
Project Nº: FP7-318338

Project Acronym: Optique

Project Title: Scalable End-user Access to Big Data

Instrument: Integrated Project

Scheme: Information & Communication Technologies

Deliverable D3.2
Techniques for Supporting Query Formulation

Due date of deliverable: (T0+24)

Actual submission date: November 2, 2014

Start date of the project: 1st November 2012 Duration: 48 months

Lead contractor for this deliverable: UiO

Dissemination level: PU – Public

Final version

Executive Summary:
Techniques for Supporting Query Formulation

This document summarises deliverable the Year 2 activities on visual query formulation (WP3) in the project
Optique (FP7-318338), an Integrated Project supported by the 7th Framework Programme of the EC. Full
information on this project, including the contents of this deliverable, is available online at http://www.

optique-project.eu/.
In WP3 we address query formulation over ontologies. Query formulation interfaces that we aim at should

enable end users to construct structured queries without prior knowledge of formal query languages. In this
deliverable we report on the progress in WP3 during the second year of the project. In the second year, we
continued to equip our query formulation interface with new functionalities that are aimed to improve user’s
experience. We discussed the technique that allows to suggest to users relevant query construction elements
for further query construction based on the already built part of the query (Chapter 5). In Chapter 2 we
discuss the interface adaptivity technique that aims at ranking query construction elements by using query
history. Then we report on the support of formulation of geo-spatial queries (Chapter 3) and temporal and
streaming queries (Chapter 4). All these functionalities require a special back-end support that we report in
Chapter 6. Finally, we performed user evaluation of our system (Chapter 7).

List of Authors
Ahmet Soylu (UiO)
Dmitriy Zheleznyakov (UOXF)
Evgeny Kharlamov (UOXF)
Martin Giese (UiO)
Ernesto Jiménez-Ruiz (UOXF)
Martin G. Skjæveland (UiO)
Konstantina Bereta (UoA)
Ian Horrocks (UOXF)
Arild Waaler (UiO)

2

http://www.optique-project.eu/
http://www.optique-project.eu/

Contents

1 Introduction 5

2 Extending OptiqueVQS with Ranking 9
2.1 Adaptive Query Formulation . 9

2.1.1 Running Example . 9
2.1.2 Basic Notions . 10
2.1.3 Ranking Method . 10

2.2 Related Work . 12

3 Support of Geo-spatial Query Formulation 15
3.1 Support for Map-based Selection of Features . 16
3.2 Export of Geo-spatial Query Results . 18

4 Support of Temporal and Streaming Query Formulation 21

5 Semantic Graph for Query Formulation 23
5.1 Basic Definitions . 23
5.2 Semantic Graph . 24

5.2.1 Query Conformation to Semantic Graph . 25
5.3 OptiqueVQS . 26

5.3.1 Queries of OptiqueVQS. 26

6 Backend Support 28
6.1 Annotation Support . 28
6.2 Ontology access . 29

7 User Evaluation and System Demonstration 32
7.1 Evaluation with casual users . 32

7.1.1 Results . 34
7.2 Results of the Statoil End-User Workshop . 36

7.2.1 Results . 38

Bibliography 43

A OptiqueVQS:
General 46

B OptiqueVQS:
Extending OptiqueVQS with Ranking 55

C OptiqueVQS:
Demonstration 69

3

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

D Faceted Search 74

4

Chapter 1

Introduction

The purpose of this document is to describe Year 2 advances on Techniques for supporting query formulation
corresponding to the Task T3.2 of WP3.

The goal of task T3.2 is to investigate and develop techniques to support query formulation and to design
a suitable tool that, in particular, supports query by navigation (QbN) and direct query editing by relying
on the domain model captured by the ontology.

Summary of Task Results. During the first two years of the project, we conducted an extensive study
of related work and developed a QbN tool, OptiqueVQS, with an embedded SPARQL editor that allows
to construct conjunctive tree-shaped queries with a limited form of disjunction between data values by
navigation through the domain ontology. OptiqueVQS allows to construct one-shot, temporal, and streaming
queries and addresses a number of use-case requirements. In particular, following the Statoil requirements
a geospatial component of OptiqueVQS was developed; it allows to perform map-based value selections and
a geospatial export of query answers. To improve query formulation experience for end-users, we developed
techniques for ranking suggestions that OptiqueVQS provides to users during interactive query formulation
process. In order to guarantee efficient query processing, the Optique platform relies on OWL 2 QL ontologies,
at the same time, in order to provide rich and intuitive query formulation interfaces to end-users, a variety
of information should be encoded in the ontologies much of which is not expressible in OWL 2 QL. To
bridge this gap, we separate ontologies into logical and visualisation parts where the latter one is encoded
using annotations and does not affect logical reasoning. We are developing the back end of OptiqueVQS
in such a way that it provides a generic treatment of annotations and, in particular, allows to encode
numerical and categorical data needed for ranges and drop-boxes, as well as selection of time intervals, and
information needed for ranking. The back end of OptiqueVQS relies on a graph representation of ontologies,
while ontological axioms are logical formulae without an obvious correspondence to graphs. To bridge the
gap between logical axioms constituting ontologies and graphs needed for the back end, we proposed the
semantic graph technique, that allow to “project” ontologies into graphs. Finally, we designed and conducted
evaluation of OptiqueVQS with students and end-users from Statoil and Siemens. We published, submitted,
or prepare for submission our techniques, implementations, and evaluations in international workshops and
conferences.

List of Achievement in Year 2.

• The following functionalities of OptiqueVQS were extended:

– Query management: users can save/load queries from the platform.

– Reversible actions: users can undo/redo their actions over their working query.

– Subclass refinement: users can refine a selected node to one or more of its subclasses, which
are treated as multi-select field in the form-based widget.

5

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

VQF Front End

On demand
processing

Saved
queries

Cache
Attribute

value service

Visualisation
info

Ranking
info

! Ontology
! Annotations

Visualisation
batch

Ranking
batch Query

log

Query execution

Ranking component
for the GUI

How to show What to show What to cache
and how often

Figure 1.1: Year 2 Architecture of OptiqueVQS

– Widget binding to form elements: system allows binding input widgets to form fields, for
instance a map widget is attached to representative attributes of concepts that have geographical
presence, so that a user can select an instance from the map widget rather than typing its name.

– Parameterised initialisation: system now can be initiated with a set of predefined parame-
ters such as, ontology to use, a stored query id to load, repository etc.

– Experiment mode: system now can be operated in an experiment mode, in which the use of tool
is controlled and session data is collected for experimental analysis. For instance, users’ attempts
are stored along with time to complete each attempt and a simple interface is made available for
pre-loading tasks for an experiment.

• A ranking model for query suggestions was proposed and partially implemented.

• An ontology projection technique was proposed and properties of projections were studied.

• A preliminary query formulation support for temporal and streaming queries was added.

• An initial implementation of a geospatial component of OptiqueVQS was conducted.

• The architecture of OptiqueVQS was redesigned and updated in order to support new developments,
see the new architecture in Figure 1.1.

• Evaluations with students and end-users in Statoil and Siemens was conducted.

Refined Query Interface Backend Architecture To provide an optimal user experience in the Visual
Query Interface, many pieces of information are required. Exactly what is shown to the user, and in which
order, may depend on:

• The ontology (available classes, etc.)

• The data (ranges of attribute values, etc.)

6

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

• Previous queries, a.k.a. the query log (e.g. for ranking, see Chapter 2

• Manual intervention – in case the automatic behaviour of the interface is not optimal.

For instance, consider a “temperature” attribute on some class. The ontology might constrain this to be a
real number, which might make a range slider suitable. But what are the minimum and maximum numbers?
If the ontology has no information about this, the data source can be queried for the extreme values. On
the other hand, if the attribute in question is a water temperature, it might be most natural to manually
instruct the system to use a range of 0 to 100.

Note that finding minimum and maximum numbers from the data source might be a very good approach
for many cases – but an extremely expensive one for large amounts of data. So certainly, the range of attribute
values should not have to be determined from the data every time the attribute in question appears in the
interface. Some form of caching is needed; but then it has to be possible to configure the system’s caching
regime.

We have decided to develop an architecture where configuration information steering the behaviour of
the visual query interface are added to the ontology in the form of OWL annotations, see Chapter 6.1.
Ultimately, for any attribute, it will be possible to specify

• which of a variety of widgets to use (e.g., sliders, text fields, popups, etc.)

• parameters like possible values, range min/max values

• instructions to read such values from the data, including a caching schedule

Fig. 1.1 shows the back-end architecture that provides all required information to the front-end. The
components, from the bottom up, are as follows:

• “Query execution” is the Optique query execution component that connects to the data sources.

• “Visualisation batch” periodically runs queries against the data in order to cache information about
how attributes should be displayed (e.g. text field or popup depending on number of different values)

• “Query log” stores previously executed queries

• “Ranking batch” periodically analyses the ontology and the query log and runs queries against the data
in order to cache information about the ranking of relations and attributes in the VQS. See Sect.2 for
initial work on this.

• “Visualisation info” is a cache for information on visualisation configuration determined for the data

• “Ranking info” is a cache for information on ranking configuration determined for the data, ontology,
and query log

• The ontology with its VQS annotations serves as single configuration point for the VQS backend

• “On demand processing” is the component the front-end contacts every time the focus changes, con-
straints are added, etc., to determine which relations and attributes to show, and in which order.

• “Saved queries” is the repository of queries saved from the front end, including the one currently
authored.

• “Attribute value service” is contacted by the front end to determine attribute values in popup menus,
sliders, for autocompletion, etc. Depending on the annotations in the ontology, these are extracted
from the ontology, or from the data, with caching.

• “Cache” is the cache of possible attribute values used by the Attribute value service.

7

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Ongoing Work on Query Driven Ontology Construction. We are currently working on query driven
ontology construction module of the Optique platform. In particular, we work on techniques for learning
ontologies from query catalogs and plan to test them on Siemens and Statoil query catalogs, which we have in
the form of texts in English. We envision that application of such techniques would extract simple ontological
structures form queries and then these structures can be incorporated in the ontologies already present in
an Optique installation via alignment.

Compliance with T3.2 Task Description and Relationship with Other Tasks andWork-packages.
Results of both Optique years in T3.2 match the goal of this task. The techniques and software components
developed within T3.2 are tightly connected to other tasks and work-packages. In particular, there is a tight
integration of OptiqueVQS with the query rewriting component of WP6. There is also a tight relationship
with WP4: the ontology alignment module of T4.1 allows to incorporate visualisation ontology into the
Optique platform; there is also a shared infrastructure with WP4: both work-packages rely on the a shared
ontology reasoner Hermit.

Structure of the Deliverable. In the following chapters of the deliverable we will focus on several di-
rections that we progressed on within Year 2. Chapter 2 discusses our development of ranking functions. In
Chapter 3 we present how we address the geospatial dimension in query formulation and in answer export-
ing processes. Chapter 4 presents how OptiqueVQS supports temporal and streaming query formulation.
Chapter 5 explains how to project ontologies into graphs. In Chapter 6 we explain how we support ontology
annotations in OptiqueVQS. Finally, Chapter 7 reports on user evaluations that took place in Year 2.

8

Chapter 2

Extending OptiqueVQS with Ranking

One of the main problems that OptiqueVQS and typically any other VQS face is scalability against large
ontologies (cf. [18]). A VQS has to provide its users with the elements of ontology (e.g., concepts and
properties) continuously, so that users can select relevant ontology elements and iteratively construct their
queries (see more details about relevant elements in Chapter 5). However, even with considerably small
ontologies, the number of concepts and properties to choose from increases drastically due to the propagative
effect of ontological reasoning (cf. [14]). In turn, the high number of ontology elements overloads the user
interface and hinders usability.

We approach the aforementioned problem with adaptivity (cf. [5]) by exploiting a query history to rank
and suggest ontology elements with respect to an incomplete query that a user has constructed so far (i.e.,
context-aware). The approach is specifically devised for SPARQL [15], takes semantics into account with
reasoning support, and uses SPARQL, as a programming language, for the implementation.

The results presented in this chapter were published in [27] (see also Appendix B).

2.1 Adaptive Query Formulation

Currently, the widgets W2 and W3 present all the available concept-object property pairs and data properties
to users respectively. This widgets can be found in Figure 2.1 in the left-bottom and right-bottom parts,
respectively. However, the lists grow quickly due to ontology size, number of relationships between concepts,
subproperties, inverse properties, inheritance of restrictions etc. As the lists grow, the time required for a
user to find elements of interest increases; therefore ranking ontology elements with respect to previously
executed queries and suggesting highly ranked elements first as possible query continuations have potential
to increase the efficiency of the users. The nature of OptiqueVQS requires suggestions to be done for the
pivot (i.e., cursor point) rather than for any part of a query.

In what follows, we first present a running example and then describe our ranking method for context-
aware suggestions. The running example is built on one of the use cases, namely the Statoil use case.

2.1.1 Running Example

A partial simplified ontology for Statoil exploration department is depicted in Figure 2.2. In Figure 2.3, an
example query log with three queries is assumed for the sake of brevity. The first query, Q1, is the one that
is depicted in Figure 2.1 and asks for the names of wellbores with a drilling facility and a drilling company.
The second query, Q2, asks for the content of all shallow wellbores that belong to wells and have drilling
companies of type operator. The final query, Q3, asks for the content of all exploration wellbores that have
fixed drilling facilities and drilling companies.

In Figure 2.3, PQ refers to an example partial query. The query in its incomplete form asks for all
exploration wellbores with a drilling company; the cursor point is the variable of type exploration wellbore.
At this point of query formulation session, the widgets W2 and W3 need to suggest the most relevant
continuations by comparing the partial query with the queries in the query log.

9

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Figure 2.1: OptiqueVQS – an example query is depicted

2.1.2 Basic Notions

We assume the following pairwise disjoint alphabets: a set of URIs U , a set of literals L, and a set of blank
nodes B. We say that a labelled directed graph is in RDF if (i) a node of the graph belongs to U ∪ L ∪B
and (ii) an edge 〈s, p, o〉 of the graph belongs to (U ∪B)× U × (U ∪ L ∪B); here s is usually referred to as
subject, p as predicate, and o as object. It is well known that an OWL 2 ontology can be represented as an
RDF graph [7].

The standard language to query RDF graphs is SPARQL [15]. A SPARQL query can be seen as a graph
pattern, which is a set of graph patterns 〈s, p, o〉 belonging to (U ∪B∪Var)× (U ×Var)× (U ∪L∪B∪Var),
where Var is an infinite set of variables. SPARQL is based on matching graph patterns against the input
RDF graph. With OptiqueVQS, however, user cannot formulate arbitrary queries, but queries that are
constituted by graph patterns from Var × U × (U ∪Var ∪ L).
Example 2.1.1. The query depicted in Figure 2.1 can be formally written as

SELECT ?c1 ?a1 ?c2 ?c3 WHERE{
?c1 ns1 :type ns2 :Wellbore.

?c2 ns1 :type ns2 :Facility.

?c3 ns1 :type ns2 :Company.

?c1 ns2 :drillingFacility ?c2.

?c1 ns2 :drillingOperation ?c3.

?c1 ns2 :name ?a1.

},

where ns1 : and ns2 : are corresponding name spaces (i.e., predefined prefixes that, together with the rest of
the name of the node, constitutes a unique URI).

2.1.3 Ranking Method

A query log QL is basically a set of SPARQL queries: QL = {Q1, Q2, ..., Qn}. We define a function
p that takes a query Q as input and returns its graph pattern P . We define S as a set of suggestions

10

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Wellbore	

Produc,on	
License	

Field	

Company	 Facility	

Shallow	
Wellbore	

Development	
Wellbore	

Explora,on	
Wellbore	

string	 string	

Operator	

Contractor	 Fixed	
Facility	

Pipeline	

Well	

subclass	 subclass	

subclass	

subclass	
subclass	 subclass	

subclass	

forField	

belongsToWell	

drillingFacility	 drillingOpCompany	

forLicense	

name	 content	

Figure 2.2: A partial simplified ontology for the Statoil use case

{T1, T2, ..., Tm}. Each suggestion in S is a triple set Ti, which either contains two triples for W2 in the
form of {〈x, o, y〉 ∈ Var × U × Var , 〈y, rdf:type, w〉 ∈ Var × U × U} or one triple for W3 in the form of
{〈x, d, y〉 ∈ Var × U × (Var ∪ L)}, where x corresponds to the cursor variable in a partial user query Qa.
Note that subclass suggestion is not included in the ranking since it is always suggested by default.

The ranking score, at this point, basically corresponds to the conditional probability for each suggestion
Ti in S, given a partial query Qa and a query log QL, that is Pr(Ti | p(Qa)). Conditional probability and
probability functions are defined in the followings.

Within a query log QL, the probability of a graph pattern P is defined as the fraction of graph patterns
in QL that are supergraphs [26] of P , as shown in the following equality:

Pr(P) =
|{Qi ∈ QL|P ⊆ p(Qi)}|

|QL| .

The conditional probability of a triple set T given a graph pattern P is defined as the quotient of the
probability of the union of T and P , and the probability of P as shown in the following equality:

Pr(T | P) = Pr(T ∩ P)
Pr(P)

.

Now two important questions come into play. First, how do we find supergraphs in the query log, given
a partial user query? Second, how do we extract possible extensions, i.e., suggestions, for the partial query
from found supergraphs? As far as the first problem is concerned, it boils down to a graph matching problem.

11

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Wellbore	

Facility	

Company	

Well	 Q1	 Q2	

drillingOpCompany	

name	 (o)	

drillingFacility	 belongsToWell	

Operator	

Shallow	 Wellb	
content	 (o)	

drillingOpCompany	

Exp	 Wellbore	

Fixed	 Facility	 Q3	

content	 (o)	
Company	

drillingFacility	

drillingOpCompany	

Exp	 Wellbore	

?	 PQ	

?	
Company	

?	

drillingOpCompany	

Figure 2.3: A query log with three queries and an example partial user query

We consider a graph pattern P1 to be subgraph of another graph pattern P2, if all the triple patterns of P1

are covered by P2, independent of variable names, ordering of triple patterns, and the values of constraints.
Dividino and Groner [13] review different approaches for checking graph similarity, where our interest falls
into content-based approaches. We propose a method that relies on SPARQL itself and provides us with an
exhaustive solution, as it allows us to exploit semantic knowledge while matching queries.

The method starts with the instantiation of graph patterns of queries in the query log by replacing variable
names and constraints on data type properties with blank nodes; blank node names are marked with a query
identifier for preventing any overlap and identification purposes. Then, the resulted RDF graphs are stored
in a common dedicated triple store; the instantiation of the query log depicted in Figure 2.3 is given in
Figure 2.4. By applying the partial query over this triple store, one can retrieve all the queries that are the
supergraphs of the partial query.

As far as the second question is concerned, i.e., finding possible extensions, the partial query is extended
with a triple pattern from the cursor point to retrieve all extensions occurred in the matching supergraphs.
The output of partial query is modified to retrieve the identifiers of matching queries, properties, and the
types of variables for the returned extension. An example is given in Figure 2.5 for the partial query depicted
in Figure 2.3 and the triple store depicted in Figure 2.4. The rest of the method involves calculation of
conditional probabilities for the suggestions, as exemplified in Figure 2.5.

If one inspects the results in Figure 2.5 closely, they will realise that reasoning is involved. This is because
in the query log, only Q3 is an exact match for the partial query. However, thanks to reasoning support,
Q1 is also matched, since exploration wellbore is a subclass of wellbore. Likewise, this guarantees a match
for any query that has a semantic similarity [16] to the partial query, involving subclasses, subproperties,
inverses etc. Yet, it is possible to query the triple store without any reasoning, if one wants to eliminate such
matches, hence avoiding any semantic distance.

The final stage involves ordering and dividing S into two sets, S1 for W2 and S2 for W3, with respect
to ranking score and type of each suggestion (i.e., concept-relationship pair vs. data type property). Then,
suggestions in each set are paginated into |Si|

j pages, where i is the set identifier and j is the window size for
a page (i.e., the required number of suggestions for a page).

2.2 Related Work

There are a number of visual query formulation tools available in the literature (e.g., [8, 9, 17, 2]); however,
to the best of our knowledge none of them supports adaptive visual query formulation. Existing approaches
for adaptive query formulation are largely developed for context-sensitive textual query formulation.

Khoussainova et al. [20] provide a system, named SnipSuggest, for context-aware composition of textual

12

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Query	 log:	 SPARQL	 form	
	
Q1	 SELECT	 DISTINCT	 ?c1	 ?a1	 ?c2	 ?c3	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:Wellbore.	 	
	 	 ?c2	 ns1:type	 ns2:Facility.	
	 	 ?c3	 ns1:type	 ns2:Company.	
	 	 ?c1	 ns2:drillingFacility	 ?c2.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c3.	
	 	 ?c1	 ns2:name	 ?a1.	
}	
	
Q2	 SELECT	 DISTINCT	 ?c1	 ?a1	 ?c2	 ?c3	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ShallowWellbore.	
	 	 ?c2	 ns1:type	 ns2:Operator.	
	 	 ?c3	 ns1:type	 ns2:Well.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
	 	 ?c1	 ns2:belongsToWell	 ?c3.	
	 	 ?c1	 ns2:wellboreContent	 ?a2.	
}	
	
Q3	 SELECT	 DISTINCT	 ?c1	 ?a1	 ?c2	 ?c3	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ExpWellbore.	
	 	 ?c2	 ns1:type	 ns2:Company.	
	 	 ?c3	 ns1:type	 ns2:FixedFacility.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
	 	 ?c1	 ns2:drillingFacility	 ?c3.	
	 	 ?c1	 ns2:wellboreContent	 ?a1.	
}	
	
	

Query	 log:	 triple	 form	
	
	
_:q1c1	 ns1:type	 ns2:Wellbore.	
_:q1c2	 ns1:type	 ns2:Facility.	
_:q1c3	 ns1:type	 ns2:Company.	
_:q1c1	 ns2:drillingFacility	 _:q1c2.	
_:q1c1	 ns2:drillingOpCompany	 _:q1c3.	 	
_:q1c1	 ns2:name	 _:q1a1.	
	
	
	
	
	
_:q2c1	 ns1:type	 ns2:ShallowWellbore.	
_:q2c2	 ns1:type	 ns2:Operator.	
_:q2c3	 ns1:type	 ns2:Well.	
_:q2c1	 ns2:drillingOpCompany	 _:q2c2.	
_:q2c1	 ns2:belongsToWell	 _:q2c3	 .	
_:q2c1	 ns2:wellboreContent	 _:q2a1.	 	
	
	
	
	
_:q3c1	 ns1:type	 ns2:ExpWellbore.	
_:q3c2	 ns1:type	 ns2:Company.	
_:q3c3	 ns1:type	 ns2:FixedFacility.	
_:q3c1	 ns2:drillingOpCompany	 _:q3c2.	 	
_:q3c1	 ns2:drillingFacility	 _:q3c3.	
_:q3c1	 ns2:wellboreContent	 _:q3a1.	

Figure 2.4: The instantiation of query graph patterns

SQL queries with respect to a given query log. The authors translate each SQL query in the query log into a
set of features (e.g., a table name appearing in the FROM clause). Similarly, the partial query of the user is
also translated into a set of features. Possible features for extension are identified by matching the feature sets
of the partial query and the feature sets of queries in the query log and are ranked by calculating conditional
probabilities. The approach generates suggestions for extending any part of the partial query rather than a
single cursor point. Authors also propose a set of supportive algorithms and techniques for, such as feature
set matching (i.e., what if the partial query does not appear in the query log), the selection of suggestions
(i.e., accuracy vs. diversity), and query log elimination (i.e., to reduce the size). The elaborate approach
provided by SnipSuggest system is relevant to our contribution in many aspects. However, a fundamental
difference is in feature comparison; while the features of SnipSuggest system are a set of syntactic elements
and the feature comparison is string based, for OptiqueVQS feature sets (i.e., correspond to the triple sets of
graph patterns) have a semantic nature and compared semantically. The semantic aspects not only concern
how the matching is done, but also the calculation of rankings, which we discuss in the following section.

