comes first

• The treatment of n-ary relations as concepts that “reify” the relationships is too confusing. In particular
it is too easy to confuse specialisations like “currentFieldOperator” with reified relations like “Field-
Owner” (which may also describe past operators). Working with n-ary relations must become simpler.
(Ed. note: this is partly an issue of ontology engineering, partly of user interface presentation.)

• When several relations go between the same two concepts, it is currently too easy to confuse them (in
part since the goal concept name is more prominent than the relation). It should be easier to pick the

35

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

right relation. (Ed. note: in some cases, subtypes of the goal type might be a better solution than many
relations)

I Requirement R2.9: Clear Up Confusion Between Concepts and Relationships WP3

• Make it easier to find out whether a subclass is needed or setting an attribute. E.g. “Exploration
Wellbore” is that using a “type” attribute on Wellbore, or is it a separate target class of a role. Or: is
there a class “ProducingField”?

• make it easier to find a concept or relationship, even when focusing on the wrong variable. Can be
hard to find out where some piece of information should be linked into the query.

• Confusing to the users that the concepts and the attributes look the same, struggle with when to use
the left hand side window, and when to use the right hand side window.

One possible solution for these problems is to unify the search fields for concepts and relationships (the
current prototype has two search fields, one for each, which means end users have to know whether they
search for a concept or attribute). We observed that end users search the ontology by name, and if the GUI
displays all matching concepts, attributes and relationships, they would be presented two relevant lists of
choices.

I Requirement R2.10: Make VQI scale to big data sizes WP3, WP6, WP7

• Make it possible to cancel the execution of a query.

• Make it possible to “test-run” a query. It should be possible to validate a query, e.g., by seeing “typical”
result data, before starting a query that will run for hours.

• Give feedback on the approximate size of the result set while constructing the query. Specifically, tell
when there will be no results.

• When there are no results, the user should get feedback on whether the reason is that no data is
available, or that the query is not satisfiable (and which parts of the query are not satisfiable).

I Requirement R2.11: Implement visual query interface for streaming queries WP3, WP5, WP8

It should be possible for end users to construct streaming queries in a visual way, using a suitable subset
of STARQL. The design should be guided by the requirements of the WP8 query cataloger.

3.1.2 Query Language Expressivity

36

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

I Requirement R2.12: Select Multiple Filter Values for an Attribute WP3, WP6

• It should be possible to select different fields from the map, not only one

• Can I show in the results two oil fields at the same time? For example if they are near each other?
(Not yet / only in some cases (sometimes we support selecting multiple values for an attribute)).

• Can we choose not only Statoil but also the other Statoil names? (For example in the EPDS database
there’s “company” and “company names”)

• multiple selection of items also on the map widget.

I Requirement R2.13: Wildcards in Attribute Queries WP3, WP6

Can we use wildcards (e.g., STATOIL*) for restricting attributes in queries? (For numbers, we can select
a range.)

I Requirement R2.14: Negations in Queries WP3, WP6

Can we ask for wellbores not containing gas? (But how to choose between fields not having a wellbore
having gas and fields containing a wellbore that does not contain gas?) (Ed. note: This came up as a
question during the initial presentation, not during discussion of actual end user queries. As such, it is a
low-priority requirement.)

I Requirement R2.15: Optional Attributes in Results WP3, WP6

Can we have optional attributes? Optional relationships? I.e., can we display all results, including the
ones where the given attribute is empty?

I Requirement R2.16: Geographical Constraints and Filters WP3, WP6

• Select a polygon or rectangle on a map and query all wellbores, etc., inside that polygon

– This is relevant for specifying a project area, a “basin,” a country, etc.

– It might be enough to have a database table of relevant polygons and pick from those, instead of
specifying a free-form area.

I Requirement R2.17: (Optionally) eliminate duplicates in results WP3, WP6

37

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

For a query like “how many machines shut down yesterday?”, if one machine shut down 30 times, it should
occur once in the results (even though there were 30 distinct shut down events for that machine).

3.1.3 Integration in Enterprise Systems

I Requirement R2.18: Export query results in useful formats WP2

• Based on Statoil end user interviews, CSV and KML are a useful basis for further experimentation
with the system. Siemens gave similar feedback.

• Siemens expressed interest in exporting time-series data for use in simulation tools.

I Requirement R2.19: Integrate import functionality of Optique platform query results in existing end-user
tools WP2, WP9

In order to stimulate uptake and awareness of the Optique platform for Statoil’s end-users, integration
of query results import functionality in existing tools like Petrel and ArcGIS is necessary. We propose to
solve this by developing simple plugins or scripts that can be executed from the end-users’ tools and import
query results using the SPARQL protocol for communicating SPARQL queries and results over HTTP.

I Requirement R2.20: Offer hyperlinks in result display that connect to other systems WP2, WP8

Some end users use browser-based tools that operate on entities that can be queried by Optique. When
displaying such entities in a query result, the system should offer a hyperlink that opens the same entity in
another tool. (Ed. note: this can likely be handled by either customizing the presentation of the entity detail
page, or via generating the link in the ontology / mapping for the concept.)