As far as approaches for SPARQL are concerned, Campinas et al. [6] propose an approach for assisting
textual SPARQL query formulation, however in a different context. Their approach assumes that an ontology
describing the data set is unknown. Therefore, the authors propose a model that summarises the underlying
data graph and extracts ontology elements to suggest. The approach extends a given partial user query
from the cursor point, similar to our approach, and then evaluates it over the data graph summary to
retrieve possible extensions. However, the approach does not realise any ranking of suggestions based on the
previously executed queries and does not take semantic similarities between queries into account, possibly
due to lack of rich domain knowledge (e.g., lack of subclass, inverse property axioms).

Kramer et al. [21] present a tool, named SPACE, to support autocompletion of textual SPARQL queries.

13

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

?c3	 ?prop	 ?type	

_:q1c2	 ns2:drillingFacility	 ns2:Facility	

_:q1c3	 ns2:drillingOpCompany	 ns2:Company	

_:q1a1	 ns2:name	

_:q3c2	 ns2:drillingOpCompany	 ns2:Company	

_:q3c3	 ns2:drillingFacility	 ns2:FixedFacility	

_:q3a1	 ns2:wellboreContent	

Matches	

Modified	 par/al	 user	 query	
	
SELECT	 DISTINCT	 ?c3	 ?prop	 ?type	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ExpWellbore.	
	 	 ?c2	 ns1:type	 ns2:Company.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
	 	 ?c1	 ?prop	 ?c3.	
	 	 OPTIONAL	 {	 ?c3	 rdf:type	 ?type	 }	
}	

Par/al	 user	 query	
	
	
SELECT	 DISTINCT	 ?c1	 ?c2	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ExpWellbore.	
	 	 ?c2	 ns1:type	 ns2:Company.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
}	
	

0.16	

0.33	

0.16	

0.16	

0.16	

Pr(T|P)	

W2	

W2	

W3	

W2	

W3	

Widget	

T1	

T2	

T3	

T2	

T4	

T5	

Figure 2.5: Modified partial user query and possible query extensions

For this purpose, it takes a SPARQL query log as an input and then builds an index structure for the
computation of query suggestions. The index structure has a root node at level 0, representing a set of
queries, while each vertex at level 1 represents a SPARQL query. The vertices from level n − 2 to index
level 1 represent graph patterns recursively. Finally the vertices at the highest level (n− 1) represent IRIs,
blank nodes, literals, variables, and binary operators such as AND, UNION, and FILTER. The suggestion
process is done by subgraph matching for the partial user query in the index graph in a bottom up manner.
However, the authors describe neither the subgraph matching process nor the details of ranking calculation.
Finally, the index structure could grow quickly as it is built on recursive decomposition of graph patterns.

14

Chapter 3

Support of Geo-spatial Query Formulation

In order to make a system for data access truly adapted to the needs of any given domain, special attention
needs to be given to the types of data relevant for that domain: they might require specialized storage (more
than just relational databases), specialized reasoning and query processing, and of course also specialized
mechanisms for query formulation, that correspond to the most natural ways of interacting with such data.

In the petroleum exploration domain, much of the data to be accessed is tied to specific geospatial extents.
For instance, information is attached to wellbores, which are located within an oil field, a license area, some
seismic survey, etc. Specifying entities in terms of their geospatial location is common practice in the tools
and work flows at the Statoil exploration department (more details can be found in the deliverable D9.2).
It was therefore decided to make a particular effort to include geospatial querying in the Optique platform,
although this was not foreseen in (the original version of) the DoW.

It seems obvious that the most natural way of specifying geospatial constraints in a data access task is
via a map – by selecting objects, or drawing outlines of regions. But a closer scrutiny shows that this is not
necessarily the case. Depending on the information need, users might want to construct different kinds of
queries:

1. selecting features (e.g. wellbores) that are related to (lie within, overlap, etc.) a specific feature or
set of features (e.g. some fields or a license area) that are explicitly represented in the data set.

Example: All wellbores within the Ekofisk field area.

2. selecting features that are related to (lie within, overlap, etc.) a free form region that does not have
to coincide with the geometry of some entity in the data set.

Example: All wellbores between 61°and 62°N and between 2°and 3°E.

3. selecting features purely based on their geospatial relationships without any reference to some fixed
feature or region.

Example: All wellbores within 1km of some pipeline.

To deal with variant 1, it is natural to allow selecting the relevant feature (e.g. the Ekofisk field in the
example) on the map, and to combine this selection with the OptiqueVQS, in order to allow users to formulate
more complex information needs.

Similarly, variant 2 can be approached by allowing the user to define the region in question by using
the selection tools of some mapping software, and again interfacing with OptiqueVQS to allow for added
relational complexity.

It is important to point out however, that variant 3 is not as obviously formulated using a map: the rela-
tionship of spatial containment or overlap is not something that is easily specified by indicating a particular
point or region on a concrete map.

Moreover, we questioned users of map-based tools at both Statoil and technology provider Schlumberger
SIS to find out to which extent these different variants of geospatial querying are used in practice. It turned

15

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

out that for organizational reasons, almost any information need of these users will be restricted to specific
regions. Variant 1 is the most common pattern. Variant 2 is also in demand, since it gives users some
flexibility, for instance in focusing on a slightly larger area than that defined by a specific block, field, etc.
Queries of type 3, without any further spatial restriction seem to be needed rarely, if ever.

We therefore decided to create a specialized geospatial (i.e. map) widget for OptiqueVQS to handle
variants 1 and 2.

To specify relationships like containment and overlap when required, it is entirely possible to treat these
generically in OptiqueVQS, like any other binary relation between features.

An additional aspect is the processing ability that the different variants require from the backend. For
variant 1, it is sufficient that the relevant spatial relations between features are available as relational data.
For instance the example query “All wellbores within the Ekofisk field” can be solved by selecting the Ekofisk
field on a map, and selecting the “contains” relation between fields and wellbores, which is found in the data
set. For 2, the selected region will not in general correspond to any given feature in the data set. Therefore
any query concerning containment in or overlap with a manually selected region will require some actual
geospatial database operations.

As reported in deliverable D6.2, a geospatial extension of the ontop query transformation module has
been developed by partner UoA in Y2. However, 1) this development is not yet integrated into the Optique
platform, 2) it relies on a data storage layer that supports the required geospatial operations through a
geospatial extension of SQL. Neither the Statoil data store, nor the storage we used for the NPD data set
currently support these operations.

This is why our efforts in Year 1 have been restricted to variant 1, which allows the selection of features
on a map, but does not require actual geospatial operations from the query transformation and execution
components. Our development is described in Sect. 3.1.

More important for the Optique vision than geospatial query formulation, is the ability to interface with
existing tools used by domain experts, to allow analysis of data, once the data access (i.e. query processing)
is done. For this, we have developed functionality to export the results of a query in a standard format that
can be read by Geographical Information Systems, to display them as a map layer, see Sect. 3.2.

In Year 3, we will attempt to tighten the integration between geospatial tools and Optique: Instead of
selecting features (and later regions) on a map widget of our own construction, it should be possible to select
them in an existing mapping tool used in the domain (like ArcGIS or Petrel), and transfer directly from
those tools to OptiqueVQS, essentially making the query formulation appear as a plug-in to the existing
tools, rather than a new and separate system. Conversely, the output from queries, that is now written into
file that can be imported by other tools, should become more directly available to GIS software.

3.1 Support for Map-based Selection of Features

Support for simple geo-spatial query formulation by selecting features that are explicitly represented in
the data set are added to the OptiqueVQS with the map widget. The map widget is implemented as a
JavaScript client application that uses the OpenLayers JavaScript library1 to read and render geographical
data represented as GeoJSON2 on maps. The GeoJSON files are constructed from shape files3 that are
available from the NPD FactPages website.4 The shape files contain geo-spatial data related to most of the
entities on the Norwegian Continental Shelf (NCS) that have a geographical location, e.g., wellbores, fields,
pipelines and seismic surveys.

The map widget is enabled in the OptiqueVQS by annotating those concepts in the ontology to which
geographical data exist via the map widget, see Chapter 6. In the OptiqueVQS, this is indicated by the
map marker icon appearing on typically the name attribute in the form-based widget of the OptiqueVQS,

1url: http://openlayers.org
2url: http://geojson.org/
3url: https://en.wikipedia.org/wiki/Shapefile
4url: http://factpages.npd.no/factpages/

16

http://openlayers.org
http://geojson.org/
https://en.wikipedia.org/wiki/Shapefile
http://factpages.npd.no/factpages/

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Figure 3.1: The map widget of the OptiqueVQS showing (an excerpt) of all fields on the Norwegian Conti-
nental Shelf; the Valhall field is selected by the user.

see Figure 3.1. Clicking the marker opens the map widget in a new window. The window displays the
geo-spatial data related to the currently selected concept in the OptiqueVQS on a map. All other geo-spatial
data available to the map widget may also be added to the map as additional map layers in order to make
the map easier to navigate; for instance, in the case of NCS it is very common to include blocks and outlines
of field areas in maps. The user may select a feature belonging to the map layer associated with the current
selected concept in the OptiqueVQS, upon which the value of the attribute to which the marker icon appeared
is displayed in the map widget; in Figure 3.1 the Valhall field is selected. When the selection attribute value
is returned back to the form-based widget, it is displayed there as a value restriction.

The current map widget is only a “proof of concept” implementation, motivated by the prominent role geo-
spatial query formulation has in existing end-user tools in the petroleum exploration domain. Notable short-
comings with the current implementation is that the geo-spatial data in the GeoJSON files is not retrieved
directly from the ontology or the data source. Instead, it is currently prepared up front, and externally to
the Optique system. Special care must be taken to ensure that the geo-spatial data is synchronised with
the data at the data sources. Also, since the current map widget reads designated files for geo-spatial data,
it must keep a mapping that controls which concepts in the ontology correspond to which geo-spatial data,
and is therefore currently not able to generically handle arbitrary ontologies and data sets that represent
and contain geo-spatial data.

In the remainder of the project, we intend to define the content of the map layers shown in the map
widget or third party mapping tools within the Optique platform, using OBDA technology to access the
data.

17

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

3.2 Export of Geo-spatial Query Results

Being able to project query results using well-established GIS applications is useful for the Statoil engineers.
This requirement that was inferred from the first user evaluation workshop in Statoil, was addressed in the
second year of the project. In order to offer a solution in this respect, we had to address the following issues:

• Client-based or Server-based approach. Our first approach was client-based; Since ArcGIS 10.0 is the
GIS application which is used most by the Statoil engineers, we developed a customized tool inside
ArcGIS in Python that retrieves results in CSV format and projects them on a map. However, this
customized solution is not optimal, as for different versions of ArcGIS the tool should be adjusted
accordingly, and of course such a solution would offer compliance with ArcGIS, which is the most
popular but only one of the many GIS applications that exist nowadays. So eventually followed a
server-based approach in order to enable the optique platform to export query results in a format
which could be compliant with more GIS applications, i.e., an ESRI-compliant format. The idea is
that the query results that contain geometries could then be exported as a geospatial file format that
could be opened using any ESRI-compliant GIS application.

• File format for geospatial data. Another issue we had to tackle was to decide which ESRI-compliant
file format would be supported by the platform, as standard SPARQL endpoints do not include this
kind of formats. We decided to support the KML format. Keyhole Markup Language (KML) is an
XML notation for expressing geographic annotation and visualization of geometries. It was introduced
by Google, and in 2008 it became a standard of the Open Geospatial Consortium (OGC). Since then,
it has been supported by all ESRI-compliant GIS applications, such as Google Earth, ArcGIS, QGIS,
etc. In KML, the geometries, along with auxiliary information can be represented. This is the same
approach that was followed for the web interface of the spatiotemporal RDF store Strabon[22, 4] (i.e,
the Strabon endpoint), which is available open source5. The KMLWriter that was developed and
integrated into the Optique platform is based on the respective module of the Strabon endpoint.

Figure 3.2 depicts a SPARQL query that retrieves the locations of wellbores that are contained in the
NPD dataset. By selecting the option “KML” in the “Results format” drop-down menu, the user can download
the results of the query as a KML file. We demonstrate this new feature of the Optique platform, by using
three well-known applications for displaying and managing geospatial data:

• ArcGIS. ArcGIS6 is one of the most popular GIS used mainly for creating maps. It is also extensively
used by the Statoil engineers. The version that we use is an instance that runs natively on a Statoil
server.

• Google Earth. Google Earth7 is another widely used application used for managing geospatial data and
displaying them on the map. It comes with three different licenses (we use the free version).

• Sextant. Sextant[3] is an open source8, web-based browser and visualizer that can be used to produce
thematic maps by layering geospatial information which exists in a number of data sources ranging from
standard SPARQL endpoints, GeoSPARQL endpoints, or well-adopted geospatial file formats, such as
KML and GeoJSON. We use Sextant as a representative of the family of the “linked geospatial data”
browsers. By this way, geospatial data coming from the Optique platform could be combined with
linked geospatial data coming from other sources (e.g., other SPARQL or GeoSPARQL[12] endpoints)
.

Figure 3.3(a) shows how the exported file is opened using an instance of ArcGIS 10.0 (the ArcMap
component) that runs natively in a Statoil server. Note that this version of ArcGIS, requires the use of the

5http://www.strabon.di.uoa.gr/
6https://www.arcgis.com/home/
7https://www.google.com/earth/
8http://sextant.di.uoa.gr/

18

http://www.strabon.di.uoa.gr/
https://www.arcgis.com/home/
https://www.google.com/earth/
http://sextant.di.uoa.gr/

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Figure 3.2: The results can be exported as a KML file.

built-in tool “KML to Layer” in order to project a KML file on a map. In newer versions of ArcGIS, this
tool is no longer needed and KML files can be opened directly using the “Add Data” option. Figure 3.3(b)
shows the same file opened with Google Earth and Figure 3.3(c) shows the file imported to an instance of
Sextant.

19

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

(a) (b) (c)

Figure 3.3: The KML file opened with ArcGIS 10.0 (a), Google Earth (b), and Sextant (c) .

20

Chapter 4

Support of Temporal and Streaming Query
Formulation

According to the requirements of the Siemens use case with sensor data, in WP5 a query language named
STARQL, is developed (see D5.1 and D5.2) in order to handle the stream and temporal data.

As indicated in D5.2, instead of the reified approach for ontology-level stream processing, STARQL offers
the means to attach to facts (rather than to reified objects such as measurements) times at which they
hold. In our first and current attempt to bridge OptiqueVQS and STARQL, we tried to partially address
this non-reified approach, basically by binding a stream widget to individual time-stamped data properties
(with a relevant icon next to form element representing the corresponding data property – similar to map
widget), so as to allow users to apply relevant operators, such as window and pulse. In Fig. 4.1, an example
is depicted, which asks for an update of wellbore bottom heats for the last 1 hour in every 60 seconds. This
example assumes that wellbore bottom heat property is timestamped and annotated as such.

As far as temporal querying is concerned, STARQL offers a unified mechanism to accommodate both
temporal and stream queries. Currently, however, OptiqueVQS does not fully support all STARQL features.
So in year 3 we are going to investigate the trade-off between the expressivity of STARQL and usability
of its particular features for our use-cases. Then we will study a unified and homogeneous solution to
implementation of the relevant fragment of STARQL in OptiqueVQS.

21

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Figure 4.1: Stream widget in action

22

Chapter 5

Semantic Graph for Query Formulation

An ontology models the reality in “object-oriented” terms: the domain of discourse consists of objects that
can form classes, are connected to each other via roles, and can have properties. Information needs coming
from end-users are often formulated in these terms.

Example 5.0.1. Consider the following information need coming form an end-user:

Return me names of the companies that are licensed to work on the wellbores in Area A.

Here we have that the user is interested in finding those objects from the class “Companies” that are connected
via the property “Licensed” to the objects of the class “Wellbores in Area A”. The last class, in turn, is also
composite: it consists of objects of the class “Wellbores” that have the property “Located in Area A”.

That is, based on this assumption, our conjecture is that a visual query interface that supports query
formulation in these terms should help the user to (i) find and build these (probably composite) classes and
(ii) connect them via roles. Thus, there is a need to develop techniques that would help such a system in
these tasks. In what follows we present such technique which we call semantic graph. Some results presented
in this chapter were published in [29, 1] (see Appendices A and D).

We start with basic definitions.

5.1 Basic Definitions

We use standard notions from first-order logic. We assume pairwise disjoint infinite sets of constants, unary
predicates and binary predicates. A signature is a subset of constants, unary and binary predicates. We
treat equality ≈ as an ordinary binary predicate and assume that any set of formulae contains the axioms
of equality for its signature. We treat > as a special unary predicate, which is used to represent a tautology.

A fact is a ground atom and a dataset is a finite set of facts. A rule is a sentence of the form
∀x∀z [ϕ(x, z) → ∃yψ(x,y)], where x, z, and y are pairwise disjoint tuples of variables, the body ϕ(x, z)
is a conjunction of atoms with variables in x ∪ z, and the head ∃yψ(x,y) is an existentially quantified
non-empty conjunction of atoms ψ(x,y) with variables in x ∪ y. Universal quantifiers are often omitted for
brevity. The restriction of ψ(x,y) being non-empty ensures satisfiability of any set of rules and facts, which
makes query results meaningful.

OWL 2 defines three profiles: weaker languages with favourable computational properties [23]. Each
profile ontology can be normalised as rules and facts using the correspondence of OWL 2 and first-order logic
and a variant of the structural transformation.1 Thus, we see an ontology as a finite set of rules. The results
presented in this chapter are applicable to all three profiles, although we are interested only in OWL 2 QL.
An OWL 2 QL ontology can be represented as a set of rules of the form as in Table 5.1.

1Note that the profiles provide the special concept ⊥, which is immaterial to query answering over satisfiable profile ontologies.

23

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

(1) R(x, y)→ S(x, y), (2) A(x)→ ∃y.[R(x, y) ∧B(y)],

(3) A(x)→ B(x), (4) R(x, y)→ A(x),

(5) R(x, y)→ A(y), (6) R(x, y)→ S(y, x),

(7)R(x, y) ∧B(y)→A(x)

Table 5.1: Rules corresponding to OWL 2 QL profile

5.2 Semantic Graph

We capture the sets of objects and relations between them that are relevant to an ontology O (and possibly
data D) in what we call a semantic graph. The graph can be seen as a concise representation of O, and our
interface generation and update algorithms are parameterised by such graph rather than by O itself.

The nodes of a semantic graph are possible “minimal” elements for building composite classes (unary
predicates and constants), and edges are labelled with possible relations between such elements (binary
predicates and a special symbol type). The key property of a semantic graph is that every X-labelled edge
(v, w) is justified by a rule or fact entailed by O∪D which “semantically relates” v to w via X. We distinguish
three kinds of semantic relations: (i) existential, where X is a binary predicate and (each element of) v
must be X-related to (an element of) w in the models of O ∪ D; (ii) universal, where (each instance of) v
is X-related only to (instances of) w in the models of O ∪ D; and (iii) typing, where X = type, and (the
constant) v is entailed to be an instance of (the unary predicate) w. Formally:

Definition 5.2.1. A semantic graph for O and D is a directed labelled multigraph G having as nodes unary
predicates or constants from O and D and s.t. each edge is labelled with a binary predicate from O or type.
Each edge e is justified by a fact or rule αe s.t. O ∪D |= αe and αe is of the form given next, where c, d are
constants, A,B unary predicates, and R a binary predicate:
(i) if e is c R−→ d, then αe is of the form

R(c, d) or R(c, y)→ y ≈ d;

(ii) if e is c R−→ A, then αe is a rule of the form

>(c)→ ∃y.[R(c, y) ∧A(y)] or R(c, y)→ A(y);

(iii) if e is A R−→ c, then αe is a rule of either of the form

A(x)→ R(x, c) or A(x) ∧R(x, y)→ y ≈ c;

(iv) if e is A R−→ B, then αe is a rule of the form

A(x)→ ∃y.[R(x, y) ∧B(y)] or A(x) ∧R(x, y)→ B(y);

(v) if e is c type−−→ A, then αe = A(c).

The first (resp., second) option for each αe in (i)-(iv) encodes the existential (resp., universal) R-relation
between nodes in e, whereas (v) encodes typing. A graph may not contain all justifiable edges, but rather
those that are deemed relevant to the given application.

Example 5.2.1. Recall our example ontology from Figure 2.2. A semantic graph may contain nodes for
Wellbore, Company, as well as for Statoil which is an instance of the class Company. Example edges are:
(i) a drillingOpCompany-edge linking Wellbore to Company, which is justified by the axiom Wellbore(x) ∧
drillingOpCompany(x, y) → Company; or (ii) a type-edge from Statoil to Company, which is justified by the
fact Company(Statoil).

24

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

It follows from the following proposition that semantic graph computation can be efficiently implemented.
In practice, the graph can be precomputed when first loading data and ontology, stored in RDF, and accessed
using SPARQL queries. In this way, reasoning tasks associated to search are performed offline.

Proposition 5.2.2. Checking whether a directed labelled multigraph is a semantic graph for O and D is
feasible in polynomial time if O is in OWL 2 QL.

Proof. It suffices to show that checking whether an edge in the graph is justified is feasible in polynomial
time. We show that checking entailment for each different type of rule or fact α is feasible in polynomial
time for OWL 2 QL.
Cases αe = R(c, d) and αe = A(c). As is known, fact entailment is tractable for OWL 2 QL.
Case αe is a rule of the form γ1 . . . γn → η, where η is a single atom without existentially quantified
variables. Consider a substitution σ = {x 7→ e, y 7→ f} with e and f fresh constants not occurring in O.
Then, O |= αe iff O ∪ {σ(γi)}ni=1 |= σ(η). Tractability of checking O |= αe then follows immediately from
tractability of fact entailment in OWL 2 QL.
Case αe = A(x) → ∃y.[R(x, y) ∧ B(y)]. Tractability of checking O |= αe follows from tractability of
subsumption checking for OWL 2 QL.
Case αe = >(c)→ ∃y.[R(c, y)∧A(y)]. We have that O |= αe iff O∪{>(c)} |= ∃y.[R(c, y)∧A(y)]. We have
that O ∪ {>(c)} |= ∃y.[R(c, y) ∧A(y)] iff c is an instance of the concept ∃R.A w.r.t. O, a tractable problem
for OWL 2 QL.

Note that this result can be extended to other OWL 2 profiles [1]; this, however, is out of the scope of
the deliverable. Also note that the data in OBDA setting is stored in (relational) databases; thus, we might
need to materialise some relevant fragment of it (e.g., such information as names of companies) that can be
crucial for search, in order to compute the semantic graph.

To realise the idea of ontology and data guided navigation, we require that interfaces conform to the
semantic graph in the sense that the presence of every element on the interface is supported by a graph edge.
In this way, we ensure that interfaces mimic the structure of (and implicit information in) the ontology and
data and that the interface does not contain irrelevant (combinations of) elements.

5.2.1 Query Conformation to Semantic Graph

Our goal is to help a user to construct such queries that would be “justified” by the semantic graph. Since
our interface currently supports tree-shaped queries, we focus on this class of queries. We assume that all
the definitions in this section are parametrised with a fixed ontology O and dataset D.
Definition 5.2.3. Let Q be a conjunctive query. The graph of Q is the smallest multi-labelled directed graph
GQ with a node for each term in Q and a directed edge (x, y) for each atom R(x, y) occurring in Q, where
R is different from ≈. We say that Q is tree-shaped if GQ is a tree. Moreover, a variable node x is labelled
with a unary predicate A if the atom A(x) occurs in Q, and an edge (t1, t2) is labelled with a binary predicate
R if the atom R(t1, t2) occurs in O.

Finally, we are ready to define the notion of conformation.

Definition 5.2.4. Let Q be a conjunctive query and GS a semantic graph. We say that Q conforms to GS

if for each edge (t1, t2) in the graph GQ of Q the following holds:
• If t1 and t2 are variables, then for each label B of t2 there is a label A of t1 and a label R of (t1, t2)
such that A R−→ B is an edge in GS.

• If t1 is a variable and t2 is a constant, then there is a label A of t1 and a label R of (t1, t2) such that
A

R−→ t1 is an edge in GS.
• If t1 is a constant and t2 is a variable, then for each label B of t2 there is a label R of (t1, t2) such that
t1

R−→ t2 is an edge in GS.
• If t1 and t2 are constants, then a label R of (t1, t2) such that t1

R−→ t2 is an edge in GS.

25

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

SELECT DISTINCT ?c1 ?a1 ?c2 ?c3 WHERE{
?c1 ns1 :type ns2 :Field.

?c2 ns1 :type ns2 :Company.

?c3 ns1 :type ns2 :Wellbore.

?c3 ns1 :type ns2 :ShallowWellbore.

?c1 ns2 :currentFieldOperator ?c2.

?c1 ns2 :discoveryWellbore ?c3.

?c1 ns2 :name ?a1.

?c2 ns2 :name “Statoil Petroleum AS00.

?c3 ns2 :wellborePurpose “APPRAISAL00.

}

Figure 5.1: Interface of OptiqueVQS

5.3 OptiqueVQS

OptiqueVQS has three widgets (see Figure 5.1, left): W1 (the top part of the interface) employs the graph
metaphor, gives an overview of the constructed query, and allows further manipulation of it; W2 (the left-
bottom part of the interface) employs the menu-based representation paradigm to visualise suggestions that
users can use to extend the query; and W3 (the right-bottom part of the interface) employs the form-based
representation paradigm to visualise possible constraints (projection and selection) that users can set on
different parts of the queries.

Query construction process in OptiqueVQS works as follows [25].

• The user starts with selecting in W2 a “starting” suggestion, i.e., a class, from the list of available ones
and the selected suggestion appears in W1 and becomes “active”.

• Then, the user can extend the query either by selecting in W2 one of the offered suggestions, i.e., a
class reachable from the active suggestion via some object property, or by setting constraints, i.e., by
restricting in W3 the data properties of the objects belonging to the class of the active suggestion. W1
displays all selected suggestions and organise them in a tree. The user can change the active suggestion
by clicking on the ones in W1, or by adding a new one through W2. For each active suggestion
OptiqueVQS automatically generates relevant further suggestions in W2 and constraints in W3.

The generation is done via reasoning over the semantic graph, which contain edges that are justified by
rules of the form A(x)→ ∃y.

[
R(x, y) ∧ B(y)

]
entailed from the ontology, and of the form R(a, `) extracted

from the data, where R is a data property (see Definition 5.2.1). To this end we exploit the HermiT
reasoner [24].

Note that users have partial control on output variables, can delete fragments of constructed queries,
access query catalogue, save/load queries, and undo/redo actions.

5.3.1 Queries of OptiqueVQS.

In this part we describe the class of queries that can be generated using OptiqueVQS and show that they
conform to the semantic graph underlying the system.

26

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

First, observe that the OptiqueVQS queries follow the following grammar:

query ::= A(x)(∧constr(x))∗(∧expr(x))∗, where A is an atomic class,
expr(x) ::= sug(x, y)(∧constr(x))∗(∧expr(y))∗,

constr(x) ::= ∃y R(x, y) | R(x, y) | R(x, c), where R is a data property,
sug(x, y) ::= Q(x, y) ∧A(y), where A and Q are atomic class and object property,

where variables y in different expressions expr(x) of a structure str are different. An OptiqueVQS query

is constructed using suggestions sug and constraints constr, that are combined in expressions expr. Such
queries are clearly conjunctive and tree-shaped. All the variables that occur in classes and object properties
are output variables and some variables occurring in data properties can also be output variables. An example
of such a query can be found in Figure 5.1, right.

When users interacts with OptiqueVQS,

• They start with a “starting” class, as described above. Clearly, this initial query conforms to any
semantic graph, including the one, underlying the system.

• Then, the system suggest the list of sug(y, z) via W2 and of constr(x) via W3 such that choosing any
of them would leave the updated query conforming to the underlying semantic graph. In other words,
all these choices are justified by the graph.

27

Chapter 6

Backend Support

This chapter describes the support provided by the backend in order to feed and populate the OptiqueVQS
interface with the semantic information stored in the ontology.

6.1 Annotation Support

The Optique Visual Query Formulation Interface (OptiqueVQS) is driven by the information available in
the (bootstrapped) ontology. We observed in our user study about the OptiqueVQS [28], that a purely
axiom driven query interface suffers from important practical limitations, e.g., it does not allow users to set
specific data values in queries, e.g., company/operator names. To address this issue we have enriched the
ontology with annotations1 which we precompute, i.e., materialise, from the DBs underlying a given OBDA
deployment instance by ‘executing’ relevant mappings. E.g., we precomputed values that are frequently
used, rarely changed, and from relatively small domains; this includes names of companies and oilfield,
geolocations, temporal information, ranges of numerical values, e.g., min/max possible depth of wellbores.
The OptiqueVQS has also been extended with a module to automatically customize the query interface by
displaying data values as pre-populated dropdown lists and range sliders (see Figure 6.1).

In addition multiple property domains and ranges (i.e. dijunction of classes as domain and ranges) is
not permitted in OWL 2 QL. Thus an OWL 2 QL approximator as the implemented in Optique [10, 11] will
approximate or remove these axioms. However, although this information may not have a crucial impact
in the rewriting process, it does have an important role in the OptiqueVQS, as for the list of values and
numerical ranges in an OWL data property range. Hence, in order to be able to keep this non OWL 2 QL
information, we have added annotations to the ontology about the multiple domains and ranges.

The annotation have been defined using the following annotation schema based on OWL 2 annotations
axioms:2

• http://eu.optique.ontology/annotations#geoLocation: this annotation property is used to an-
notate class with geo-location information such as fields or wellbores (see Section 3.1 for details).

• http://eu.optique.ontology/annotations#temporal: this annotation property is used to annotate
classes with temporal information such as events or measurements.

• http://eu.optique.ontology/annotations#data_values: this annotation property annotates data
properties with specific data range values such as company names or field names.

• http://eu.optique.ontology/annotations#range_class: this annotation property annotates ob-
ject properties with class ranges. For example, the property hasOperator is annotated with Operator
as range class.

1Note that, list of values and numerical ranges in an OWL data property range fall outside OWL 2 QL, and thus it should
be encoded as non logical axioms

2http://www.w3.org/TR/owl2-new-features/#Extended_Annotations

28

http://eu.optique.ontology/annotations#geoLocation
http://eu.optique.ontology/annotations#temporal
http://eu.optique.ontology/annotations#data_values
http://eu.optique.ontology/annotations#range_class
http://www.w3.org/TR/owl2-new-features/#Extended_Annotations

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

• http://eu.optique.ontology/annotations#domain_class: this annotation property annotates ob-
ject or data properties with domains. For example, the property name is annotated with Operator and
Field as domain classes. Additionally, this annotation property will also annotate annotation axioms
using range_class or data_values. That is, the annotation axiom for data_values representing the
list of company names is annotated with Company as domain class.

• http://eu.optique.ontology/annotations#min_values: this annotation property points out the
minimum value in a range of numerical values for a data property.

• http://eu.optique.ontology/annotations#max_values: this annotation property points out the
maximum value in a range of numerical values for a data property.

• http://eu.optique.ontology/annotations#hidden: this annotation will indicate if a data property
should be considered for visualization in OptiqueVQS.

6.2 Ontology access

We have implemented a REST interface within the platform so that a selected ontology (stored in the
platform’s triple store) can feed OptiqueVQS.

Currently the interface exposes publicly, via the platform REST endpoint, the following methods:

• getAvailableOntologies(): gets the list of identifiers of the available ontologies in the triple store.

• loadOntology(String ontologyURI): it loads an ontology given its URI.

• getCoreConcepts(): gets the core concepts of the active (i.e. loaded) ontology to be listed in the QF
component.

• getConceptFacets(String conceptURI): given a concept URI/Id, retrieves its associated facets.

• getNeighbourConcepts(String conceptURI): given an concept URI/Id retrieves the associated con-
cept neighbours.

The QF component will access the above methods by means of REST calls3 as follows: http://<SERVER>:
<PORT>/REST/JSON/restInterface/?method=method_name¶ms=[‘‘param1_value’’]&id=<CALL_ID>

Each REST call returns the ontology-related information serialised as JSON objects, which will populate
OptiqueVQS. For example, the REST call: http://fact-pages.fluidops.net/REST/JSON/getQFOntologyAccess/
?method=getCoreConcepts&id=1 will return a set of JSON objects corresponding to the core concepts in
the ontology.

The JSON objects for concepts include the following information:

• id: identifier or URI of the concept (e.g. http://eu.optique.ontology/statoil_sota_ontology_

demo.owl#Production_Licence)

• ns: namespace of the URI (e.g. http://eu.optique.ontology/statoil_sota_ontology_demo.owl)

• name: name for the concept (e.g. Production_Licence)

• label: label of the concept for visualization purposes (e.g. “Production Licence”). Usually given in the
ontology as a rdfs:label annotation.

3Note that, in order to automate your request, the QF will be required to pass the username and password (HTML basic
authentication) as POST parameters. In a standard setting, these will be admin/iwb, but users can be created and modified.

29

http://eu.optique.ontology/annotations#domain_class
http://eu.optique.ontology/annotations#min_values
http://eu.optique.ontology/annotations#max_values
http://eu.optique.ontology/annotations#hidden
http://<SERVER>:<PORT>/REST/JSON/restInterface/?method=method_name¶ms=[``param1_value'']&id=<CALL_ID>
http://<SERVER>:<PORT>/REST/JSON/restInterface/?method=method_name¶ms=[``param1_value'']&id=<CALL_ID>
http://fact-pages.fluidops.net/REST/JSON/getQFOntologyAccess/?method=getCoreConcepts&id=1
http://fact-pages.fluidops.net/REST/JSON/getQFOntologyAccess/?method=getCoreConcepts&id=1
http://eu.optique.ontology/statoil_sota_ontology_demo.owl#Production_Licence
http://eu.optique.ontology/statoil_sota_ontology_demo.owl#Production_Licence
http://eu.optique.ontology/statoil_sota_ontology_demo.owl
Production_Licence

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

• description: information related to the intended meaning of the concept (usually given in the ontology
as a rdfs:comment annotation).

• property: when retrieving the neighbours for a given concept X this field will contain the JSON object
of the object property connecting the concept Y from X.

• alt_labels: set of alternative labels (i.e. synonyms) of the concept (usually given in the ontology as
rdfs:label annotations).

The JSON objects for facets (or data properties) include the following information:

• id: identifier or URI of the property (e.g. http://eu.optique.ontology/statoil_sota_ontology_
demo.owl#has_recoverable_oil)

• ns: namespace of the URI (e.g. http://eu.optique.ontology/statoil_sota_ontology_demo.owl)

• name: name of the data property (e.g. has_recoverable_oil)

• label: label of the property for visualization purposes (e.g. “Recoverable Oil”). Usually given in the
ontology as a rdfs:label annotation.

• description: information related to the intended meaning of the data property (e.g. “the property
allows values from 0 to 100”). Usually given in the ontology as a rdfs:comment annotation.

• type: type of the data property (e.g. integer, string, boolean).

• option: JSON object with the set of allowed values if any (e.g. “minExclusive”: “0” or “maxExclusive”:
“100”).

• alt_labels: set of alternative labels (i.e. synonyms) of the data property (usually given in the ontology
as rdfs:label annotations).

The JSON objects for object properties include the following information:

• id: identifier or URI of the property (e.g. http://eu.optique.ontology/statoil_sota_ontology_
demo.owl#has_production_licence)

• ns: namespace of the URI (e.g. http://eu.optique.ontology/statoil_sota_ontology_demo.owl)

• name: name for the object property (e.g. has_production_licence)

• label: label of the property for visualization purposes (e.g. “Production License”). Usually given in
the ontology as a rdfs:label annotation.

• description: information related to the intended meaning of the object property (usually given in the
ontology as a rdfs:comment annotation).

• alt_labels: set of alternative labels (i.e. synonyms) of the object property (usually given in the
ontology as rdfs:label annotations).

The semantic information in the ontology, provided to the QF component as JSON objects, will guide
the visualization of the elements in the QF interface (QFI). For example: the facet “Recoverable Oil” allows
values from 0 to 100 and hence it is represented in the QFI with a slider control (see bottom right side of
Figure 6.1); while the neighbours of the concept Field are listed in the bottom left side of the QFI.

30

http://eu.optique.ontology/statoil_sota_ontology_demo.owl#has_recoverable_oil
http://eu.optique.ontology/statoil_sota_ontology_demo.owl#has_recoverable_oil
http://eu.optique.ontology/statoil_sota_ontology_demo.owl
has_recoverable_oil
http://eu.optique.ontology/statoil_sota_ontology_demo.owl#has_production_licence
http://eu.optique.ontology/statoil_sota_ontology_demo.owl#has_production_licence
http://eu.optique.ontology/statoil_sota_ontology_demo.owl
has_production_licence

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Figure 6.1: Visualization of ontology information in OptiqueVQS.

31

Chapter 7

User Evaluation and System Demonstration

OptiqueVQS has been evaluated in two settings. The first one has been conducted with casual users on an
example movie ontology and the second one at Statoil with NPD ontology. In the following subsections, we
report both studies. Also, a demo paper was submitted to ICDE 2015 [19].

7.1 Evaluation with casual users

The experiment was designed as a think-aloud study, since the goal of the experiment is not purely summative,
but to a large extent formative. The experiment is built on a “movie ontology”. A visual excerpt from the
ontology is given in Figure 7.1; note that inverse properties are omitted in the figure for the sake of brevity.
In total, the ontology includes 6 concepts, 16 relationships (including inverse properties), and 17 attributes,
which already allows us to design complex queries. We avoided having a larger ontology in order to omit the
effect of ontology size on the query formulation in this phase.

A total of 15 participants took part in the experiment; the profiles of participants are summarised in
Table 7.1. We selected our participants particularly among non-technical people, since they are the primary
target of OptiqueVQS. A five minutes introduction of the topic and tool had been delivered to the participants
along with an example, before they were asked to fill in a profile survey. The survey asks users about their
age, occupation and level of education, and asks them to rate their technical skills, such as on programming
and query languages, and their familiarity with similar tools on a Likert scale (i.e., 1 for “not familiar at
all”, 5 for “very familiar”). Participants were then asked to formulate a set of information needs into queries
with OptiqueVQS, given at most three attempts for each. Each participant performed the experiment in a
dedicated session, while being watched by an observer. Participants were instructed to think aloud, including
any difficulties they encounter (e.g., frustration and confusion), while performing the given tasks.

There were 6 tasks, representing the information needs used in the experiment – see Table 7.2. Each
information need maps to a query at different level of complexity with respect to its topology and length, in
an increasing order of complexity (all conjunctive): short linear (T1), long linear (T2), short with branching
(T3), long with branching (T4), short with branching and type III cycle (T5), and long with branching and
type III cycle (T6). Here type III cycle refers to repetition of concepts, that is the query includes at least
one instance where a concept appears twice, while long queries are the ones whose maximum tree depth is
at least 3.

Once users were done with their tasks, they were asked to fill an exit survey asking about their experiences
with the tool. The survey asks users to rate whether the questions were easy to do with the tool (S1), the
tool was easy to learn (S2), was easy to use (S3), gave a good feeling of control and awareness (S4), was
aesthetically pleasing (S5), was overall satisfactory (S6), and was enjoyable to use (S7) on a Likert scale
(i.e., 1 for “strongly disagree” and 5 for “strongly agree”). Users were also asked to comment on what they
did like and dislike about the tool and to provide any feedback, which they deemed important.

32

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Award	

î	 "tle:	 string	
î	 year:	 date	

Company	

î	 name:	 string	
î	 value:	 integer	

Country	

î	 name:	 string	
î	 language:	 string	

Music	

î	 "tle:	 string	
î	 dura"on:	 +me	

Movie	

î	 date:	 date	
î	 "tle:	 string	

Person	

î	 name:	 string	
î	 gender:	 string	

Class	 name	

LEGENDS	

object	 property	

wins	

acts	 in	

bo
rn
	 in
	

released	 in	

located	 in	

di
st
rib

ut
es
	

has	 music	

wins	

distributes	

wins	

î	 datatype	 property	

Figure 7.1: A visual excerpt from the movie ontology used in the experiment.

Table 7.1: Profile information of the participants.
Age Occupation Education Technical

skills
Similar
tools

P1 32 Chemist PhD 2 3
P2 26 Math teacher Bachelor 1 1
P3 43 Law student Master 1 1
P4 21 Political science student Bachelor 1 2
P5 22 Criminology student Bachelor 1 3
P6 31 Hydrology student Master 2 4
P7 26 Complex systems student Master 2 3
P8 23 Psychology student Bachelor 1 3
P9 24 Finance student Bachelor 2 3
P10 21 Law student Bachelor 2 2
P11 21 Law student Bachelor 1 1
P12 21 Biology student Bachelor 1 1
P13 23 Natural sciences student Bachelor 1 1
P14 24 History student Bachelor 1 3
P15 22 Biology student Bachelor 1 1
Avg. 25 - - 1.3 2.1

33

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.2: Information needs used in the experiment.
Query type Information need

T1 Short linear Find the names of all the companies that distribute a movie titled “Ti-
tanic”.

T2 Long linear Find the names of all the people who acted in a movie released between
1970 and 1980 and distributed by a company located in Germany.

T3 Short with branch-
ing

Find the titles of all the musics that won an award titled “Best of Movie
Musics” and are played in a movie titled “The Red Warrior”.

T4 Long with branching Find the titles of all the movies that are distributed by a company owned
by a person born in USA and have amusic that won award between 1980
and 1990.

T5 Short with branch-
ing and type III cy-
cle

Find the names of all the companies that distribute a movie titled “Ti-
tanic” and distribute a music played in a movie released in 1980.

T6 Long with branching
and type III cycle

Find the titles of all the musics distributed by a company located in the
UK and played in a movie that has an actor named “George” who was
born in a country in the African continent and won an award in 1990.

7.1.1 Results

The results of the experiment are presented in Table 7.3. Total of 90 tasks were completed by the participants
with a 80 percent first-attempt completion rate (i.e., percentage of correctly formulated queries in the first
attempt). On average a task took 74 seconds to complete on 1.2 attempts; the first task and fourth task
took the shortest and the longest times to complete, on average 34 seconds and 93 seconds respectively. The
third task had the highest average in the number of attempts with 1.5, while the first and the sixth tasks
had the lowest average in the number of attempts with 1 and 1.1 respectively.

According to the results and our observations, participants solved the first task (i.e., short linear) quite
easily. However, when it came to the third task (short with branching), half of the participants failed in their
first attempt. This is particularly due to fact that they were mostly not expecting a branching after two
linear queries and did not pay attention to the text of the information need. Yet, as soon as they realised the
case, they did quickly recover and manipulated their queries accordingly. The average number of attempts
then decreased for the subsequent tasks (i.e., all with branching) as users became more aware. Fourth task
(i.e., long with branching) took the longest time on average, since after the third task participants paid more
attention to clearly understanding the information need. Participants solved the fifth task (i.e., short with
branching and type III cycle) comparatively quickly; this was due to the short length of the query and due
to the fact that participants did not have any confusion, when a concept appeared twice in the query (only
one participant had this confusion and raised it). Finally, participants solved the last task (i.e., long with
branching and type III cycle) quite smoothly and with confidence, although it was the longest and the most
complex one (i.e., with two branches and one type III cycle). A snapshot from the final query is given in
Figure 7.2.

The feedback provided by the participants through the exit survey is presented in Table 7.4 and Table 7.5.
Participants overall rated the tool good with 4 out of 5 on average. The first statement (cf. S1 – the questions
were easy to do with the tool) had the lowest rank with 3.7; according to our observations, this was mostly
due to the texts of the information needs, rather than the tool. The texts describing the information needs
(cf. Table 7.2) include a number of relative pronouns along with a passive sentence structure, which make
them hard to understand at a first glance and to keep in the short-term memory. Although, this structure was
intentionally selected in order to avoid a step-by-step question form, for subsequent evaluations, a different

34

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.3: The results of the experiment (c for complete, t for time in seconds, and a for attempt count).
T1 T2 T3 T4 T5 T6 Avg

c t a c t a c t a c t a c t a c t a c t a
P1 1 50 1 1 70 1 1 94 2 1 55 1 1 53 1 1 68 1 1 65 1.2
P2 1 48 1 1 83 1 1 80 1 1 113 2 1 60 1 1 70 1 1 76 1.2
P3 1 81 1 1 87 1 1 80 2 1 180 2 1 141 2 1 145 1 1 119 1.5
P4 1 18 1 1 44 1 1 41 1 1 124 2 1 73 1 1 90 1 1 65 1.2
P5 1 32 1 1 85 1 1 62 1 1 74 1 1 82 1 1 85 1 1 70 1.0
P6 1 16 1 1 136 2 1 125 2 1 86 1 1 108 1 1 100 1 1 95 1.3
P7 1 27 1 1 105 2 1 102 2 1 126 2 1 122 2 1 135 1 1 103 1.7
P8 1 75 1 1 47 1 1 78 2 1 54 1 1 48 1 1 71 1 1 62 1.2
P9 1 23 1 1 59 1 1 54 1 1 82 1 1 45 1 1 81 1 1 57 1.0
P10 1 14 1 1 54 1 1 41 1 1 73 1 1 47 1 1 80 1 1 52 1.0
P11 1 17 1 1 42 1 1 65 1 1 53 1 1 105 2 1 60 1 1 57 1.2
P12 1 29 1 1 72 1 1 84 2 1 103 1 1 56 1 1 83 1 1 71 1.2
P13 1 38 1 1 54 1 1 44 1 1 75 1 1 46 1 1 80 1 1 56 1.0
P14 1 28 1 1 96 1 1 65 1 1 58 1 1 54 1 1 60 1 1 60 1.0
P15 1 19 1 1 125 2 1 112 2 1 144 1 1 50 1 1 168 2 1 103 1.5
Avg 1 34 1 1 77 1.2 1 75 1.5 1 93 1.3 1 72 1.2 1 91 1.1 1 74 1.2

Figure 7.2: An excerpt from a query formulated by the participants during the experiment.