3.1.4 Administrative Interface Requirements

The administrative interface of the Optique solution is the management of ontologies and mappings. This
has until now only been done by project members, but will be increasingly important for IT administration
department stakeholders as the project progresses.

I Requirement R2.21: Help with Avoiding Mapping Update Anomalies WP4

Updating a mapping, e.g., changing a URI pattern, or what columns are used to populate a URI pattern,
is currently a manual and error-prone process. This should be supported better by the platform.

I Requirement R2.22: Improve Ontology Development Workflow WP2

• The workflow for ontology development should be improved, avoiding at least some of the many export–
upload steps from Protege to the platform.

38

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

• The platform should handle better the situation when multiple ontologies with the same IRI are
uploaded. Either deny these uploads, add versioning information, ignore one etc.

3.2 Scientific Requirements

This section presents focus areas for each scientific work package for Year 3. The material presented is based
on the progress in Year 2, the Description of Work, and additional input from work package leaders.

I Requirement R2.23: Query Formulation WP3

• Temporal and streaming queries:

– Translation of visually formulated queries into STARQL

– Usability studies of the temporal and streaming component of OptiqueVQS

• Enhancing query coverage and usability of OptiqueVQS

– Adaptivity of the interface to end-users’ interaction history

– Development and end-user study for ranking functions

– Development and end-user study for ontology projection

• Query Driven Ontology Construction:

– continue development of techniques for ontology construction from query catalogs

– preliminary enduser study of the developed techniques

I Requirement R2.24: Ontology and Mapping Management WP4

• Approximation in OBDA:

– definition of a technique to approximate both ontology and mapping specification at the same
time

– implementation and experimental evaluation of the above technique

• Mapping analysis:

– optimization of the current algorithms for mapping analysis

– definition of algorithms for the verification of further properties

– release of the final version of the mapping analysis component

• Ontology and mapping evolution:

– definition of techniques for supporting OBDA evolution

– implementation and experimental evaluation of a first component for supporting OBDA evolution

39

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

• Provenance:

– extension of the current technique for managing provenance of query results in OBDA

– implementation and experimental evaluation of the above technique

I Requirement R2.25: Time and Streams WP5

• Multi-stream queries should be handled for correlating data by the STARQL query translation engine

• Aggregation operators must be supported as part of the STARQL query translation engine (e.g., trends,
correlations, etc.)

• Performance: larger datasets for temporal queries (e.g., Dataset 3 as mentioned above should be
handled in minutes using distributed processing techniques)

• Experiments with a large number of continuous queries registered to a server, possibly with a load of
temporal (historical) queries in the background. Datasets should be larger, and we should be able to
scale them.

• More expressive Tboxes and larger static Aboxes describing objects and events need to be included
into the tests.

I Requirement R2.26: Query Transformation WP6

• Runtime Query Rewriting: Use Information given by ADP to improve the query rewriting algorithms
(possibly making use of materialization). Study the pro and cons of SPARQL vs SQL Federation.

• Runtime Query Rewriting: Study query rewriting in the context of OBDA in the presence of aggregates
in queries.

• Transformation System Tuning

– Continue the activity on the query catalogues provided by WP8 and WP9, and develop techniques
and optimizations that improve performance so that ideally all queries can be answered.

– Continue developing the NPD Benchmark to properly measure the impact of each optimisa-
tion/change implemented in the system.

I Requirement R2.27: Distributed Query Execution WP7

• Explore adaptive query optimization and execution techniques. This way, ADP can start executing
operators, collect statistics from the runtime engine regarding the materialized (intermediate) tables,
and re-consider optimization decisions based on the actual numbers and not solely on predictions. This

40

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

can also minimize estimation errors that occur from modeling or from the use of inaccurate statistics
(histograms).

• Explore the possibility to take as input feedback from Ontop (along with the queries or a-priori) about
views that could be useful if they were materialized in ADP.

• Explore intelligent network caching techniques with varying grain of materialization. Replicate cached
objects and dynamically direct queries to the appropriate cache container. Explore perfecting options,
when appropriate.

• Explore techniques for distributed stream processing. This involves methods for stream replication and
scheduling of query graphs (stream producer / consumer relationships) taking into account the rates
that queries consume their input streams and the resources they need to be executed (memory, CPU,
etc).

• Use UDFs to bundle processing primitives that are hard to express declaratively in e.g. SQL. In the
case of stream queries, bundled computations may be pushed near the stream sources, reducing network
load.

• Explore lossy compression and model-driven data acquisition techniques to enable real-time processing
of massive streams with limited network and CPU resources.

• Fully integrate OPC functionality in the platform.

3.3 Project Internal Requirements

This section lists some requirements that are deemed desirable to ensure forward progress for the project.