35

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.4: The results of the exit survey.
S1 S2 S3 S4 S5 S6 S7 Avg.
P1 5 5 5 5 4 4 5 4.7
P2 4 4 5 5 5 4 5 4.6
P3 4 4 4 4 4 4 4 4.0
P4 3 4 2 3 4 4 4 3.4
P5 4 4 4 4 4 4 5 4.1
P6 4 5 4 5 5 4 4 4.4
P7 3 3 4 4 4 4 4 3.7
P8 5 5 5 5 4 5 5 4.9
P9 3 4 4 4 4 4 4 3.9
P10 3 3 4 4 3 4 4 3.6
P11 3 4 4 4 4 4 4 3.9
P12 4 4 4 4 4 4 4 4.0
P13 4 3 4 4 4 4 4 3.9
P14 3 3 4 3 4 4 4 3.6
P15 4 4 3 3 4 4 4 3.7
Avg 3.7 3.9 4.0 4.1 4.1 4.1 4.3 4.0

form could be considered. As listed in Table 7.5, participants mainly found the tool orderly. Participants
liked the way that queries were visualised, i.e., a diagrammatic overview that users can interact with. They
also appreciated the fact that the tool allows them to formulate detailed information needs easily and in an
organised way. The introduction given to the users were only around five minutes with an example query,
therefore participants were mostly expected to learn on the way, since one of our goals was to have a tool
with a low learning curve and effort. This case is reflected and confirmed by the comments of participants.

Observing the participants in action allowed us to acquire some specific insights about the tool. One
major issue was that while formulating the fourth task, participants initially looked for a “birth place” field in
W2, since the information need was specifying a person born in USA. It took only a while for participants to
realise that this information is only accessible through a relationship rather than an attribute. A participant
first considered the branches as “OR” rather than “AND” and asked whether it was possible to construct
“OR” branches. Two participants realised that indeed they do not have to follow the logical order given
in the descriptions of information needs (i.e., to join the concepts in the given order), but the alternatives
exist. One of these participants solved one of the tasks successfully with an alternative order. Finally, from
a general perspective, users did not have any major difficulties in using and learning the tool and were quick
in realising the given tasks. Participants largely stated that their experience with the tool was comparable
to the games in terms of the joy they had, raised their interest on the tool, and asked further questions after
the experiment, mostly concerning the context that the tool is going to be used.

7.2 Results of the Statoil End-User Workshop

The experiment was designed as a think-aloud study similar to the first experiment. The experiment is built
on a bootstrapped NPD ontology. In total, the ontology includes 253 concepts, 208 relationships (including
inverse properties), and 233 attributes.

A total of 3 participants took part in the experiment; the profiles of participants are summarised in
Table 7.6. A five minutes introduction of the topic and tool had been delivered to the participants along
with an example, before they were asked to fill in a profile survey. The survey asks users about their age,
occupation and level of education, and asks them to rate their technical skills, such as on programming and
query languages, and their familiarity with similar tools on a Likert scale (i.e., 1 for “not familiar at all”,

36

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.5: The feedback given by the participants.
Like Dislike

P1 “Visual, easy to use, fast and easy to correct
mistakes.”

“...can be visually improved.”

P2 “Easy to jump on [diagram] and suggestions
[of the W1] were relevant”

-

P3 “Easy and organised. Good for an organised
and focused search.”

“Nothing”

P4 “I like that it can make search process go faster
and make it more specific”

“It could get complicated as you have to link
and sometimes go back to previous boxes.”

P5 “It was OK to find what the tasks asked for
without having to look too long for the right
variables.”

-

P6 “The schematic diagram” “It has fixed options.”

P7 “Good overview” -

P8 “The way you connect the nodes, the way it
was easy to incorporate a lot of information
in the right way, and it was easy to be organ-
ised.”

“Maybe seems a bit simple at the first glance,
but then it was good!”

P9 “Nice visualisation [for diagram]” “Many steps”

P10 “Easy to use” -

P11 “It was quite simple.” “It felt I did not have much time [to learn].”

P12 “The organisation in images and scheme” -

P13 “The scheme on top is pretty helpful to see
where you are actually getting to what you
are looking for”

“It took me some time to get used to it, but
then I think it works!”

P14 “You could really go in to details and ask
many things about same person/company
etc.”

“It was a bit tricky to learn, but I think that
it is possible to get a hang on it if you use it
for a while”

P15 “Easy access for specific information regarding
the search options: movies, music etc.”

“Some difficulties [for] managing the correct
search option”

37

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.6: Profile information of the participants.
Question P1 P2 P3

“Age” 39 40 49

“What is your occupation?” Geologist Biostrat Senior IT Advisor

“What is your level of education?” Master Master Master

“I have technical skills (i.e., computer)
such as programming and query lan-
guages (e.g., SQL, Java, PHP, SPARQL
etc.)”

Neutral (3) Disagree (2) Strongly Agree (5)

“I am familiar with tools similar to Op-
tiqueVQS”

Neutral (3) Strongly Disagree
(1)

Agree (4)

5 for “very familiar”). Participants were then asked to formulate a set of information needs into queries
with OptiqueVQS, given at most three attempts for each. Each participant performed the experiment in a
dedicated session, while being watched by an observer. Participants were instructed to think aloud, including
any difficulties they encounter (e.g., frustration and confusion), while performing the given tasks.

There were 9 tasks, representing the information needs used in the experiment – see Table 7.7. The
description of task characteristics follows the first experiment.

Once users were done with their tasks, they were asked to fill an exit survey asking about their experiences
with the tool. The survey was built on the System Usability Scale (SUS) questionnaire1 and users were also
asked to comment on what they did like and dislike about the tool and to provide any feedback, which they
deemed important.

7.2.1 Results

The results of the experiment are presented in Table 7.8. Total of 27 tasks were completed by the participants
with 84 percent competition rate and 65 percent first-attempt completion rate. First user has only one
incorrect, and second user has no incorrect. The third user has one missing record (task 2), therefore this
has been omitted from the results. The third question was asking for fields operated by Statoil. Instead of
formulating a Field - Company pair, the third user formulated a Field - FieldOperator pair. This confusion
between FieldOperator and Company led him to incorrectly solve the task 5 as well.

In increasing order the task completion times are task 1 (53 s and 1 attempt on average) , task 2 (90 s 1
attempt on average), task 5 (113 s and 1.3 attempt on average), task 3 (142 s and 1.6 attempts on average),
task 4 (276 s and 1.3 attempts on average), task 8 (280 s and 1.6 on average), task 9 (391 s and 1 attempt
on average), and task 7 (495 s and 2.3 on average). The results suggest that queries with branching and
type III cycles take longer time compared to others. Task 7 not only takes the longest time but also highest
average attempts. This is particularly due to conceptual mismatch between users understanding of domain
and the ontology, which forced users to iterate several times to understand.

The feedback provided by the participants through the exit survey is presented in Table 7.9 and Table 7.10.
The usability scores given by participants is considerably low despite high completion rates. According to
our observations this is particularly due to: the quality of ontology (i.e., ontology was bootstrapped with
little manual fine tuning), the largeness of ontology, incomplete mappings (i.e., for some cases users found
alternative means to formulate a given task for which there was no mapping support), insensible information
needs (i.e., some of the query tasks did not make sense for the users), and finally lack of training (which has
been intentional to observe learnability of the tool).

Although, the results of usability survey indicates low grades, high completion rates suggest that even

1http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

38

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.7: Information needs used in the experiment.
Query type Information need

T1 Single concept List all fields.

T2 Single concept and
property

What is the water depth of the Snorre A platform (facility)?

T3 Short linear List all fields operated by Statoil Petroleum AS company.

T4 Short with branch-
ing

List all exploration wellbores with the field they belong to and the
geochronologic era(s) with which they are recorded.

T5 Short linear with
type III cycle

List the fields that are currently operated by the company that operates
the Alta field.

T6 Long linear List the companies that are licensees in production licenses that own
fields with a recoverable oil equivalent over more than 300 in the field
reserve.

T7 Short with branch-
ing

List all production licenses that have a field with a wellbore completed
between 1970 and 1980 and recoverable oil equivalent greater than 100
in the company reserve.

T8 Long linear List the blocks that contain wellbores that are drilled by a company that
is a field operator.

T9 Short with branch-
ing and type III cy-
cle

List all producing fields operated by Statoil Petroleum AS that has a
wellbore containing gas and a wellbore containing oil.

39

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.8: The results of the experiment.
Participant Task Correct Attempt Time

1 1 1 1 87.9

1 2 1 1 91.6

1 3 1 1 121

1 4 1 1 286.6

1 5 1 1 143

1 6 1 1 281.1

1 7 0 3 507

1 8 1 1 162

1 9 1 1 525

2 1 1 1 45.1

2 2 1 1 89.2

2 3 1 1 109.2

2 4 1 2 437

2 5 1 2 102.6

2 6 1 1 490

2 7 1 2 521.6

2 8 1 3 454

2 9 1 1 311.5

3 1 1 1 26.7

3 2 * * *

3 3 0 3 197

3 4 1 1 105.4

3 5 0 1 94.9

3 6 0 2 266

3 7 1 2 456.5

3 8 1 1 224.7

3 9 1 1 339.4

40

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.9: The results of the exit survey.
Question P1 P2 P3

“I think that I would like to use this sys-
tem frequently.”

Neutral (3) Agree (4) Agree (4)

“I found the system unnecessarily com-
plex.”

Agree (4) Agree (4) Neutral (3)

“I thought the system was easy to use. Disagree (2) Disagree (2) Neutral (3)

“I think that I would need the support of
a technical person to be able to use this
system.”

Agree (4) Neutral (3) Agree (4)

“I found the various functions in this sys-
tem were well integrated.”

Neutral (3) Neutral (3) Agree (4)

“I thought there was too much inconsis-
tency in this system.”

Neutral (3) Agree (4) Disagree (2)

“I would imagine that most people would
learn to use this system very quickly.”

Disagree (2) Disagree (2) Agree (4)

“I found the system very cumbersome to
use.”

Neutral (3) Agree (4) Neutral (3)

“I felt very confident using the system.” Disagree (2) Neutral (3) Disagree (2)

“I needed to learn a lot of things before
I could get going with this system.”

Agree (4) Neutral (3) Neutral (3)

41

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

Table 7.10: The feedback given by the participants.
“What did you like about the tool?” Person

“Ability to explore new relationships” P1

“Flexibility” P1

“Graphic frontend” P2

“Idea of searching different content” P2

“Easy graphical interface” P3

“Responsive” P3

“understandable fucntionality between windows” P3

“What didn’t you like about the tool?” Person

“Similar concept names” P1

“Mappings are not so easy to understand” P1

“The meaning of branches” P1

“Delete node” P2

“Lack of drag & drop” P2

“I probably missed some understanding of how to express some of the relations and
constraints”

P3

“I needed some training.” P3

with no training and bootstrapped ontology, OptiqueVQS enables its users to formulate queries due to its
simplicity and high learnability.

42

Bibliography

[1] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška, and Dmitriy
Zheleznyakov. Faceted search over ontology-enhanced rdf data. In Proc. ACM International Conference
on Information and Knowledge Management (CIKM), 2014.

[2] Guntis Barzdins, Edgars Liepins, Marta Veilande, and Martins Zviedris. Ontology Enabled Graphical
Database Query Tool for End-Users. In Proceedings of the 8th International Baltic Conference on
Databases and Information Systems (DB&IS 2008), volume 187 of Frontiers in Artificial Intelligence
and Applications, pages 105–116. IOS Press, 2009.

[3] Konstantina Bereta, Charalampos Nikolaou, Manos Karpathiotakis, Kostis Kyzirakos, and Manolis
Koubarakis. Sextant: Visualizing time-evolving linked geospatial data. In The 12th International
Semantic Web Conference (ISWC2013), 2013.

[4] Konstantina Bereta, Panayiotis Smeros, and Manolis Koubarakis. Representation and querying of valid
time of triples in linked geospatial data. In Philipp Cimiano, Oscar Corcho, Valentina Presutti, Laura
Hollink, and Sebastian Rudolph, editors, The Semantic Web: Semantics and Big Data, volume 7882 of
Lecture Notes in Computer Science, pages 259–274. Springer Berlin Heidelberg, 2013.

[5] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors. The Adaptive Web: Methods and Strate-
gies of Web Personalization, volume 4321 of LNCS. Springer, 2007.

[6] Stephane Campinas, Thomas E. Perry, Diego Ceccarelli, Renaud Delbru, and Giovanni Tummarello.
Introducing RDF Graph Summary with Application to Assisted SPARQL Formulation. In Proceedings
of the 23rd International Workshop on Database and Expert Systems Applications (DEXA 2012), pages
261–266. IEEE, 2012.

[7] Jeremy Carroll, Ivan Herman, and Peter F. Patel-Schneider. OWL 2 Web Ontology Language RDF-
Based Semantics. W3C Recommendation, W3C, 2012.

[8] Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and Carlo Batini. Visual query systems for
databases: A survey. Journal of Visual Languages and Computing, 8(2):215–260, 1997.

[9] Tiziana Catarci, Paolo Dongilli, Tania Di Mascio, Enrico Franconi, Giuseppe Santucci, and Sergio
Tessaris. An ontology based visual tool for query formulation support. In Proceedings of the 16th
Eureopean Conference on Artificial Intelligence (ECAI 2004), volume 110 of Frontiers in Artificial
Intelligence and Applications, pages 308–312. IOS Press, 2004.

[10] M. Console, V. Santarelli, and D. Savo. Efficient Approximation in DL-Lite of OWL 2 Ontologies. In
DL, 2013.

[11] Marco Console, Jose Mora, Riccardo Rosati, Domenico Fabio Savo, and Valerio Santarelli. Effective
computation of maximal sound approximations of description logic ontologies. In Proceedings of ISWC
2014, 2014.

43

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

[12] Open Geospatial Consortium. OGC GeoSPARQL – A geographic query language for RDF data. OGC
Candidate Implementation Standard, 02 2012.

[13] Renata Dividino and Gerd Groner. Which of the following SPARQL Queries are Similar? Why? In
Proceedings of the 1st International Workshop on Linked Data for Information Extraction (LD4IE 2013),
volume 1057 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[14] Bernardo Cuenca Grau, Martin Giese, Ian Horrocks, Thomas Hubauer, Ernesto Jimenez-Ruiz, Evgeny
Kharlamov, Michael Schmidt, Ahmet Soylu, and Dmitriy Zheleznyakov. Towards Query Formulation
and Query-Driven Ontology Extensions in OBDA Systems. In Proceedings of the 10th OWL: Experiences
and Directions Workshop (OWLED 2013), volume 1080 of CEUR Workshop Proceedings. CEUR-WS.org,
2013.

[15] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C Recommendation, W3C, March
2013.

[16] Hai Huang, Chengfei Liu, and Xiaofang Zhou. Computing Relaxed Answers on RDF Databases. In
Proceedings of the 9th International Conference on Web Information Systems Engineering (WISE 2008),
volume 5175 of LNCS, pages 163–175. Springer, 2008.

[17] E. Kapetanios, D. Baer, and P. Groenewoud. Simplifying syntactic and semantic parsing of NL-based
queries in advanced application domains. Data & Knowledge Engineering, 55(1):38–58, 2005.

[18] Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis, and Eugenia Giannopoulou.
Ontology visualization methods - A survey. ACM Computing Surveys, 39(4):10:1–10:43, 2007.

[19] Evgeny Kharlamov, Martin Giese, Peter Haase, Ernesto Jiménez-Ruiz, Christoph Pinkel, Martin G.
Skjæveland, Ahmet Soylu, Johannes Trame, Dmitriy Zheleznyakov, Carsten Binnig, Eldar Bjørge, Ian
Horrocks, and Arild Waaler. Towards Ontology Based Data Access for Statoil. Submitted to ICDE 2015
Demo Track.

[20] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu. SnipSuggest: Context-
aware Autocompletion for SQL. Proceedings of the VLDB Endowment, 4(1):22–33, 2010.

[21] Kasjen Kramer, Renata Dividino, and Gerd Groner. SPACE: SPARQL Index for Efficient Autocom-
pletion. In Proceedings of the ISWC 2013 Posters & Demonstrations Track (ISWC-PD 2013), volume
1035 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[22] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A semantic geospatial
dbms. In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Man-
fred Hauswirth, JosianeXavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva
Blomqvist, editors, The Semantic Web – ISWC 2012, volume 7649 of Lecture Notes in Computer Sci-
ence, pages 295–311. Springer Berlin Heidelberg, 2012.

[23] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz. OWL
2 Web Ontology Language Profiles. W3C Recommendation, 2009.

[24] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for Description Logics. Journal
of Artificial Intelligence Research, 36:165–228, 2009.

[25] The Optique Project. OptiqueVQS. https://www.youtube.com/watch?v=ks5tcPZVHp0.

[26] Santanu Saha Ray. Graph Theory with Algorithms and its Applications, chapter Subgraphs, Paths, and
Connected Graphs. Springer India, 2013.

44

https://www.youtube.com/watch?v=ks5tcPZVHp0

Optique Deliverable D3.2 Techniques for Supporting Query Formulation

[27] Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Evgeny Kharlamov, Dmitriy Zheleznyakov, and Ian
Horrocks. Towards exploiting query history for adaptive ontology-based visual query formulation. In
Proceedings of the 8th Metadata and Semantics Research Conference (MTSR 2014), CCIS, Karlsruhe,
Germany, 2014. Springer.

[28] Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Guillermo Vega-Gorgojo, and Ian Horrocks. Expe-
riencing optiquevqs: A multi-paradigm and ontology-based visual query system for end users. In Under
Review, 2014.

[29] Ahmet Soylu, Evgeny Kharlamov, Dmitriy Zheleznyakov, Ernesto Jiménez-Ruiz, Martin Giese, and Ian
Horrocks. Optiquevqs: Visual query formulation for OBDA. In Meghyn Bienvenu, Magdalena Ortiz,
Riccardo Rosati, and Mantas Simkus, editors, Informal Proceedings of the 27th International Workshop
on Description Logics, Vienna, Austria, July 17-20, 2014., volume 1193 of CEUR Workshop Proceedings,
pages 725–728. CEUR-WS.org, 2014.

45

Appendix A

OptiqueVQS:
General

This appendix reports the papers:

− Ahmet Soylu, Evgeny Kharlamov, Dmitriy Zheleznyakov, Ernesto Jiménez-Ruiz, Martin Giese, Ian
Horrocks. OptiqueVQS: Visual Query Formulation for OBDA. Extended abstract.
DL 2014.

− Ahmet Soylu, Martin Giese, Ernesto Jiménez-Ruiz, Evgeny Kharlamov, Dmitriy Zheleznyakov, and
Ian Horrocks. Why Not Simply Google?.
NordiCHI 2014.

46

OptiqueVQS: Visual Query Formulation for OBDA
(Abstract)

Ahmet Soylu1, Evgeny Kharlamov2, Dmitriy Zheleznyakov2, Ernesto Jimenez-Ruiz2,
Martin Giese1, and Ian Horrocks2

1 University of Oslo; 2 University of Oxford

Motivation Ontology Based Data Access (OBDA) [16] is a recently proposed promi-
nent approach that aims at providing domain experts with a direct access to available
enterprise data sources without IT-experts being involved. OBDA is an alternative to
centralised approaches, where an IT-expert translates the requirements of domain ex-
perts into Extract-Transform-Load (ETL) processes to first integrate the data and then to
apply predefined analytical reporting tools. Currently, centralised approaches are com-
monly used in enterprises; they, however, can become too heavy-weight and inflexible
in some cases [12], that can be addressed the OBDA approach.

The key idea behind OBDA is to use ontologies to mediate between users and data.
Ontologies describe the domain of interest on a higher level of abstraction in terms that
are clear for domain experts, and introduce modeling concepts such as inheritance and
relationships between classes of objects, thus allowing to describe the intended mean-
ing of the ontological vocabulary. Ontologies have become a common and successful
mechanism to describe application domains in, e.g., biology, medicine, the (Semantic)
Web [13]. This success is partially due to a number of available formal languages for
describing ontologies, including RDF(S) [7] and OWL 2 [5] standardised by W3C.

In OBDA, users formulate their information needs as queries using terms defined
in the ontology, and ontological queries are translated into SQL and executed over the
data automatically, without an IT-expert’s intervention. To this end a set of mappings
is maintained that describe the relationship between the ontological vocabulary and the
elements of the schema of the underlying data.

The standard query language for ontologies is SPARQL [8]. Writing queries using
SPARQL, however, is not easy for domain experts and thus intuitive visual query for-
mulation support is required for OBDA systems. Existing OBDA systems, e.g., [1, 2, 9,
10, 18–21] typically offer limited or no visual query formulation support. Our goal is to
provide a solution for visual query formulation over ontologies that is specifically tai-
lored for OBDA systems. The solution should rely on solid theory, be efficient, support
interactive data exploration, and should follow the best Human-Computer Interaction
practices to guarantee good usability. In the following we give a short overview of our
ideas that were partially implemented in our OptiqueVQS system [22].

OptiqueVQS We first describe functionality of OptiqueVQS’ components and then
give their formal description. OptiqueVQS is a system for visual query formulation
support that allows the user to construct a query over an ontology step by step where at
each step the system provides the user with relevant information to continue the query
construction. OptiqueVQS has a widget-based architecture and exploits multiple repre-
sentation and interaction paradigms, see Fig. 1 for a screenshot where a sample query

SELECT DISTINCT ?c1 ?a1 ?c2 ?c3 WHERE{
?c1 ns1 :type ns2 :Field.

?c2 ns1 :type ns2 :Company.

?c3 ns1 :type ns2 :Wellbore.

?c3 ns1 :type ns2 :ShallowWellbore.

?c1 ns2 :currentFieldOperator ?c2.

?c1 ns2 :discoveryWellbore ?c3.

?c1 ns2 :name ?a1.

?c2 ns2 :name “Statoil Petroleum AS00.

?c3 ns2 :wellborePurpose “APPRAISAL00.

}

Fig. 1. Interface of OptiqueVQS

over an ontology for the Oil and Gas domain is composed1 together with its SPARQL
counterpart. The query asks for oil fields, wellbores operated on these fields, and com-
panies currently exploiting the fields. OptiqueVQS has three widgets: W1 employs the
graph metaphor, gives an overview of the constructed query, and allows further manip-
ulation of it, W2 employs the menu-based representation paradigm to visualise sugges-
tions that users can use to extend the query, W3 employs the form-based representation
paradigm to visualise possible constraints (projection and selection) that users can set
on different parts of the queries.

Query construction process in OptiqueVQS works as follows [3]. The user starts
with selecting in W2 a ‘starting’ suggestion, i.e., a class, from the list of available ones
and the selected suggestion appears in W1 and becomes ‘active’. Then, the user can
extend the query either by selecting in W2 one of the offered suggestions, i.e., a class
reachable from the active suggestion via some object property, or by setting constraints,
i.e., by restricting in W3 the data properties of the objects belonging to the class of
the active suggestion. W1 displays all selected suggestions and organise them in a tree.
The user can change the active suggestion by clicking on the ones in W1, or by adding
a new one through W2. For each active suggestion OptiqueVQS automatically gener-
ates relevant further suggestions in W2 and constraints in W3. The generation is done
via reasoning (e.g., extraction of classification, inferred domain and ranges) over the
ontology underlying the system and to this end we exploit the HermiT reasoner [17].
Moreover, users have partial control on output variables, can delete fragments of con-
structed queries, access query catalogue, save/load queries, and undo/redo actions.

Queries of OptiqueVQS. The queries follow the following grammar:

query ::= A(x)(∧constr(x))∗(∧expr(x))∗, where A is an atomic class,
expr(x) ::= sug(x, y)(∧constr(x))∗(∧expr(y))∗,

constr(x) ::= ∃y R(x, y) | R(x, y) | R(x, c), where R is an atomic data property,
sug(x, y) ::= Q(x, y) ∧A(y), where A and Q are atomic class and object property,

where variables y in different expressions expr(x) of a structure str are different. An
OptiqueVQS query is constructed using suggestions sug and constraints constr,

1 This ontology was designed for Statoil [4] as a part of the Optique project [15].

that are combined in expressions expr. Such queries are conjunctive and tree shaped:
the graph corresponding to the query where nodes are variables and edges are properties
is a tree. All the variables that occur in classes and object properties are output variables
and some variables occurring in data properties can also be output variables.

When users interacts with OptiqueVQS, then for every sug(x, y) that an expr(x)
starts with, that is, for every active suggestion, the system offers a list of relevant
constr(x) via W3 and relevant sug(y, z) via W2 that can be used to construct fur-
ther expr(y). We explore several notions of relevance, including local where offered
constraints and suggestions depend on sug(x, y) only, and global where they depend
on the entire query. We currently investigate complexity of suggestion generation for
different ontologies and notions of relevance.

Treatment of Data Properties. An important feature of OptiqueVQS is a special treat-
ment of data properties in W3: it automatically generates different end-user oriented
representations of data values, including sliders restricting possible ranges of numerical
values, such as age, depths, etc., and drop boxes with precomputed lists for categorical
data, such as names of companies, geographical locations, etc. Throughout empirical
evaluations we determined that this treatment of data properties is of high importance
for end-users. To support different intuitive representations for data properties, we en-
code relevant information in the ontology underlying the system and generate the rep-
resentations on the fly.

Query Construction vs Rewriting Ontology. We use OptiqueVQS for query formulation
in the Optique OBDA system, and thus we convert queries constructed via OptiqueVQS
in SPARQL and then they are processed by the Optique query processing component
[20] that rewrites them with the system’s ontology and unfolds it with mappings in
SQL. We use OWL 2 QL ontologies for query rewriting, while the query construction
is based on much richer OWL 2 ontologies that, in particular, make use of nominals.
There are both theoretical and practical reasons for having two ontologies: conjunctive
query rewriting for OBDA is well studied for OWL 2 QL ontologies [6], while for
effective and efficient query support of conjunctive query construction the expressive
power of OWL 2 QL ontologies is not sufficient. The query construction ontology that
we use in the system extends the query rewriting ontology.

Feedback in Query Construction. To improve query construction experience and to al-
low data exploration OptiqueVQS provides users with feedback at each step of query
construction: the users can see answers relevant to the constructed query. Since com-
putation of answers in OBDA systems is expensive, we investigate several possibilities
for the feedback: it can be, for example, a set of sample query answers, or a summary
of query answers, or some statistics on query answers. We currently investigate com-
plexity of different types of feedback. Moreover, we investigate influence of different
types of feedback on the usability of the system.

To Sum Up. We developed OptiqueVQS in cooperation with Statoil and did prelimi-
nary user evaluation with Statoil geologists that gave us encouraging results. We also
presented the system at several venues [11, 14, 22, 23]. Currently we investigate theo-
retical properties of our techniques. We also work on improvements of the system in
several directions, e.g., we develop ranking functions for suggestions and constraints.

References

1. http://virtuoso.openlinksw.com/
2. http://www.revelytix.com/content/spyder
3. OptiqueVQS. https://www.youtube.com/watch?v=ks5tcPZVHp0
4. Statoil. http://www.statoil.com/en/Pages/default.aspx
5. W3C: OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/
6. W3C: OWL 2 Web Ontology Language Profiles. http://www.w3.org/TR/owl-profiles/
7. W3C: Resource Description Framework (RDF). http://www.w3.org/RDF/
8. W3C: SPARQL 1.1 Query Language. www.w3.org/TR/sparql11-query/
9. Bizer, C., Seaborne, A.: D2RQ—Treating non-RDF Databases as Virtual RDF Graphs. In:

ISWC (2004)
10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,

Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO System for Ontology-Based Data Access.
Semantic Web 2(1), 43–53 (2011)

11. Cuenca Grau, B., Giese, M., Horrocks, I., Hubauer, T., Jimenez-Ruiz, E., Kharlamov, E.,
Schmidt, M., Soylu, A., Zheleznyakov, D.: Towards Query Formulation, Query-Driven On-
tology Extensions in OBDA Systems. In: OWLED (2013)

12. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann (2012)
13. Horrocks, I.: What are Ontologies Good for? In: Evolution of Semantic Systems, pp. 175–

188. Springer (2013), download/2013/Horr13a.pdf
14. Kharlamov, E., et al.: Optique 1.0: Semantic Access to Big Data: The Case of

Norwegian Petroleum Directorate’s FactPages. In: ISWC (Posters & Demos) (2013),
https://www.youtube.com/watch?v=PToyue4BFXA

15. Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., Bilidas, D., Giese, M., Haase, P., Hor-
rocks, I., Kllapi, H., Koubarakis, M., Özçep, Ö.L., Rodriguez-Muro, M., Rosati, R., Schmidt,
M., Schlatte, R., Soylu, A., Waaler, A.: Optique: Towards OBDA Systems for Industry. In:
ESWC (SE). pp. 125–140 (2013)

16. Kogalovsky, M.R.: Ontology-Based Data Access Systems. Programming and Computer
Software 38(4), 167–182 (2012)

17. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal
of Artificial Intelligence Research 36, 165–228 (2009)

18. Munir, K., Odeh, M., McClatchey, R.: Ontology-Driven Relational Query Formulation Using
the Semantic and Assertional Capabilities of OWL-DL. Knowledge-Based Systems 35, 144–
159 (2012)

19. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and Experiences of R2RML-Based
SPARQL to SQL Query Translation Using Morph. In: WWW (2014)

20. Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-Based Data Access:
Ontop of Databases. In: ISWC. pp. 558–573 (2013)

21. Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL Execution on Relational Data.
Journal of Web Semantics 22(0), 19 – 39 (2013), http://www.sciencedirect.com/sci-
ence/article/pii/S1570826813000383

22. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: Op-
tiqueVQS: Towards an Ontology-Based Visual Query System for Big Data. In: MEDES
(2013)

23. Soylu, A., Skjæveland, M., Giese, M., Horrocks, I., Jimenez-Ruiz, E., Kharlamov, E.,
Zheleznyakov, D.: A Preliminary Approach on Ontology-Based Visual Query Formulation
for Big Data. In: MTSR. pp. 201–212 (2013)

Why Not Simply Google?

Ahmet Soylu
University of Oslo
Ole Johan Dahls hus
Gaustadallen 23B,
Oslo, N-0373 Norway
ahmets@ifi.uio.no

Evgeny Kharlamov
University of Oxford
Wolfson Building
Parks Road
Oxford, OX1 3QD UK
evgeny.kharlamov@cs.ox.ac.uk

Martin Giese
University of Oslo
Ole Johan Dahls hus
Gaustadallen 23B,
Oslo, N-0373 Norway
martingi@ifi.uio.no

Dmitriy Zheleznyakov
University of Oxford
Wolfson Building
Parks Road
Oxford, OX1 3QD UK
dmitriy.zheleznyakov@cs.ox.ac.uk

Ernesto Jimenez-Ruiz
University of Oxford
Wolfson Building
Parks Road
Oxford, OX1 3QD UK
ernesto@cs.ox.ac.uk

Ian Horrocks
University of Oxford
Wolfson Building
Parks Road
Oxford, OX1 3QD UK
ian.horrocks@cs.ox.ac.uk

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
NordiCHI’14 , Oct 26-30 2014, Helsinki, Finland
ACM 978-1-4503-2542-4/14/10.
http://dx.doi.org/10.1145/2639189.2670270

Abstract
We demonstrate an ontology-based visual query system,
namely OptiqueVQS, for end users without any technical
background to formulate rather complex information
needs into formal queries over databases. It is built on
multiple and coordinated representation and interaction
paradigms and a flexible widget-based architecture.

Author Keywords
Visual query formulation, ontologies, end-user data access

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; H.5.4 [Information Interfaces and
Presentation]: Hypertext/Hypermedia; D.1.7
[Programming Techniques]: Visual Programming

General Terms
Design, Human Factors

Introduction
Domain experts in organisations have rather complex
information needs that go beyond the limits of well-known
search approaches, such as keyword search. Usually, an
army of IT experts mediates between domain experts and
databases in an inherently time-consuming fashion, since
end users often lack necessary technical skills and

knowledge and have low tolerance on formal textual query
languages (e.g., SQL). Hence, engaging end users directly
with data could free up substantial expert time that could
be redeployed so as to contribute to value creation [6].

Visual query formulation (cf. [3]), as an end-user
development practice (cf. [7]), is promising to remediate
end-user data access problem. It is built on the direct
manipulation idea [9], in which end users recognise and
interact with the visual representations of domain
elements, rather than recalling domain and syntax
elements and programatically combining them. Ontologies
are suggested to be more natural than logical models
(e.g., database schemas) for end users (cf. [10]), since
ontologies are problem domain artefacts, while models are
solution domain artefacts (cf. [8]). Ontologies also help us
to seamlessly federate distributed data sources and to
extract implicit information from data with reasoning.

In this demo, we present an ontology-based visual query
system, OptiqueVQS [12], for end-user database querying.

Related Work
One could categorise well-known approaches for querying
structured data into formal textual languages, keyword
search, natural language interfaces, visual query
languages, and visual query systems. Formal textual
languages are inaccessible to end users, since they demand
a sound technical background. Keyword search (e.g., [1])
and natural language interfaces (e.g., [5]) remain
insufficient for querying databases, due to their low
accuracy and completeness. Visual query languages
(e.g., [11]) rely on visual formalisms and are comparable
to formal textual languages, while visual query systems are
built on a system of interactions and have potential to
offer a good balance between expressiveness and usability.

Ontology-based visual query formulation tools are either
exclusively meant for visual query formulation
(e.g., [4, 16]) or for semantic data browsing on the Web,
which are inherently meant for less sophisticated
information needs (e.g., [2]). The latter are usually built
on faceted search (cf. [15]) and/or query by navigation
(cf. [14]) and are well embraced by end users.

Existing tools suffer from one or more of the followings:
(i) singular representation and interaction paradigms,
(ii) inadequate support for view and/or overview,
(iii) poor balance between formulation and exploration,
and (iv) non-modular architectures.

OptiqueVQS
OptiqueVQS allows users to precisely describe complex
information needs that demand joining and constraining
information from multiple objects. In Figure 1, we ask for
all the “Fields”, operated by a “Company” named
“Statoil”, and the completion dates of its “Wellbores”.

Figure 1: OptiqueVQS with an example query.

OptiqueVQS employs OWL 2 1 and SPARQL2, as ontology
and query languages respectively. It is designed as a
widget-based user-interface mashup (i.e., UI mashups)
(cf. [13]), which aggregates a set of applications in a
common graphical space, in the form of widgets, and
orchestrates them for common goals. This choice ensures
modularity and, in turn, flexibility and extensibility.

Figure 2: OptiqueVQS in textual mode.

OptiqueVQS (see a demo3) currently has three widgets,
each employing a different representation and interaction
paradigm, cf. Figure 1. A multi-paradigm approach offers
suitability to a broad range of tasks and users. The first
(W1 – see the bottom-left part) allows users to join
concepts through navigating relationships in between. The
second (W2 – see the bottom-right part) presents the
attributes of a selected concept for selection and
projection. The third (W3 – see the top part) provides an
overview of the constructed query and affordances for

1http://www.w3.org/TR/owl2-overview/
2http://www.w3.org/TR/rdf-sparql-query/
3http://youtu.be/ks5tcPZVHp0

manipulation. Events, generated by each widget as a user
interacts, are harvested to orchestrate the widgets.

Users can formulate linear and tree-shaped conjunctive
queries, delete nodes, access query catalogue, undo/redo
actions, and switch to SPARQL mode and interact with
the system in the textual form – see Figure 2.

Holistically, W3 is meant to provide an overview of the
active query task, while W1 and W2 are meant to keep
the focus (i.e., view) on the active concept. Furthermore,
each widget employs the human readable labels of
ontology elements rather than their identifiers.

Conclusion and Future Work
Our initial user studies suggest high usability and the
future work includes higher expressivity and visual
scalability against large ontologies. OptiqueVQS is a part
of a large project tackling a range of related questions,
such as automated elicitation of ontologies (cf. [6]).

Acknowledgements
Funded by EC FP7 project “Optique” – Grant no. 318338.

References
[1] Bobed, C., Esteban, G., and Mena, E. Enabling

keyword search on Linked Data repositories: An
ontology-based approach. International Journal of
Knowledge-Based and Intelligent Engineering
Systems 17, 1 (2013), 67–77.

[2] Brunetti, J. M., Garcia, R., and Auer, S. From
overview to facets and pivoting for interactive
exploration of semantic web data. International
Journal on Semantic Web and Information Systems
9, 1 (2013), 1–20.

[3] Catarci, T., Costabile, M. F., Levialdi, S., and Batini,
C. Visual query systems for databases: A survey.

Journal of Visual Languages and Computing 8, 2
(1997), 215–260.

[4] Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E.,
Santucci, G., and Tessaris, S. An ontology based
visual tool for query formulation support. In
Proceedings of the 16th Eureopean Conference on
Artificial Intelligence (ECAI 2004), vol. 110 of
Frontiers in Artificial Intelligence and Applications,
IOS Press (2004), 308–312.

[5] Damljanovic, D., Agatonovic, M., Cunningham, H.,
and Bontcheva, K. Improving habitability of natural
language interfaces for querying ontologies with
feedback and clarification dialogues. Web Semantics:
Science, Services and Agents on the World Wide
Web 19 (2013), 1–21.

[6] Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y.,
Klappi, H., Koubarakis, M., Lenzerini, M., Moller, R.,
Ozcep, O., Rodriguez Muro, M., Rosati, R., Schlatte,
R., Soylu, A., and Waaler, A. Scalable End-user
Access to Big Data. In Big Data Computing,
A. Rajendra, Ed. Chapman and Hall/CRC, 2013.

[7] Lieberman, H., Paternó, F., Klann, M., and Wulf, V.
End-User Development: An Emerging Paradigm. In
End-User Development, H. Lieberman, F. Paternó,
and V. Wulf, Eds., vol. 9 of Human-Computer
Interaction Series. Springer, Netherlands, 2006, 1–8.

[8] Ruiz, F., and Hilera, J. R. Using Ontologies in
Software Engineering and Technology. In Ontologies
for Software Engineering and Software Technology,
C. Calero, F. Ruiz, and M. Piattini, Eds.
Springer-Verlag, 2006, 49–102.

[9] Shneiderman, B. Direct Manipulation: A Step
Beyond Programming Languages. Computer 16, 8
(1983), 57–69.

[10] Siau, K. L., Chan, H. C., and Wei, K. K. Effects of
query complexity and learning on novice user query

performance with conceptual and logical database
interfaces. IEEE Transactions on Systems, Man and
Cybernetics - Part A: Systems and Humans 34, 2
(2004), 276–281.

[11] Smart, P. R., Russell, A., Braines, D., Kalfoglou, Y.,
Bao, J., and Shadbolt, N. A Visual Approach to
Semantic Query Design Using a Web-Based
Graphical Query Designer. In Proceedings of the
16th International Conference on Knowledge
Engineering: Practice and Patterns (EKAW 2008),
vol. 5268 of LNCS, Springer (2008), 275–291.

[12] Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov,
E., Zheleznyakov, D., and Horrocks, I. OptiqueVQS
– Towards an Ontology-based Visual Query System
for Big Data. In Proceedings of the International
Conference on Management of Emergent Digital
EcoSystems (MEDES 2013), ACM (2013), 119–126.

[13] Soylu, A., Moedritscher, F., Wild, F.,
De Causmaecker, P., and Desmet, P. Mashups by
orchestration and widget-based personal
environments: Key challenges, solution strategies,
and an application. Program: Electronic Library and
Information Systems 46, 4 (2012), 383–428.

[14] Ter Hofstede, A. H. M., Proper, H. A., and Van
Der Weide, T. P. Query formulation as an
information retrieval problem. Computer Journal 39,
4 (1996), 255–274.

[15] Tunkelang, D., and Marchionini, G. Faceted Search.
Synthesis Lectures on Information Concepts,
Retrieval, and Services. Morgan and Claypool
Publishers, 2009.

[16] Zviedris, M., and Barzdins, G. ViziQuer: a tool to
explore and query SPARQL endpoints. In
Proceedings of the 8th Extended Semantic Web
Conference (ESWC 2011), vol. 6644 of LNCS,
Springer (2011), 441–445.

Appendix B

OptiqueVQS:
Extending OptiqueVQS with Ranking

This appendix reports the paper:

− Ahmet Soylu, Martin Giese, Ernesto Jiménez-Ruiz, Evgeny Kharlamov, Dmitriy Zheleznyakov, and Ian
Horrocks. Towards Exploiting Query History for Adaptive Ontology-based Visual Query
Formulation.

MTSR 2014.

55

Towards Exploiting Query History for Adaptive
Ontology-based Visual Query Formulation

Ahmet Soylu1, Martin Giese1, Ernesto Jimenez-Ruiz2, Evgeny Kharlamov2,
Dmitriy Zheleznyakov2, and Ian Horrocks2

1 Department of Informatics, University of Oslo, Norway
{ahmets, martingi}@ifi.uio.no

2 Department of Computer Science, University of Oxford, United Kingdom
{name.surname}@cs.ox.ac.uk

Abstract. Grounded on real industrial use cases, we recently proposed
an ontology-based visual query system for SPARQL, named OptiqueVQS.
Ontology-based visual query systems employ ontologies and visual repre-
sentations to depict the domain of interest and queries, and are promising
to enable end users without any technical background to access data on
their own. However, even with considerably small ontologies, the number
of ontology elements to choose from increases drastically, and hence hin-
ders usability. Therefore, in this paper, we propose a method using the
log of past queries for ranking and suggesting query extensions as a user
types a query, and identify emerging issues to be addressed.

Keywords: Visual Query Formulation, Ontology-based Data Access, SPARQL,
Ranking, Recommendation.

1 Introduction

In data-intensive organisations, domain experts usually meet their information
needs either by operating a set of predefined queries embedded into applications
or by involving IT experts to translate their information needs into queries. This
is because domain experts often lack necessary technical knowledge and skills
pertaining to query languages and databases. This man-in-the-middle approach
for extracting data introduces a bottleneck in data access and consequently delays
in value creation processes (cf. [1]).

Visual query formulation (cf. [2]) is a longstanding research endeavour and,
though oriented towards a wide spectrum of users, a particularly prominent
approach to mitigate the data access problem of users without any technical skills
(i.e., end users – cf. [3]). This is due to fact that visual query formulation tools
rely on recognition, rather than recall, and direct manipulation of objects, rather
than a command language syntax, by using visual representations to depict the
domain of interest and queries. In this context, we have recently introduced an
ontology-based visual query system (VQS) for end users, named OptiqueVQS [4,5].
It is built on a scalable data access platform for Big Data developed within an EU

2 Soylu et al.

project called Optique1 [1]. Ontologies provide reasoning support and a domain
representation closer to end users’ understanding, compared to earlier approaches
built on low-level domain models (e.g., relational schemas) (cf. [6,2]). Besides,
Optique employs an ontology-based data access (OBDA) (cf. [7,8]) technology
that extends the platform’s data access capabilities to traditional relational data
sources, which store a significant amount of the world’s enterprise data today.

One of the main problems that OptiqueVQS and typically any other VQS
face is scalability against large ontologies (cf. [9]). A VQS has to provide its users
with the elements of ontology (e.g., concepts and properties) continuously, so that
users can select relevant ontology elements and iteratively construct their queries.
However, even with considerably small ontologies, the number of concepts and
properties to choose from increases drastically due to the propagative effect of
ontological reasoning (cf. [10]). In turn, the high number of ontology elements
overloads the user interface and hinders usability.

We approach the aforementioned problem with adaptivity (cf. [11]) by ex-
ploiting a query history to rank and suggest ontology elements with respect to
an incomplete query that a user has constructed so far (i.e., context-aware). The
approach is specifically devised for SPARQL [12], takes semantics into account
with reasoning support, and uses SPARQL, as a programming language, for
the implementation. In the rest of paper, we first describe OptiqueVQS, present
our ranking proposal, and then discuss the related work. Finally, we provide a
discussion on the proposal and emerging issues and conclude the paper.

2 OptiqueVQS

OptiqueVQS is built on multiple and coordinated representation and interaction
paradigms (cf. [2]) and enables end users to formulate comparatively complex
queries. OptiqueVQS has a widget-based architecture, which underpins its multi-
paradigm approach and provides extensibility and flexibility. In the followings,
we describe the interface and the formal aspects of SPARQL generation.

2.1 Interface

OptiqueVQS currently has three widgets, see Fig. 1: W1 (see the top part of
Fig. 1) employs a diagram-based representation paradigm, gives an overview
of the constructed query, and allows further manipulation of it; W2 (see the
bottom-left part of Fig. 1) employs a menu-based representation paradigm along
with query by navigation interaction style (cf. [13]) to let users join concepts
via relationships connecting them; W3 (see the bottom-right part of Fig. 1) is
form-based and presents the attributes of a selected concept for selection and
projection operations. W3 also has a faceted search flavour (cf. [14]), as it uses
several natural interaction mechanisms, such as range sliders.

Query construction process in OptiqueVQS works as follows [4,5] – a demo
is available2. The user begins with selecting a starting concept in W2, i.e., a
1 http://www.optique-project.eu/
2 http://youtu.be/ks5tcPZVHp0

Adaptive Ontology-based Visual Query Formulation 3

Fig. 1. OptiqueVQS – an example query is depicted.

kernel concept, the selected concept appears in W1 as a typed variable-node,
and becomes active (aka focus, pivot etc.). Then, the user can extend the query
either by selecting one of the offered concept-property pairs in W2, i.e., concepts
reachable from the pivot via some object property, or by setting constraints on
data type properties or selecting output variables in W3, i.e., by restricting the
data properties of the objects belonging to the pivot. W3 also handles subclass
selection, as it presents direct subclasses of the pivot concept as a multi-select
form element. The user can change the pivot by clicking on any variable-node in
W1 and continue extending the query by selecting a concept-property pair in W2.
OptiqueVQS automatically extends the list of concept-property pairs and data
properties in W2 and W3 via the HermiT reasoner [15] (e.g., a concept inherits
all the properties of its parent concept). The user can delete nodes, access query
catalogue, save/load queries, undo/redo actions, or continue query construction
in the textual SPARQL mode.

2.2 Formal description

OptiqueVQS currently supports linear and tree-shaped conjunctive queries. The
OBDA framework behind OptiqueVQS supports OWL 2 QL [16] and a conjunctive
fragment of SPARQL 1.1 [12]. OWL 2 QL is a profile of OWL 2 and in this
profile query answering can be implemented by rewriting queries into a standard
relational query language [17].

4 Soylu et al.

The way the ontology controls the behaviour of OptiqueVQS should be
seen from two perspectives: from a knowledge representation (KR) perspective,
Optique exploits the graph-based organisation of ontological elements and data
for representing the domain and query structures (cf. query by navigation); from
a logic perspective, it uses ontological axioms to constrain the behaviour of the
interface and to extend the available knowledge. On a purely structural level,
OptiqueVQS could be controlled directly by a graph G that captures the concepts
and the properties of an ontology O. An OWL ontology can be viewed as a labeled
directed RDF graph G = (N,E), where N is a finite set of labeled nodes and E is
a finite set of labeled edges (cf. [17]). We consider pairwise disjoint alphabets U ,
a set of URIs, L, a set of terminal literals, and B, a set of blank nodes. An edge is
a triple written in the form of 〈s, p, o〉 ∈ (U ∪B)×U × (U ∪L∪B). The nodes of
the graph mainly represent concepts and edges represent properties. A SPARQL
query is formally represented by a tuple defined as Q = (A, V,D, P,M,R). A is
the set of prefix declarations, V is the output form, D is the RDF graph being
queried, P is a graph pattern, M are query modifiers, which allow to modify
the results by applying projection, order, limit, and offset options. SPARQL is
based on matching graph patterns against RDF graphs. P is composed of a set
of triple patterns and describes a subgraph of D. The main difference between
a triple pattern and RDF triple comes from the fact that the former may have
each of subject, predicate and object as a variable. However, once we substitute
variables in triple patterns with constants or blank nodes, we reach an RDF
graph P ′(N ′, E′) that could be considered as a subgraph of the actual RDF data
graph.