3.3.1 Platform Development Requirements

I Requirement R2.28: Configuration management WP2

The Optique platform use case installations are becoming increasingly complex artifacts, with intricate
dependencies between different software components, e.g., the visual query system, the rewriting component
Ontop, and the Information Workbench; and the non-software components like ontologies, mappings, and
queries. The project should set up a configuration management system that allows different versions of the
components and their dependencies to be represented and monitored.

I Requirement R2.29: Release management WP2

• The Optique platform use case installations are becoming increasingly complex artifacts. The project
should set up a release management system that allows independent components of the use case plat-
form installations to be tested, deployed and released in regular and controlled fashion using proper
infrastructure. The testing and release workflow must include testing on (a test version of) the public
showcase, and should, to the extent possible, include testing on the use case installations. Bug reports
and suggestive enhancements should be recorded in the internal Bugzilla installation.

41

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

3.3.2 Requirements for Impact-generating Activities

I Requirement R2.30: Create Training Material WP10

• White paper, training curricula and one-day courses targetting each of ICT, Engineering, Consulting

• Documentation and support material for the Laboratory (public showcase)

• Research compendium: a commented list of essential papers, from the project and elsewhere

I Requirement R2.31: Create Partner Program Supporting Material WP10, WP11

• A template business plan, which can be used to address specific enterprise needs by filling in the blanks

• An implementation plan (white paper) describing recommended steps for implementing Optique in an
enterprise

• A commercialisation plan

• A risk and mitigation measure list

• “Alpha package” consisting of a test/demo installation of Optique, documentation, presentations, arti-
cles sufficient to become familiar with Optique

• Experience reports from pilot installations

• Organize partner program meetings

42

Bibliography

[1] Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark van Harmelen, Rafael S.
Goncalves, and Cristina Garilao. FishMark: A linked data application benchmark. In Proc. of the Joint
Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW 2012), volume
943, pages 1–15. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2012.

[2] Nigel Bevan and Miles Macleod. Usability measurement in context. Behaviour and Information Tech-
nology, 13(1-2):132–145, 1994.

[3] Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark. Int. J. on Semantic Web and
Information Systems, 5(2):1–24, 2009.

[4] Tiziana Catarci. What happened when database researchers met usability. Information Systems,
25(3):177–212, 2000.

[5] Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and Carlo Batini. Visual query systems for
databases: A survey. Journal of Visual Languages and Computing, 8(2):215–260, 1997.

[6] John P. Chin, Virginia A. Diehl, and Kent L. Norman. Development of an instrument measuring user
satisfaction of the human-computer interface. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 1988), pages 213–218. ACM, 1988.

[7] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge base systems.
3(2–3):158–182, 2005.

[8] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li, Arnab Nandi,
and Cong Yu. Making database systems usable. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2007), pages 13–24. ACM, 2007.

[9] Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese. The NPD bench-
mark for OBDA systems. 2014.

[10] G Lindgaard and C Dudek. What is this evasive beast we call user satisfaction? Interacting with
Computers, 15(3):429–452, 2003.

[11] Jakob Nielsen. Why you only need to test with 5 users.

[12] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1993.

[13] Donald A. Norman and Stephen W. Draper, editors. User Centered System Design: New Perspectives
on Human-computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, 1986.

[14] Martin G. Skjæveland, Espen H. Lian, and Ian Horrocks. Publishing the Norwegian Petroleum Di-
rectorate’s FactPages as semantic web data. In H. Alani, L. Kagal, A. Fokue, P. Groth, C. Biemann,
J.X. Parreira, L. Aroyo, N. Noy, C. Welty, and K. Janowicz, editors, The Semantic Web – ISWC 2013,
volume 8219 of LNCS, 2013.

43

http://ceur-ws.org/

Optique Deliverable D1.3 Joint Phase 2 Evaluation and Phase 3 Requirement Analysis

[15] Harald Storrle. VMQL: A visual language for ad-hoc model querying. Journal of Visual Languages and
Computing, 22(1):3–29, 2011.

44

	1 Introduction
	2 Evaluation
	2.1 Performance Evaluation
	2.1.1 The NPD Benchmark for OBDA Systems
	2.1.2 Evaluation of the Statoil Query Catalog
	2.1.3 Evaluation of Query Answering on Siemens Historical Data

	2.2 Usability Evaluation
	2.2.1 Evaluation of the Visual Query Interface
	2.2.2 Results of the Statoil End-User Workshop
	2.2.3 Results of the Siemens End-User Workshop

	3 Requirements
	3.1 End-User Requirements
	3.1.1 GUI Requirements
	3.1.2 Query Language Expressivity
	3.1.3 Integration in Enterprise Systems
	3.1.4 Administrative Interface Requirements

	3.2 Scientific Requirements
	3.3 Project Internal Requirements
	3.3.1 Platform Development Requirements
	3.3.2 Requirements for Impact-generating Activities

	Bibliography