Every query generated by OptiqueVQS has a graph pattern represented by a
set of triple patterns, where each triple pattern is a tuple t ∈ V ar × U × (U ∪
V ar ∪ L) and V ar is an infinite set of variables. The state of an edited query
is composed of a partial graph pattern and a cursor position (cf. pivot). The
cursor position is either blank (i.e., empty query) or points to a variable in the
query. If the query is empty, the selection of a concept v from W2 results in
a new tuple 〈x, rdf:type, v〉 ∈ V ar × U × U in P , where x is a fresh variable.
If the cursor points to a variable x, of type v, then each selection of a object
property o with target class w from W1 (corresponding to an edge 〈v, o, w〉 ∈ G)
adds the following two triple patterns to P : 〈x, o, y〉 ∈ V ar × U × V ar and
〈y, rdf:type, w〉 ∈ V ar×U ×U , where y is a fresh variable. Every selection and
projection operation realised over a data property d in W3, while cursor is on a
variable x, adds a new tuple 〈x, d, y〉 ∈ V ar × U × (V ar ∪ L) to P . Finally, the
selection of a subclass v for a typed variable x in W3 results in a new triple in P:
〈x, rdf:type, v〉 ∈ V ar × U × U .

3 Adaptive Query Formulation

Currently, the widgets W2 and W3 (see Fig. 1) present all the available concept-
object property pairs and data properties to users respectively. However, the
lists grow quickly due to ontology size, number of relationships between concepts,

Adaptive Ontology-based Visual Query Formulation 5

subproperties, inverse properties, inheritance of restrictions etc. As the lists grow,
the time required for a user to find elements of interest increases; therefore ranking
ontology elements with respect to previously executed queries and suggesting
highly ranked elements first as possible query continuations have potential to
increase the efficiency of the users. The nature of OptiqueVQS requires suggestions
to be done for the pivot (i.e., cursor point) rather than for any part of a query.

In what follows, we first present a running example and then describe our
ranking method for context-aware suggestions. The running example is built on
one of the industrial Optique use cases, namely the Statoil use case. Statoil3 is a
large international energy company focused on upstream oil and gas operations.
The company reports that value creation processes could be improved considerably,
if domain experts are to be able to access data on their own.

3.1 Running Example

The exploration department of Statoil has to find new hydrocarbon reserves in a
cost effective way and ultimately the only way to prove the presence of a reserve
is to drill an exploration well, which may consist of one or several well paths,
i.e., wellbores. But since drilling is very expensive, it is important to maximise
the chances of success. To do this, all available data from previous and ongoing
exploration and production projects to extrapolate a model of the geology of a
field, which then allows to anticipate the presence of hydrocarbon reserves.

A partial simplified ontology for Statoil exploration department is depicted
in Fig. 2. The ontology currently contains 344 concepts, 148 object properties,
237 data properties, and 8190 axioms and it is yet to grow. In Fig. 3, an example
query log with three queries is assumed for the sake of brevity. The first query,
Q1, is the one that is depicted in Fig. 1 and asks for the names of wellbores with
a drilling facility and a drilling company. The second query, Q2, asks for the
content of all shallow wellbores that belongs to a well and has a drilling company
of type operator. The final query, Q3, asks for the content of all exploration
wellbores that has a fixed drilling facility and a drilling company.

In Fig. 3, PQ refers to an example partial query. The query in its incomplete
form asks for all exploration wellbores with a drilling company; the cursor point
is the variable of type exploration wellbore. At this point of query formulation
session, the widgets W2 and W3 need to suggest the most relevant continuations,
by comparing the partial query with the queries in the query log.

3.2 Ranking Method

A query log QL is basically a set of SPARQL queries: QL = {Q1, Q2, ..., Qn}.
We define a function p that takes a query Q as an input and returns its graph
pattern P . We define S as a set suggestions {T1, T2, ..., Tm}. Each suggestion
in S is a triple set Ti, which either contains two triples for W2 in the form of
{〈x, o, y〉 ∈ V ar × U × V ar, 〈y, rdf:type, w〉 ∈ V ar × U × U} or one triple for
3 http://www.statoil.com/

6 Soylu et al.

Wellbore	

Produc,on	
License	

Field	

Company	 Facility	

Shallow	
Wellbore	

Development	
Wellbore	

Explora,on	
Wellbore	

string	 string	

Operator	

Contractor	 Fixed	
Facility	

Pipeline	

Well	

subclass	 subclass	

subclass	

subclass	
subclass	 subclass	

subclass	

forField	

belongsToWell	

drillingFacility	 drillingOpCompany	

forLicense	

name	 content	

Fig. 2. A partial simplified ontology for the Statoil use case.

W3 in the form of {〈x, d, y〉 ∈ V ar × U × (V ar ∪ L)}, where x corresponds to
the cursor variable in a partial user query Qa. Note that subclass suggestion is
not included in the ranking, since it is always suggested by default.

The ranking score, at this point, basically corresponds to the conditional
probability for each suggestion Ti in S, given a partial query Qa and a query log
QL, that is Pr(Ti | p(Qa)). Conditional probability and probability functions are
defined in the followings.

Within a query log QL, the probability of a graph pattern P is defined as
the fraction of graph patterns in QL that are supergraphs [18] of P , as shown in
Eq. 1.

Pr(P) =
|{Qi ∈ QL|P ⊆ p(Qi)}|

|QL| (1)

Adaptive Ontology-based Visual Query Formulation 7

Wellbore	

Facility	

Company	

Well	 Q1	 Q2	

drillingOpCompany	

name	 (o)	

drillingFacility	 belongsToWell	

Operator	

Shallow	 Wellb	
content	 (o)	

drillingOpCompany	

Exp	 Wellbore	

Fixed	 Facility	 Q3	

content	 (o)	
Company	

drillingFacility	

drillingOpCompany	

Exp	 Wellbore	

?	 PQ	

?	
Company	

?	

drillingOpCompany	

Fig. 3. A query log with three queries and an example partial user query.

The conditional probability of a triple set T given a graph pattern P is defined
as the quotient of the probability of the union of T and P , and the probability
of P as shown in Eq. 2.

Pr(T | P) = Pr(T ∩ P)
Pr(P)

(2)

Now two important questions come into play. First, how do we find supergraphs
in the query log, given a partial user query? Second, how do we extract possible
extensions, i.e., suggestions, for the partial query from found supergraphs? As far
as the first problem is concerned, it boils down to a graph matching problem. We
consider a graph pattern P1 to be subgraph of another graph pattern P2, if all the
triple patterns of P1 are covered by P2, independent of variable names, ordering
of triple patterns, and the values of constraints. Dividino and Groner [19] review
different approaches for checking graph similarity, where our interest falls into
content-based approaches. We propose a method that relies on SPARQL itself
and provides us with an exhaustive solution, as it allows us to exploit semantic
knowledge while matching queries.

The method starts with the instantiation of graph patterns of queries in the
query log by replacing variable names and constraints on data type properties
with blank nodes; blank node names are marked with a query identifier for
preventing any overlap and identification purposes. Then, the resulted RDF
graphs are stored in a common dedicated triple store; the instantiation of the
query log depicted in Fig. 3 is given in Fig. 4. By applying the partial query over
this triple store, one can retrieve all the queries that are the supergraphs of the
partial query.

As far as the second question is concerned, i.e., finding possible extensions, the
partial query is extended with a triple pattern from the cursor point to retrieve
all extensions occurred in the matching supergraphs. The output of partial query

8 Soylu et al.

Query	 log:	 SPARQL	 form	
	
Q1	 SELECT	 DISTINCT	 ?c1	 ?a1	 ?c2	 ?c3	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:Wellbore.	 	
	 	 ?c2	 ns1:type	 ns2:Facility.	
	 	 ?c3	 ns1:type	 ns2:Company.	
	 	 ?c1	 ns2:drillingFacility	 ?c2.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c3.	
	 	 ?c1	 ns2:name	 ?a1.	
}	
	
Q2	 SELECT	 DISTINCT	 ?c1	 ?a1	 ?c2	 ?c3	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ShallowWellbore.	
	 	 ?c2	 ns1:type	 ns2:Operator.	
	 	 ?c3	 ns1:type	 ns2:Well.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
	 	 ?c1	 ns2:belongsToWell	 ?c3.	
	 	 ?c1	 ns2:wellboreContent	 ?a2.	
}	
	
Q3	 SELECT	 DISTINCT	 ?c1	 ?a1	 ?c2	 ?c3	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ExpWellbore.	
	 	 ?c2	 ns1:type	 ns2:Company.	
	 	 ?c3	 ns1:type	 ns2:FixedFacility.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
	 	 ?c1	 ns2:drillingFacility	 ?c3.	
	 	 ?c1	 ns2:wellboreContent	 ?a1.	
}	
	
	

Query	 log:	 triple	 form	
	
	
_:q1c1	 ns1:type	 ns2:Wellbore.	
_:q1c2	 ns1:type	 ns2:Facility.	
_:q1c3	 ns1:type	 ns2:Company.	
_:q1c1	 ns2:drillingFacility	 _:q1c2.	
_:q1c1	 ns2:drillingOpCompany	 _:q1c3.	 	
_:q1c1	 ns2:name	 _:q1a1.	
	
	
	
	
	
_:q2c1	 ns1:type	 ns2:ShallowWellbore.	
_:q2c2	 ns1:type	 ns2:Operator.	
_:q2c3	 ns1:type	 ns2:Well.	
_:q2c1	 ns2:drillingOpCompany	 _:q2c2.	
_:q2c1	 ns2:belongsToWell	 _:q2c3	 .	
_:q2c1	 ns2:wellboreContent	 _:q2a1.	 	
	
	
	
	
_:q3c1	 ns1:type	 ns2:ExpWellbore.	
_:q3c2	 ns1:type	 ns2:Company.	
_:q3c3	 ns1:type	 ns2:FixedFacility.	
_:q3c1	 ns2:drillingOpCompany	 _:q3c2.	 	
_:q3c1	 ns2:drillingFacility	 _:q3c3.	
_:q3c1	 ns2:wellboreContent	 _:q3a1.	

Fig. 4. The instantiation of query graph patterns.

is modified to retrieve the identifiers of matching queries, properties, and the
types of variables for the returned extension. An example is given in Fig. 5 for the
partial query depicted in Fig. 3 and the triple store depicted in Fig. 4. The rest
of the method involves calculation of conditional probabilities for the suggestions,
as exemplified in Fig. 5.

If one inspects the results in Fig. 5 closely, she will realise that reasoning is
involved. This is because in the query log, only Q3 is an exact match for the
partial query. However, thanks to reasoning support, Q1 is also matched, since
exploration wellbore is a subclass of wellbore. Likewise, this guarantees a match
for any query that has a semantic similarity [20] to the partial query, involving
subclasses, subproperties, inverses etc. Later in the paper, this is to be discussed
further, as there is a semantic distance involved between the partial query and the
matched query. Yet, it is possible to query the triple store without any reasoning,
if one wants to eliminate such matches, hence avoiding any semantic distance.

Adaptive Ontology-based Visual Query Formulation 9

?c3	 ?prop	 ?type	

_:q1c2	 ns2:drillingFacility	 ns2:Facility	

_:q1c3	 ns2:drillingOpCompany	 ns2:Company	

_:q1a1	 ns2:name	

_:q3c2	 ns2:drillingOpCompany	 ns2:Company	

_:q3c3	 ns2:drillingFacility	 ns2:FixedFacility	

_:q3a1	 ns2:wellboreContent	

Matches	

Modified	 par/al	 user	 query	
	
SELECT	 DISTINCT	 ?c3	 ?prop	 ?type	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ExpWellbore.	
	 	 ?c2	 ns1:type	 ns2:Company.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
	 	 ?c1	 ?prop	 ?c3.	
	 	 OPTIONAL	 {	 ?c3	 rdf:type	 ?type	 }	
}	

Par/al	 user	 query	
	
	
SELECT	 DISTINCT	 ?c1	 ?c2	 	
WHERE	 {	 	
	 	 ?c1	 ns1:type	 ns2:ExpWellbore.	
	 	 ?c2	 ns1:type	 ns2:Company.	
	 	 ?c1	 ns2:drillingOpCompany	 ?c2.	
}	
	

0.16	

0.33	

0.16	

0.16	

0.16	

Pr(T|P)	

W2	

W2	

W3	

W2	

W3	

Widget	

T1	

T2	

T3	

T2	

T4	

T5	

Fig. 5. Modified partial user query and possible query extensions.

The final stage involves ordering and dividing S into two sets, S1 for W2
and S2 for W3, with respect to ranking score and type of each suggestion (i.e.,
concept-relationship pair vs. data type property). Then, suggestions in each set
are paginated into |Si|

j pages, where i is the set identifier and j is the window
size for a page (i.e., the required number of suggestions for a page).

4 Related Work

There are a number of visual query formulation tools available in the literature
(e.g., [2,21,22,23]); however, to the best of authors knowledge none of them sup-
ports adaptive visual query formulation. Existing approaches for adaptive query
formulation are largely developed for context-sensitive textual query formulation.

Khoussainova et al. [24] provide a system, named SnipSuggest, for context-
aware composition of textual SQL queries with respect to a given query log. The
authors translate each SQL query in the query log into a set of features (e.g., a
table name appearing in the FROM clause). Similarly, the partial query of the user
is also translated into a set of features. Possible features for extension are identified
by matching the feature sets of the partial query and the feature sets of queries
in the query log and are ranked by calculating conditional probabilities. The
approach generates suggestions for extending any part of the partial query rather

10 Soylu et al.

than a single cursor point. Authors also propose a set of supportive algorithms
and techniques for, such as feature set matching (i.e., what if the partial query
does not appear in the query log), the selection of suggestions (i.e., accuracy
vs. diversity), and query log elimination (i.e., to reduce the size). The elaborate
approach provided by SnipSuggest system is relevant to our contribution in many
aspects. However, a fundamental difference is in feature comparison; while the
features of SnipSuggest system are a set of syntactic elements and the feature
comparison is string based, for OptiqueVQS feature sets (i.e., correspond to the
triple sets of graph patterns) have a semantic nature and compared semantically.
The semantic aspects not only concern how the matching is done, but also the
calculation of rankings, which we discuss in the following section.

As far as approaches for SPARQL are concerned, Campinas et al. [25] propose
an approach for assisting textual SPARQL query formulation, however in a
different context. The approach assumes that an ontology describing the data
set is unknown. Therefore, the authors propose a model that summarises the
underlying data graph and extracts ontology elements to suggest. The approach
extends a given partial user query from the cursor point, similar to our approach,
and then evaluates it over the data graph summary to retrieve possible extensions.
However, the approach does not realise any ranking of suggestions based on the
previously executed queries and does not take semantic similarities between
queries into account, possibly due to lack of rich domain knowledge (e.g., lack of
subclass, inverse property axioms).

Kramer et al. [26] present a tool, named SPACE, to support autocompletion
of textual SPARQL queries. For this purpose, it takes a SPARQL query log as an
input and then builds an index structure for the computation of query suggestions.
The index structure has a root node at level 0, representing a set of queries, while
each vertex at level 1 represents a SPARQL query. The vertices from level n− 2
to index level 1 represent graph patterns recursively. Finally the vertices at the
highest level (n− 1) represent IRIs, blank nodes, literals, variables, and binary
operators such as AND, UNION, and FILTER. The suggestion process is done by
subgraph matching for the partial user query in the index graph in a bottom up
manner. However, the authors describe neither the subgraph matching process
nor the details of ranking calculation. Finally, the index structure could grow
quickly as it is built on recursive decomposition of graph patterns.

5 Discussion

The fact that there exist SPARQL engines capable of handling large triple sets
effectively [27,28] is a positive evidence for the execution performance of our
approach, since our proposal relies on SPARQL querying for matching partial
user queries against a query log. One should also note that the size of a triple
store for a query log is only expected to be in the order of thousands triples, if
maintained – e.g., pruned, clustered etc.

As far as the precision of suggestions is concerned, approaches that take
the partial query into account are reported to be better than popularity-based

Adaptive Ontology-based Visual Query Formulation 11

approaches purely built on the number of occurrences of terms in the query
log [24]. Note that, initially, when no kernel concept is selected, our approach
behaves like a popularity-based approach, as it extends an empty query. Below,
we discuss a set of issues that need to be addressed:

Semantic distance: In Fig. 3, the match between the first query and partial
query is due to their semantic similarity and is not exact (e.g., exploration
wellbore is a subclass of wellbore); and in Fig. 5, the drillingFacility - Facility and
drillingFacility - FixedFacility suggestions are semantically similar. Therefore one
could incorporate the semantic distance involved as a cofactor into the ranking
function, so that semantically distant queries contribute less to the ranking.
Huang et al. [20] suggest a similarity measure, which can readily incorporated to
our proposal. It uses the depth of compared concepts and properties and their
least common ancestors from the root of hierarchy to compute similarity between
concepts and properties and combine them to compute similarity between triple
patterns, hence queries.

No match: A problematic situation arises when no match is found for the
partial query in the query log (cf. [24]). A possible solution could be pruning the
partial query until a match is found. At each step of a pruning process, a leaf
node, which is not the cursor point, could be randomly selected and deleted (or
with respect to some heuristics), so that partial query graph pattern does not
get disconnected and the cursor point is preserved.

Cold start: The proposal cannot draw any suggestions, when the query log
contains no or insufficient number of queries. Mostly likely sources to use for
addressing this problem are the ontology and data set. A statistical inspection of
ontology, e.g., concept centrality with respect to the number of incoming and
outgoing relationships, and the data set, e.g., the number of times each concept
and property appears in the dataset, could reveal useful information to overcome
the cold start problem.

Collective, group, or individual: The ranking and suggestions could be applied
on an individual basis for each user, i.e., only over the portion of query log that
belongs to the subject user, on group basis, i.e., only over the portion of query
log that belongs to the users of same type, and on a collective basis, i.e., over the
whole query log for every user (cf. [11]). The decision possibly should consider
whether users are homogeneous or there exist different user groups, each using a
part of the ontology heavily – e.g., geologist and chemists. In the former case, a
group or even user specific approach is more feasible, as each user group/user
focuses on a specific part of the ontology.

6 Conclusion and Future Work

Ontology-based end-user visual query formulation is promising for enhancing value
creation processes; yet existing approaches are not scalable against large ontologies.
Although there are some attempts for assisted textual query formulation in the
literature; they are either not elaborate enough to be readily used in our case or
do not take previously executed queries into account. In this paper, we proposed

12 Soylu et al.

a method for ranking and suggesting SPARQL query extensions, which relies
on the partial user query, the queries in the query history, and their semantic
similarity. We also identified notable issues to be addressed in order to reach an
elaborate solution.

The future work involves comparative evaluation of the proposed method and
its variants (e.g., with/without semantic similarity) in terms of precision. End-
user studies are also planned to measure the perceived usefulness, i.e., whether in
practice users find ranking approach useful or not.

Acknowledgements. This research is funded by the FP7 of the European
Commission under Grant Agreement 318338, “Optique”.

References

1. Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y., Klappi, H., Koubarakis, M.,
Lenzerini, M., Moller, R., Ozcep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R.,
Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In Rajendra, A., ed.:
Big Data Computing. Chapman and Hall/CRC (2013)

2. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for
databases: A survey. Journal of Visual Languages and Computing 8(2) (1997)
215–260

3. Lieberman, H., Paternó, F., Klann, M., Wulf, V.: End-User Development: An
Emerging Paradigm. In Lieberman, H., Paternó, F., Wulf, V., eds.: End-User Devel-
opment. Volume 9 of Human-Computer Interaction Series. Springer, Netherlands
(2006) 1–8

4. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks,
I.: OptiqueVQS – Towards an Ontology-based Visual Query System for Big Data.
In: Proceedings of the International Conference on Management of Emergent Digital
EcoSystems (MEDES 2013), ACM (2013) 119–126

5. Soylu, A., Skjæveland, M., Giese, M., Horrocks, I., Jimenez-Ruiz, E., Kharlamov,
E., Zheleznyakov, D.: A Preliminary Approach on Ontology-based Visual Query
Formulation for Big Data. In: Proceedings of the 7th International Conference on
Metadata and Semantic Research (MTSR 2013). Volume 390 of CCIS., Springer
(2013) 201–212

6. Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query complexity and learning on
novice user query performance with conceptual and logical database interfaces.
IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and
Humans 34(2) (2004) 276–281

7. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the
Semantic Web: A survey. Semantic Web 3(2) (2012) 169–209

8. Kogalovsky, M.R.: Ontology-Based Data Access Systems. Programming and
Computer Software 38(4) (2012) 167–182

9. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology
visualization methods - A survey. ACM Computing Surveys 39(4) (2007) 10:1–10:43

10. Grau, B.C., Giese, M., Horrocks, I., Hubauer, T., Jimenez-Ruiz, E., Kharlamov,
E., Schmidt, M., Soylu, A., Zheleznyakov, D.: Towards Query Formulation and
Query-Driven Ontology Extensions in OBDA Systems. In: Proceedings of the 10th
OWL: Experiences and Directions Workshop (OWLED 2013). Volume 1080 of
CEUR Workshop Proceedings., CEUR-WS.org (2013)

Adaptive Ontology-based Visual Query Formulation 13

11. Brusilovsky, P., Kobsa, A., Nejdl, W., eds.: The Adaptive Web: Methods and
Strategies of Web Personalization. Volume 4321 of LNCS. Springer (2007)

12. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation,
W3C (March 2013)

13. Ter Hofstede, A.H.M., Proper, H.A., Van Der Weide, T.P.: Query formulation as
an information retrieval problem. Computer Journal 39(4) (1996) 255–274

14. Tunkelang, D., Marchionini, G.: Faceted Search. Synthesis Lectures on Information
Concepts, Retrieval, and Services. Morgan and Claypool Publishers (2009)

15. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics.
Journal of Artificial Intelligence Research 36(1) (2009) 165–228

16. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language Profiles. W3C Recommendation, W3C (October 2009)

17. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: The Next Step for OWL. Web Semantics: Science, Services and Agents on
the World Wide Web 6(4) (2008) 309–322

18. Ray, S.S.: Subgraphs, Paths, and Connected Graphs. In: Graph Theory with
Algorithms and its Applications. Springer India (2013)

19. Dividino, R., Groner, G.: Which of the following SPARQL Queries are Similar? Why?
In: Proceedings of the 1st International Workshop on Linked Data for Information
Extraction (LD4IE 2013). Volume 1057 of CEUR Workshop Proceedings., CEUR-
WS.org (2013)

20. Huang, H., Liu, C., Zhou, X.: Computing Relaxed Answers on RDF Databases.
In: Proceedings of the 9th International Conference on Web Information Systems
Engineering (WISE 2008). Volume 5175 of LNCS., Springer (2008) 163–175

21. Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S.: An
ontology based visual tool for query formulation support. In: Proceedings of the
16th Eureopean Conference on Artificial Intelligence (ECAI 2004). Volume 110 of
Frontiers in Artificial Intelligence and Applications., IOS Press (2004) 308–312

22. Kapetanios, E., Baer, D., Groenewoud, P.: Simplifying syntactic and semantic
parsing of NL-based queries in advanced application domains. Data & Knowledge
Engineering 55(1) (2005) 38–58

23. Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: Ontology Enabled Graphical
Database Query Tool for End-Users. In: Proceedings of the 8th International Baltic
Conference on Databases and Information Systems (DB&IS 2008). Volume 187 of
Frontiers in Artificial Intelligence and Applications., IOS Press (2009) 105–116

24. Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: SnipSuggest: Context-aware
Autocompletion for SQL. Proceedings of the VLDB Endowment 4(1) (2010) 22–33

25. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing
RDF Graph Summary with Application to Assisted SPARQL Formulation. In:
Proceedings of the 23rd International Workshop on Database and Expert Systems
Applications (DEXA 2012), IEEE (2012) 261–266

26. Kramer, K., Dividino, R., Groner, G.: SPACE: SPARQL Index for Efficient
Autocompletion. In: Proceedings of the ISWC 2013 Posters & Demonstrations
Track (ISWC-PD 2013). Volume 1035 of CEUR Workshop Proceedings., CEUR-
WS.org (2013)

27. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. In: Proceedings of the IEEE International Conference on Data
Engineering (ICDE 2009), IEEE Computer Society (2009) 222–233

28. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on
Semantic Web and Information Systems 5(2) (2009) 1–24

Appendix C

OptiqueVQS:
Demonstration

This appendix reports the paper:

− Evgeny Kharlamov, Martin Giese, Peter Haase, Ernesto Jiménez-Ruiz, Christoph Pinkel, Martin G.
Skjæveland, Ahmet Soylu, Johannes Trame, Dmitriy Zheleznyakov, Carsten Binnig, Eldar Bjørge, Ian
Horrocks, Arild Waaler. Ian Horrocks. Towards Ontology Based Data Access for Statoil.

ICDE 2015.

69

1

Towards Ontology Based Data Access for Statoil
E. Kharlamov1 M. Giese2 P. Haase3 E. Jiménez-Ruiz1 C. Pinkel3 M. G. Skjæveland2

A. Soylu2 J. Trame3 D. Zheleznyakov1 C. Binnig4 E. Bjørge5 I. Horrocks1 A. Waaler2
1 University of Oxford; 2 University of Oslo; 3 fluid Operations AG; 4 DHBW Mannheim; 5 Statoil ASA

Abstract—Ontology Based Data Access (OBDA) is a prominent
approach to provide end users with high-level access to data
via an ontology that is ‘connected’ to the data via mappings.
State-of-the-art OBDA systems, however, suffer from limitations
restricting their applicability in industry. Existing solutions focus
on separate critical components of OBDA systems, while, to the
best of our knowledge, there is no end-to-end OBDA solution al-
lowing to deploy an OBDA system in an enterprise from scratch,
effectively maintain and use it. In particular, development of
necessary prerequisites to deploy an OBDA system, i.e., ontologies
and mappings, as well as end user oriented query interfaces, are
poorly addressed. The Optique platform provides an integrated
end-to-end OBDA solution that addresses a number of practical
challenges including the ones above. During the demonstration
the attendees can try the platform with preconfigured scenarios
from the petroleum industry and music domain, and try its
end-to-end functionality: from deployment to query answering.

I. INTRODUCTION

The growth of available information sources in enterprises
requires new efficient methods for data access by domain
experts whose ability to understand and analyse data is at
the core of making business decisions. Currently in Statoil1
and other data intensive companies there is a domination of
centralised approaches, where an IT-expert translates informa-
tion requests of domain experts into Extract-Transform-Load
(ETL) processes to first integrate the data and then to apply
predefined analytical reporting tools [8]. At the same time, in
many scenarios an interactive data exploration, where domain
experts want to access and analyse available data sources
directly, without involving IT-experts, is of a high importance
and centralised approaches are too heavy-weight and inflexible
to do the job [7, 14]. In the Optique project [14] we aim
at developing a direct data access solution that on the one
hand would provide such access to Statoil’s Exploration and
Production Data Store (EPDS) and on the other hand would
be generic enough to be applied in similar industries.

Challenges in providing domain experts with the direct data
access include (i) the complexity of schemata that could con-
tain hundreds and thousands of tables, e.g., EPDS has 3,000
tables with about 37,000 columns, and (ii) the conceptual
mismatch between the language and structures that the domain
experts use to describe the data, and the way the data is de-
scribed and structured by database schema languages. Indeed,
schemata are often integrated from autonomously evolving
systems (yielding schema complexity), that have been adapted
over years to the purpose of the applications they underly—
EPDS was created 15 years ago–and not to the purposes of
being intuitive for domain experts (yielding the conceptual
mismatch). Further important practical challenges in providing
direct data access are (iii) formal query languages, e.g., to

1The Norwegian oil and gas company, http://www.statoil.com/.

access EPDS domain experts should be proficient in SQL,
and (iv) data incompleteness. Regarding the latter challenge,
considerable amount of Statoil exploration data are results of
measurements taken during exploration activities by different
teams and they are often incomplete and fragmented. Thus,
a SQL encoding of a given information need over such data
is inevitably complex, it may involve multiple data sources
and tables referring to conceptually the same data stored
in different places, e.g., queries over EPDS often contain
thousands of words and have 50–200 joins.

Ontology Based Data Access (OBDA) [17] is a prominent,
so-called virtual, approach to direct data access for end users,
i.e., it provides an integration and access layer on top of
databases while the data stays in the original stores. In OBDA
users and data are mediated by an ontology, a semantically
rich conceptual model,2 and users formulate their information
needs as queries over the ontology. These queries are enriched
via logical reasoning over the ontology, translated into SQL
over the underlying databases with the help of mappings
(declarative specifications describing the relationship between
the ontological vocabulary, e.g., ‘wellbore’ or ‘oilfield’, and
the elements of the database schema) and finally executed over
these databases automatically, without IT-experts intervention.

OBDA naturally addresses three out of four challenges
above. Indeed, in contrast to a DB schema, an ontology
describes a domain of interest rather than a structure of a
DB and do it on a high level of abstraction in terms that are
clear for domain experts, thus, avoiding the complexity of
DB schemata required of Challenge (i), and the conceptual
mismatch of Challenge (ii). Challenge (iv) can be addressed
with the help of both mappings and ontologies. Indeed, an
ontology is written in a logic based formal language e.g.,
W3C Web Ontology Language (OWL 2) as a set of OWL 2
axioms, and admits logical reasoning that allows to enrich
ontological queries and address the incompleteness;3 while
mappings can relate one ontological term, e.g., ‘wellbore’, to
many different parts of a DB.

State-of-the art OBDA systems, despite success stories
in various scenarios, e.g. [5], have a number of important
limitations. To the best of our knowledge there is no end-to-
end OBDA solution providing both IT-experts and end users
with the necessary tools to deploy an OBDA system in an
enterprise from scratch, effectively maintain and use it. The
existing solutions, e.g., [4, 5, 18, 19] focus on separate critical
components of OBDA systems, and do not offer sufficient
support for end users oriented query formulation discussed
in Challenge (iii), as well as deployment and maintenance of
OBDA systems, which is in practice expensive.

2Ontologies are common in many areas, e.g., medicine, Semantic Web [11].
3Many efficient off-the-shelf reasoning tools are available, e.g., [9, 19].

2

Databases
External

Ontologies

Metadata
Store

Query
Transformation

Visualisation
Engine

Query
Formulation

Backend

ReasonerBootstrapping
Importing
Layering
Editing

Answer
Visualisation

Query
Formulation

Ontology and
Mapping

Management

Data
Layer

Application
Layer

Presentation
Layer

Fig. 1: General architecture of the Optique system

In the Optique project we have been developing an
end-to-end OBDA system that satisfies Statoil requirements
and addresses a number of practical challenges, including
Challenges (i)-(iv) above. Our solution integrates in a unified
platform a number of existing and novel components and
allows one to deploy, maintain, and use the Optique platform
in enterprises. Among the novel components, there is a
deployment and maintenance module allowing to extract
ontologies and mappings from relational databases in a
semi-automatic fashion, integrate preexisting ontologies in an
existing OBDA deployment instance, and edit mappings. We
also developed a component for query formulation support that
relies on novel techniques of projecting ontologies on graphs
as well as components to visualise and browse query answers.
We evaluated the platform with Statoil over EPDS and with
other real world databases with encouraging results [22].

In this demonstration we show the platform’s end-to-end
functionality with the focus on its novel components. We
demonstrate the platform on two preconfigured scenarios and
allow the attendees to deploy it over either of the two
databases underlying the scenarios, improve the deployment
using the mapping editor, query the resulting deployment, see
and browse query answers on maps, in tables, etc. Our first
demo scenario is inspired by Statoil data:4 we demonstrate
the system on the NPD FactPages database [20], a publicly
available data about petroleum activities on the Norwegian
Continental Shelf that overlaps with EPDS. Since under-
standing NPD FactPages requires basic knowledge about the
petroleum domain, we also demonstrate the platform over a
large open music encyclopedia MusicBrainz [1]. The demo
video illustrating the functionalities of our system and the
demo system is available in [2].5

II. OVERVIEW OF THE OPTIQUE PLATFORM

The general three-layer architecture of the Optique platform
is illustrated in Figure 1. To deploy the platform over a
relational DB, one can use its tools to extract ontologies and
mappings from the DB, incorporate external ontologies, edit
and author mappings of the resulting OBDA instance. After
the system is deployed, the underlying DB can be queried
using our visual query formulation tool that allows to compose
queries by navigation over the system’s ontology. Visually
formulated queries are translated into SPARQL and sent to
the query transformer for processing: query enrichment using
the ontology and further unfolding with the mappings into

4Due to privacy we cannot demo our solution on Statoil’s corporate data.
5A very preliminary version of the Optique platform was presented in [13].

bootstrapped

bootstrapped

imported

layered

alignment

Database

Ontologies

Mappings

Fig. 2: Semi-automatic deployment approach

SQL queries. We rely on the Ontop [19] query transformer,
which is an integral component of the Optique platform. SQL
queries are executed over the data sources underlying the
system by the DBMSs of the sources. We offer a number
of templates and widgets such as tables, timelines, maps,
charts, etc., depending on the data modalities, to visualise
and browse resulting query answers (see two screenshots of
platform’s answer visualisation in the bottom of Figure 3).
The integration of the Optique platform is based on the Infor-
mation Workbench [10], a generic and extensible platform for
semantic data management, providing the platform with many
base components, including interfaces and APIs as well as a
triple store for managing ontologies, mappings, query logs,
(excerpts of) query answers, DB metadata, etc.

III. DEPLOYMENT AND MAINTENANCE

The Optique platform provides semi-automatic support for
deployment, which is schematically depicted in Figure 2. The
platform supports different deployment scenarios. For example
one can start with bootstrapping, i.e., a semi-automatic extrac-
tion of an ontology and mappings from the database. Then,
one can import a pre-existing ontology and ‘connect’ it to the
bootstrapped one via alignment with our LogMap ontology
alignment system [12], which we have been developing during
the last four years. This scenario can be applied, e.g., when
the database schema or some of its fragments have a good
correspondence with the domain of interest, or the available
pre-existing ontology has a limited coverage of the domain of
interest. Another possible scenario is to layer a pre-existing
ontology directly over the database, i.e., to ‘connect’ it to the
database schema with semi-automatically generated mappings.
This scenario can address the case when there are several
good ontologies available and they can serve as entry points
to data for users with potentially different needs. The Optique
platform supports ontologies expressible in the OWL 2 QL
profile of OWL 2 ontology language, which was specifically
designed for efficient data access. Imported or layered, OWL 2
ontologies that cannot be captured in OWL 2 QL are automat-
ically approximated in OWL 2 QL using the technique of [6].
For mapping maintenance the platform offers a novel mapping
editor. We now discuss Optique’s modules in detail.

Mapping Bootstrapping Module automatically extracts so
called direct mappings by relying on and extending the W3C
specification, i.e., it extracts an ontological vocabulary from
a relational schema, and it extracts mappings relating this
vocabulary to the schema via SQL queries. The vocabulary
consists of one class for each table that is not many-to-many,
one property for each attribute and many-to-many table,
and a special property for each foreign key (FK). The

3

bootstrapped mappings are similar to view definitions, but
serve a different purpose and technically more involved. In
particular, mappings address a so-called impedance mismatch
problem: ontologies are object oriented and objects are
identified by URIs, while relational DBs contain tuples of
values. We implemented several strategies to generate URIs
for tuples that rely on heuristics as well as DB constraints,
e.g., primary and foreign keys guarantee coherent URI
generation for tuples from different tables. Figure 3 contains
a screenshot of one of our bootstrapping wizards.

Ontology Bootstrapping Module enriches the bootstrapped
vocabulary with OWL 2 axioms extracted from databases
and implements a number of novel ontology bootstrapping
techniques that are both schema (i.e., transforming explicit
and implicit database constraints into ontological axioms) and
data driven. For example, we turn FKs into OWL 2 axioms
of domain and range restrictions on properties. Here we rely
on FKs that are explicitly in schemas and candidate FKs
that we derive by checking containment between attribute
values in different tables. Computation of implicit FKs is
motivated by our observation that in EPDS some FKs are not
specified. We proposed several techniques to induce OWL 2
class and property hierarchies, as well as disjointness axioms
over bootstrapped vocabularies. For example, by checking that
all attribute names of a table T1 occur in the attributes of a
table T2, we create a candidate OWL 2 class inclusion axiom
saying that the class C[T1] corresponding to T1 is a subclass
of C[T2]. We verify these candidate axioms by looking at
the data instances and return a ranked list of axioms. By
looking at the common set of attributes A between similar
tables T1 and T2 (we have several notions of similarity), we
induce a candidate class C[A] corresponding to A and axioms
that C[T1] and C[T2] are subclasses of C[A]; then, the user
should assign a meaningful name to C[A]. By looking at
tables T1 and T2 with similar structure while non-overlapping
tuples we induce candidate disjointness axioms between C[T1]
and C[T2]. Each primary key that is not null or each unique
attribute is represented as a functional property axiom. We
developed a number of other techniques that we do not present
here due to space limit. After the bootstrapper computes the
set of all candidate axioms, it checks the set for logical
consistency using the ontology reasoner HermiT [9], repairs
the ontology if it is inconsistent, and presents the remaining
candidate axioms to the users for verification, i.e., the user can
edit, accept, or discard candidate axioms.

Ontology Importing Module allows to incorporate an exist-
ing ontology O1 in the system by aligning it with the ontology
O2 already used by the system, e.g., with the bootstrapped
one. Alignment introduces subclass and equivalence axioms
between O1’s and O2’s classes and properties. Based on our
experience with bootstrapping and importing for EPDS, we
extended LogMap so that it guarantees that the resulting
aligned ontology does not violate the so-called conservativity
principle wrt the vocabulary of O2, i.e., it does not add
(potentially) undesired inclusions among O2 classes [21].

Ontology Layering Module offers layering of an input
ontology over an input DB schema resulting in a set of direct
mappings between the ontology and the schema, by relying
on the IncMap system [16] that we developed for the Optique
platform. The module represents the ontology and schema as

graphs ‘preserving’ their structure, computes ranked corre-
spondences between elements of the graphs using lexical and
structural similarities as in the Similarity Flooding algorithm
of Melnik et al. converts the correspondences into direct map-
pings between the ontology and schema, and finally offer the
mappings to the user for verification. Different to bootstrap-
ping and importing, layering can map user-specified fragments
of DB schemata to user-specified fragments of ontologies.

R2RML Mapping Editor of the Optique platform is tailored
towards W3C R2RML mappings for which direct mappings
is a special case, and was evaluated with encouraging re-
sults [15]. It provides an intuitive mapping visualisation, semi-
automatic suggestions of mapping corrections, and step-by-
step wizards for writing complex (non direct) mappings.

IV. QUERY FORMULATION

Visual query formulation component of the platform, Op-
tiqueVQS [23], allows to compose conjunctive tree-shaped
queries by navigation over ontologies, has a widget-based ar-
chitecture, and exploits multiple representation and interaction
paradigms for query composition. Ontologies are object ori-
ented and data conforming to an ontology is a set of statements
of the form ‘wellbore(uri123)’, ‘locatedIn(uri123,uri456)’, and
‘oilfield(uri456)’ that are instantiations of classes and proper-
ties with (URIs representing) objects. These data can be seen
as a data-graph where nodes correspond to objects and labeled
with classes, while edges correspond to properties and labeled
with property names. Data-graphs are often enriched with extra
nodes and edges to encode class and property hierarchies, thus,
they can partially include information from ontological ax-
ioms. Furthermore, it is common to design query formulation
interfaces over an ontology by visualising (relevant fragments
of) its data-graph and the query formulation process boils
down to navigation through the data-graph. For OBDA, where
the ontological data is virtual and the user has access only
to the ontological axioms, data-graph driven query interfaces
are not appropriate. Thus, we developed novel techniques
to ‘project’ axioms rather than data in a graph structure as
an axiom-graph: an OWL 2 axiom is projected into a set
of nodes and edges relating them, where nodes correspond
to classes and edges to properties [3]. Projecting axioms to
graphs is not a trivial task since axioms are first-order logic
formulae and do not have an immediate correspondence to
graphs. In OptiqueVQS query construction is iterative, i.e.,
users construct queries step-by-step, and it boils down to
navigation over an axiom-graph. At the moment the system
supports axiom-graphs encoding those types of axioms which
can be bootstrapped by the deployment module, including
class hierarchies, and domain and range restrictions. E.g.,
consider two axioms saying that the classes ‘wellbore’ and
‘oilfield’ are respectively a domain and range of a property
‘locatedIn’, then the corresponding axiom-graph contains two
nodes labeled respectively with ‘wellbore’ and ‘oilfield’, and
one edge connecting these nodes labeled with ‘locatedIn’. In
Figure 3 there is a screenshot of OptiqueVQS, where in the
upper part there is a query constructed by the user and in the
lower-left part there is a fragment of axiom-graph relevant to
the constructed query. Important feature of OptiqueVQS is that
it does not require to store the axiom-graph: during each query
construction session we compute (using logical reasoning with

422/03/2014 09:39Bootstrapping

Page 1 of 2http://fact-pages.fluidops.net/resource/Bootstrapping

Ontology and Direct Mapping Bootstrapping
1. RDBS to Ontology
1.a. Direct mapping
ontology
2. Ontology alignment
2.a. Aligned ontology
3. OWL 2 QL
approximation
4. Ontology and
Mapping editing

1 - 6 / 70 Show 6 rows (max. 1000)

RDB Schema to Ontology

Available schemata:

http://www.optique-project.eu/resource/factpages-luxembourg/npd-all

licence_oper_hst prlOperDateValidFrom,prlOperDateValidTo,prlNpdidLicence,cmpNpdidCompany 2 8

wellbore_shallow_all wlbNpdidWellbore 3 38

wellbore_exploration_all wlbNpdidWellbore 9 79

licence_transfer_hst prlTransferDirection,cmpNpdidCompany,prlNpdidLicence,prlTransferDateValidFrom 2 11

licence_petreg_message prlNpdidLicence,ptlMessageDocumentNo 1 8

facility_moveable fclNpdidFacility 1 10

Suggest new super classes?

Compact ontology? (columns with the same name will be represented with an unique property)

Table name Primary key #Foreign keys #Attributes

cancel next >

Bootstrapping

Print Query Admin Help Login

Bootstrapping Wizard Visual Query Interface

Query Answers: Table View Query Answers: Map View

Fig. 3: Screenshots of the Optique platform

HermiT) relevant fragments of axiom-graph on-the-fly and
present to the user. As we observed in our user studies [22],
a purely axiom driven query interface suffers from important
practical limitations, e.g., it does not allow users to set specific
data values in queries, e.g., company names. To address this
issue we enrich axiom-graphs with data annotations which we
precompute, i.e., materialise, from the DBs underlying a given
OBDA deployment instance by ‘executing’ relevant mappings.
E.g., for EPDS we precomputed values that are frequently
used, rarely changed, and from relatively small domains; this
includes names of companies and oilfield, geolocations, ranges
of numerical values, e.g., min/max possible depth of wellbores.
Data values are visualised using sliders, drop boxes, etc., see
the lower-right part of the interface in Figure 3.

V. DEMONSTRATION SCENARIO

We will demonstrate the Optique platform end-to-end, i.e.,
from deployment to query answering over two databases.
Moreover, for these databases we prepared OBDA deploy-
ments with fine tuned ontologies and mappings and the at-
tendees of the demo will be able to formulate queries over
these deployments, load queries from query catalogs, execute
queries and browse query answers on maps and in tables. We
next describe the demonstration scenarios in detail.
Demonstration on NPD FactPages One deployment of the
Optique platform is made over the NPD FactPages [20], an
important public dataset heavily used in the oil and gas indus-
try. This DB has 70 tables, 276 different attributes, 96 foreign
keys, and about 50 MB of mostly aggregated data, e.g., seismic
surveys. The choice of this demo database was motivated by
its importance for the oil and gas industry and our work with
Statoil within the Optique project. This deployment was tested
by Statoil engineers who gave us positive feedback. Usage of
this deployment requires a basic knowledge of geophysics.
Demonstration on MusicBrainz Database The other deploy-
ment of the Optique platform is made over the MusicBrainz
database [1], which is an open music encyclopaedia that
contains music information about roughly 830,000 artists, 1.2
million releases, and 13.2 million recordings. This domain
does not require any special knowledge, so it is easy for
anyone to use. This deployment was tested by students and
the results were encouraging, e.g., students were able to
accomplish query formulation tasks using OptiqueVQS.

End-to-End Demonstration Besides querying the two pre-
configured deployments, the demo attendees will be able to
deploy the Optique platform over both NPD FactPages and
MusicBrainz databases and then query their own deployments.
Specifically, one will be able to bootstrap an ontology and
mappings from these databases, either (i) in a ‘simple’ mode,
suitable for inexperienced users, with bootstrapping performed
in an automatic regime using default parameters, or (ii) in a
step-by-step mode that allows a user to tune the deployment
parameters, e.g., to discover implicit database constraints and
propagate them to the bootstrapped ontology. Then, one will
be able to import pre-existing ontologies from our ontology
catalogue. This can be performed in two ways: (i) either after
the bootstrapping, in which case the imported and bootstrapped
ontologies will be aligned, or (ii) using our ontology layering
component, thus, skipping the bootstrapping step. Moreover,
the attendees of the demo will be able to manually edit
mappings with our mapping editor. Finally, they will be able
to query the resulting deployments and browse query answers.

VI. REFERENCES

[1] URL: http://musicbrainz.org/statistics.
[2] URL: http://fact-pages.fluidops.net/resource/demoICDE.
[3] M. Arenas et al. Faceted Search over Ontology-Enhanced RDF

Data. In: CIKM. 2014.
[4] C. Bizer and A. Seaborne. D2RQ—treating non-RDF

databases as virtual RDF graphs. In: ISWC. 2004.
[5] D. Calvanese et al. The MASTRO System for Ontology-Based

Data Access. In: Semantic Web 2.1 (2011).
[6] M. Console et al. Efficient Approximation in DL-Lite of OWL

2 Ontologies. In: DL. 2013.
[7] J. Crompton. Keynote talk at the W3C Workshop on Sem. Web

in Oil & Gas Industry. http://www.w3.org /2008/12/ogws-
slides/Crompton.pdf. 2008.

[8] A. Doan et al. Principles of Data Integration. Morg. Kauf.’12.
[9] Glimm et al. Optimising Ontology Classification. In: ISWC’10.

[10] P. Haase et al. The Information Workbench as a Self-Service
Platform for Linked Data Applications. In: WWW. 2012.

[11] I. Horrocks. What are ontologies good for? In: Evolution of
Semantic Systems. Springer, 2013.

[12] E. Jimenez-Ruiz et al. Large-Scale Interactive Ontology
Matching: Algorithms and Implementation. In: ECAI’12.

[13] E. Kharlamov et al. Optique 1.0: Semantic Access to Big Data:
The Case of Norwegian Petroleum Directorate’s FactPages. In:
ISWC (Posters & Demos). 2013.

[14] E. Kharlamov et al. Optique: Towards OBDA Systems for
Industry. In: ESWC (SE). 2013.

[15] C. Pinkel et al. How to Best Find a Partner? An Evaluation
of Editing Approaches to Construct R2RML Mappings. In:
ESWC. 2014.

[16] C. Pinkel et al. IncMap: Pay as You Go Matching of Relational
Schemata to OWL Ontologies. In: OM. 2013.

[17] A. Poggi et al. Linking Data to Ontologies. In: J. Data
Semantics 10 (2008).

[18] F. Priyatna et al. Formalisation and Experiences of R2RML-
based SPARQL to SQL query translation using Morph. In:
WWW. 2014.

[19] M. Rodriguez-Muro et al. Onto-logy-Based Data Access:
Ontop of Databases. In: ISWC. 2013.

[20] M. G. Skjæveland et al. Publishing the NPD FactPages as
Semantic Web Data. In: ISWC. 2013.

[21] A. Solimando et al. Detecting and Correcting Conservativity
Principle Violations in Onto-to-Onto Mappings. In: ISWC’14.

[22] A. Soylu et al. Experiencing OptiqueVQS: A Multi-paradigm
and Ontology-based Visual Query System for End Users. In:
Under Review.

[23] A. Soylu et al. OptiqueVQS: Towards an Ontology-Based
Visual Query System for Big Data. In: MEDES. 2013.

Appendix D

Faceted Search

This appendix reports the papers:

− Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,
and Dmitriy Zheleznyakov. Faceted Search over Ontology-Enhanced RDF Data.
CIKM 2014.

− Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,
and Dmitriy Zheleznyakov. Enabling Faceted Search over OWL 2 with SemFacet.
OWLED 2014

− Bernardo Cuenca Grau, Evgeny Kharlamov, Dmitriy Zheleznyakov, Marcelo Arenas, and Sarunas
Marciuska. On Faceted Search over Knowledge Bases. Extended abstract.
DL 2014

− Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska, Dmitriy Zheleznyakov, and Yujiao
Zhou. Faceted Search over OWL 2 Life Science Datasets and Ontologies with SemFacet.
SWAT4LS 2014 Demo

− Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska, Dmitriy Zheleznyakov, Marcelo Are-
nas, and Ernesto Jiménez-Ruiz. SemFacet: Semantic Faceted Search over Yago.
WWW 2014 Demo

− Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,
and Dmitriy Zheleznyakov. Towards Semantic Faceted Search.
WWW 2014 Poster

74

Faceted Search over Ontology-Enhanced RDF Data

Marcelo Arenas†
PUC Chile

Bernardo Cuenca Grau‡
University of Oxford

Evgeny Kharlamov‡
University of Oxford

Sarunas Marciuska‡
University of Oxford

Dmitriy Zheleznyakov‡
University of Oxford

ABSTRACT
An increasing number of applications rely on RDF, OWL 2, and
SPARQL for storing and querying data. SPARQL, however, is not
targeted towards end-users, and suitable query interfaces are needed.
Faceted search is a prominent approach for end-user data access,
and several RDF-based faceted search systems have been devel-
oped. There is, however, a lack of rigorous theoretical underpinning
for faceted search in the context of RDF and OWL 2. In this pa-
per, we provide such solid foundations. We formalise faceted inter-
faces for this context, identify a fragment of first-order logic captur-
ing the underlying queries, and study the complexity of answering
such queries for RDF and OWL 2 profiles. We then study interface
generation and update, and devise efficiently implementable algo-
rithms. Finally, we have implemented and tested our faceted search
algorithms for scalability, with encouraging results.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscellaneous; I.2.4
[Artificial Intelligence]: Knowledge Representation Formalisms
and Methods

Keywords
Faceted search; Ontology; OWL 2; RDF; SPARQL; Algorithms

1. INTRODUCTION
The Resource Description Framework (RDF) is the W3C rec-

ommendation graph data model for representing information about
Web resources, and SPARQL is the standard language for querying
RDF. In the last ten years, we have witnessed a constant growth in
the amount of available RDF data, and an increasing number of ap-
plications are relying on RDF and SPARQL for storing, publishing,
and querying data. The functionality of many such applications is
enhanced by an OWL 2 ontology: a set of first-order sentences that
are used to provide background knowledge about the application

Research supported by the Royal Society, the EPSRC projects
Score! and MaSI3, and the EU FP7 project “Optique” (n. 318338).
†Email: marenas@ing.puc.cl
‡Email: first.middle.lastname@cs.ox.ac.uk

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662027.

domain and enrich query answers with information not explicitly
given in the RDF data.

Although the growing popularity of RDF, OWL 2, and SPARQL
has been accompanied by the development of better and better query
answering engines, writing SPARQL queries is not well-suited for
the majority of users. Thus, an important challenge is the devel-
opment of simple yet powerful query interfaces that capture well-
defined fragments of SPARQL.

Faceted search is a prominent approach for querying document1

collections where users can narrow down the search results by pro-
gressively applying filters, called facets [1]. A facet typically con-
sists of a property (e.g., ‘gender’ or ‘occupation’ when querying
documents about people) and a set of possible string values (e.g.,
‘female’ or ‘research’), and documents in the collection are anno-
tated with property-value pairs. During faceted search users itera-
tively select facet values and the documents annotated according to
the selection are returned as the search result.

Several authors have proposed faceted search for querying doc-
ument collections annotated with RDF, and a number of systems
have been developed, e.g. [2–10]. The theoretical underpinnings of
faceted search in the context of semantic technologies, however,
have received less attention [11–13]. In particular, the following
key questions have not been satisfactorily addressed (see related
work section).
(Q1) What fragments of SPARQL can be naturally captured using

faceted search as a query paradigm?
(Q2) What is the complexity of answering such queries?
(Q3) What does it mean to generate and interactively update an

interface according to a given RDF graph?
Questions 1 and 2 correspond to the study of expressive power

and complexity of query languages in the context of faceted search.
These are central topics in data management and addressing them
is a key requirement to develop information systems that can pro-
vide correctness, robustness, scalability, and extensibility guaran-
tees. Furthermore, update (Question 3) is a key task in information
systems where query formulation is fundamentally interactive. Our
first goal is to answer these questions, thus providing rigorous and
solid foundations for faceted search over RDF data.

Furthermore, existing works have focused mostly on RDF, thus
essentially disregarding the role of OWL 2 ontologies. We see this
as an important limitation. Ontological axioms can be used to en-
rich query answers with implicit information, thus enhancing the
search for relevant documents. Moreover, they provide schema-
level structure, which can be exploited to improve faceted inter-
faces. Finally, RDF-based faceted search systems are data-centric,
and hence cannot be exploited to browse large ontologies or to for-
mulate meaningful queries at the schema level. Our second aim is to
address this limitation and provide a framework for faceted search
that is also applicable to the wider setting of OWL 2.
1We use ‘document’ to refer to any resource referenced by a URI.

(1) A(x) ∧R(x, y1) ∧B(y1) ∧R(x, y2) ∧B(y2)→ y1 ≈ y2,

(2) R(x, y)→ S(x, y), (3) A(x)→ ∃y.[R(x, y) ∧B(y)],

(4) A(x)→ x ≈ a, (5) R(x, y) ∧ S(y, z)→ T (x, z),

(6) A(x)→ B(x), (7) A(x) ∧B(x)→ C(x),

(8) R(x, y)→ A(x), (9) A(x) ∧R(x, y)→ B(y),

(10) A(x)→ R(x, a), (11) R(x, a)→ B(x),

(12) R(x, y)→ A(y), (13) R(x, y)→ S(y, x),

(14)R(x, y) ∧B(y)→A(x)

Table 1: Rules corresponding to OWL 2 profiles

In Section 3 we formalise faceted interfaces that are tailored to-
wards RDF and OWL 2 and which capture the key functionality im-
plemented in existing faceted search systems. Our interfaces cap-
ture both the combination of facets displayed during search, and the
facet values selected by users. In this way, an interface encodes both
a query, whose answers constitute the current search results, and the
facet values available for further selection. Analogously to existing
work on RDF-based faceted search and in contrast to traditional
faceted search, our notion of interface allows users to ‘navigate’
across interconnected collections of documents and establish filters
to each of them. Furthermore, it abstracts from considerations spe-
cific to GUI design (e.g., facet and value ranking), while at the same
time reflecting the core functionality of existing systems.

In Section 4 we study the expressivity and complexity of faceted
queries: queries encoded by faceted interfaces. To this end, we
identify a fragment of first-order logic that is sufficient to cap-
ture such queries, and study the complexity of query answering in
the presence of OWL 2 ontologies. Since OWL 2 reasoning can
be computationally expensive and hence significantly affect sys-
tems’ performance and robustness, we focus on ontologies in the
OWL 2 profiles [14]: language fragments with favorable computa-
tional properties. For each of these profiles we establish tight com-
plexity bounds and propose practical query answering algorithms.

In Section 5 we study interface generation and update. Exist-
ing techniques for RDF are based on exploration of the underlying
RDF graph. In this way, by generating facets according to the RDF
graph, systems can guide users in the formulation of ‘meaningful’
queries. We lift this approach by proposing a graph-based repre-
sentation of OWL 2 ontologies and their logical entailments for the
purpose of faceted navigation. Then, we characterise what it means
for an interface to conform to an ontology, in the sense that ev-
ery facet and facet value in the interface is justified by an edge in
the graph (and hence by an entailment of the ontology). Finally,
we propose generic interface generation and update algorithms that
rely on the information in the graph, and show tractability of these
tasks for ontologies in the OWL 2 profiles.

In Section 6 we present a faceted search platform that provides
functionality for generating and updating interfaces based on our
algorithms in Section 5. Our platform relies on an external triple
store with OWL 2 reasoning capabilities, and it is compatible with
faceted search GUIs, as well as with text search engines for retriev-
ing documents from keywords. We have tested the scalability of
our platform using different triple stores, with encouraging results.
As proof of concept, we have integrated our platform in a faceted
search system that bundles the triple store JRDFox, the search en-
gine Lucene, and our own faceted search GUI.

2. PRELIMINARIES
We use standard notions from first-order logic. We assume pair-

wise disjoint infinite sets of constants C, unary predicates UP, and
binary predicates BP. A signature is a subset of C ∪UP ∪BP.
We treat equality ≈ as an ordinary predicate in BP, and assume
that any set of formulae contains the axioms of equality for its sig-
nature. We treat > as a special symbol in UP, which is used to

represent a tautology. W.l.o.g. we assume all formulae to be recti-
fied; that is, no variable appears free and quantified in a first-order
formula ϕ, and every variable is quantified at most once in ϕ. The
set of free variables of a formula ϕ is denoted as fvar(ϕ).

A fact is a ground atom and a dataset is a finite set of facts. A rule
is a sentence of the form ∀x∀z [ϕ(x, z) → ∃yψ(x,y)], where x,
z, and y are pairwise disjoint tuples of variables, the body ϕ(x, z)
is a conjunction of atoms with variables in x ∪ z, and the head
∃yψ(x,y) is an existentially quantified non-empty conjunction of
atoms ψ(x,y) with variables in x ∪ y. Universal quantifiers are
omitted. The restriction of ψ(x,y) being non-empty ensures sat-
isfiability of any set of rules and facts, which makes query results
meaningful. A rule is Datalog if its head has at most one atom and
all variables are universally quantified.

OWL 2 defines three profiles: weaker languages with favourable
computational properties [14]. Each profile ontology can be nor-
malised as rules and facts using the correspondence of OWL 2
and first-order logic and a variant of the structural transformation.2

Thus, we see an ontology as a finite set of rules and facts. Table 1
specifies the rules allowed in these profiles. An ontology with only
sentences from Table 1 is (i) RL if it has no rules of Type (3);
(ii) EL if it does not contain rules (1), (9), and (13); and (iii) QL if
it does not contain rules (1), (4), (5), (7), (9)-(11), and (14).

Let V be a signature, at(V) the set of equality-free and constant-
free atoms over V , and eq(V) the set of atoms x ≈ c with x a vari-
able and c a constant from V . A positive existential query (PEQ)
Q(x) is a formula with free variables x, constructed using ∧, ∨ and
∃ from atoms in at(V) ∪ eq(V). A PEQ Q is monadic if fvar(Q)
is a singleton, and it is a conjunctive query (CQ) if it is ∨-free.

We consider two different semantics for query answering. Under
the classical semantics, a tuple t of constants is an answer toQ(x)
w.r.t. an ontologyO ifO |= Q(t). Under the active domain seman-
tics, t is an answer to Q w.r.t. O if there is a tuple t′ of constants
from O such that O |= ϕ(t, t′), where ϕ(x,y) is the formula ob-
tained from Q by removing all quantifiers. The evaluation problem
under classical (resp. active domain) semantics is to decide, given a
tuple of constants t, a PEQ Q and an ontology O in a language L,
whether t is an answer toQw.r.t.O under the given semantics. The
classical semantics is the default in first-order logic, whereas active
domain is the default semantics of the SPARQL entailment regimes
[15]. The latter can be seen as an approximation of the former (an
active domain answer is also an answer under classical semantics,
but not vice versa). The difference between both semantics mani-
fests itself only in the presence of existentially quantified rules and
queries; thus, both semantics coincide if either the input ontology
is Datalog, or if all variables in the input query are free.

3. FACETED INTERFACES
In this section, we formalise a notion of a faceted interface,

which provides a rigorous foundation for faceted search over RDF
graphs enhanced with OWL 2 ontologies. To motivate our defini-
tions, we will use an example based on an excerpt of DBpedia.
Our goal is to find US presidents who graduated from Harvard or
Georgetown and have a child who graduated from Stanford.

EXAMPLE 1. The document URIs dtr and dbc for Theodore
Roosevelt and Bill Clinton are annotated with the category ‘presi-
dent’. Roosevelt’s son Kermit dkr and Clinton’s daughter Chelsea
dcc are categorised as ‘person’. The document URIs for George-
town dg , Harvard dh , and Stanford ds are categorised under ‘uni-
versity’, and the USA dus and UK duk as ‘country’. These annota-
tions are given in RDF and correspond to the following facts:

2Note that the profiles provide the special concept ⊥, which is im-
material to query answering over satisfiable profile ontologies.

President(dtr) President(dbc) Person(dkr)
Person(dcc) Country(dus) Country(duk)
Univ(dh) Univ(dg) Univ(ds)

Specific information about documents is represented by liter-
als. For example, Theodore Roosevelt’s date of birth is encoded as
dateOfBirth(dtr , 1858-10-27). Most importantly, documents are
also annotated with other documents; such annotations are rep-
resented in RDF and correspond to the following facts:

citiz(dtr , dus) citiz(dbc , dus) child(dtr , dkr) child(dbc , dcc)
grad(dtr , dh) grad(dbc , dg) grad(dkr , dh) grad(dcc , ds)

Finally, DBpedia can be extended with ontological rules, which are
exploited to describe the meaning of the predicates and constants
in the vocabulary. Consider for example the rules given next:

President(x) ∧ citiz(x, dus)→ USpres(x), (1)
USpres(x)→ President(x) ∧ citiz(x, dus), (2)

grad(x, y)→ Person(x) ∧ Univ(y), (3)

Person(x)→ ∃y.
(
citiz(x, y) ∧ Country(y)

)
. (4)

Rules (1) and (2) define US presidents as those with US national-
ity. Rule (3) specifies the domain and range of grad. Finally, (4)
mandates that each person has a (maybe unspecified) nationality.

Analogously to traditional faceted search, we represent facets as
pairs of a predicate (or facet name) and a set of values. In the con-
text of RDF, however, documents can be used to annotate other
documents, and thus annotations form a graph, rather than a tree.
Thus, facet values can be either document URIs or literals. Ex-
amples of facet names are the relations ‘grad’ and ‘dateOfBirth’,
and example values are documents such as ‘ds’ and literals such as
‘1858-10-27’. Selection of multiple values within a facet can be in-
terpreted conjunctively or disjunctively, and hence we distinguish
between conjunctive and disjunctive facets. We also distinguish a
special facet type, whose values are categories (i.e., unary predi-
cates) rather than documents or literals. Finally, a special value any
denotes the set of all values compatible with the facet name.

DEFINITION 2. Let type and any be symbols not occurring in
C∪UP∪BP. A facet is a pair (X, ◦Γ), with ◦ ∈ {∧,∨}, Γ a non-
empty set, and either (i)X = type and Γ ⊆ UP, or (ii)X ∈ BP,
any ∈ Γ and either Γ ⊆ C∪{any} or Γ ⊆ UP∪{any}. A facet of
the form (X,∧Γ) is conjunctive, and a facet of the form (X,∨Γ) is
disjunctive. In a facet F = (X, ◦Γ), X is the facet name, denoted
by F |1, and Γ contains the facet values and it is denoted by F |2.

EXAMPLE 3. The following facets are relevant to our example.

F1 = (type,∨{USpres,Country}),
F2 = (child,∨{any, dkr , dcc}), F3 = (grad,∨{any, dh, ds, dg}),
F4 = (citiz,∧{any, dus, duk}), F5 = (citiz,∨{any, dus, duk}).
The disjunctive facet F1 can be exploited to select the categories
to which the relevant documents belong. Facet F2 can be used to
narrow down search results to those individuals with children; fur-
thermore, the value any can be used to state that we are not looking
for any specific child. The intuition behind F3, F4, and F5 is simi-
lar; note, however, that facet F4 is conjunctive.

3.1 The Notion of Faceted Interface
We next move on to the definition of a faceted interface, which

encodes both a query (whose answers determine the search results)
and the choices of facet values available for further refinement.

http://en.wikipedia.org/wiki/Bill_Clinton
William Jefferson "Bill" Clinton (born William
Jefferson Blythe III; August 19, 1946) is an
American politician who served as the 42nd
President of the United States from 1993 to
2001. Inaugurated at age 46, he was the third-
youngest president. He took office at the end
of the Cold War, and was the first president of
the baby boomer generation...

has child
ANY

type

Country
USpres

More Focus

More Focus

Remove

Remove

Searchpoliticians

is graduated from
More Focus

Stanford Uni.

Remove

is graduated from
More Focus

Stanford Uni.

Remove

Harvard Uni.
Georgetown Uni.

Figure 1: A visualisation of the example interface

DEFINITION 4. A basic faceted interface (BFI) is a pair (F,Σ),
with F a facet and Σ ⊆ F |2 the set of selected values. The set of
faceted interfaces (or interfaces, for short) is given by the following
grammar, where I0 and I1 = (F,Σ) are BFIs and F |1 ∈ BP:

I ::= path | (path ∧ path) | (path ∨ path),

path ::= I0 | (I1/I).

A BFI encodes user choices for a specific facet, e.g., the BFI
(F1, {USpres}) selects the documents categorised as US presidents.
BFIs are put together in paths: sequences of nested facets that cap-
ture navigation between sets of documents. Documents are anno-
tated with other documents by means of binary relations (e.g., child
connects parents to their children); thus, nesting (I1/I) requires
the BFI I1 to have a binary relation as facet name. With nesting
we can capture queries such as ‘people with a child who gradu-
ated from Stanford’ by using the interface (F2, {any})/(F3, {ds})
which first selects people having (any) children and then those chil-
dren with a Stanford degree. Finally, two types of branching can be
applied: (path1 ∧ path2) indicates that search results must satisfy
the conditions specified by both path1 and path2, while (path1 ∨
path2) indicates that they must satisfy those in path1 or path2.

EXAMPLE 5. Consider the following interface Iex, which is vi-
sualised in our system as in Figure 1.
(
(F1, {USpres}) ∧ (F3, {dh , dg})

)
∧
(
(F2, {any})/(F3, {ds})

)
.

The interface consists of three paths connected by ∧-branching.
The first path selects US presidents. The second path selects grad-
uates of Harvard or Georgetown. The third path selects individu-
als with a child who is a Stanford graduate. Since paths are com-
bined conjunctively their constraints apply simultaneously. Thus,
we obtain the US presidents who graduated from either Harvard or
Georgetown and who have a child who graduated from Stanford.

The query encoded by the selected values in an interface is for-
mally specified in terms of first-order logic as given next.

DEFINITION 6. Let I be an interface, and let each xw with
w ∈ {0, 1, . . . , 9, ·}∗ be a variable. The query of I is the formula
Q[I] = JI, xε, x0K, with one free variable xε, defined as in Table 2.

Our semantics assigns to each interface a PEQ with one free vari-
able. For each facet F we have J(F, ∅), v, xwK = >(v), indicating
that no restriction is imposed by F if no value is selected. BFIs
with a type-facet are interpreted as the conjunction (disjunction) of
unary atoms over the same variable. BFIs having as facet name a
binary predicate result in either an atom whose second argument is
existentially quantified (if any is selected), or in a conjunction (dis-
junction) of binary atoms having a variable as second argument that
must be equal to a constant or belong to a unary predicate. Branch-
ing (path1 ◦ path2) with ◦ ∈ {∧,∨} is interpreted by constructing
the conjunction (disjunction) of the queries for each pathi; further-
more, if for some pathi we have that Jpathi, v, xwK = >(v), indi-
cating that no value from the facets occurring in pathi is selected,

Basic Faceted Interfaces: J(F,Σ), v, xwK =

>(v) if Σ = ∅
∃xw F |1(v, xw) if any ∈ Σ

◦
C∈Σ

C(v) if F |1 = type and Σ 6= ∅
◦

ti∈Σ
∃xw·i F |1(v, xw·i) ∧ xw·i ≈ ti if F |1 6= type, any /∈ Σ,

Σ 6= ∅ and Σ ⊆ C

◦
Ci∈Σ

∃xw·i F |1(v, xw·i) ∧ Ci(xw·i) if F |1 6= type, any /∈ Σ,
Σ 6= ∅ and Σ ⊆ UP

Nesting: J((F,Σ)/I), v, xwK =

>(v) if Σ = ∅
∃xw F |1(v, xw) ∧ JI, xw, xw·0K if any ∈ Σ

◦
ti∈Σ
∃xw·i F |1(v, xw·i)∧ if any /∈ Σ, Σ 6= ∅

xw·i ≈ ti ∧ JI, xw·i, xw·i·0K and Σ ⊆ C

◦
Ci∈Σ

∃xw·i F |1(v, xw·i)∧ if any /∈ Σ, Σ 6= ∅
Ci(xw·i) ∧ JI, xw·i, xw·i·0K and Σ ⊆ UP

Branching: J(path1 ◦ path2), v, xwK =

(Jpath1, v, xw·0K ◦ Jpath2, v, xw·1K) if Jpath1, v, xw·0K 6= >(v)
Jpath2, v, xw·1K 6= >(v)

Jpath1, v, xw·0K if Jpath1, v, xw·0K 6= >(v)
Jpath2, v, xw·1K = >(v)

Jpath2, v, xw·1K if Jpath1, v, xw·0K = >(v)
Jpath2, v, xw·1K 6= >(v)

>(v) if Jpath1, v, xw·0K = >(v)
Jpath2, v, xw·1K = >(v)

Table 2: Semantics of faceted interfaces

then pathi is ignored. Finally, nesting involves a “shift” of variable
from the parent BFI to the nested subexpression.

EXAMPLE 7. Interface Iex encodes the following query:

Qex(x) = USpres(x) ∧
(
∃y1 (grad(x, y1) ∧ y1 ≈ dh)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈ dg)
)

∧ ∃z
(
child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈ ds)

)
.

If we consider only facts, the answer is empty (e.g., no document
is categorised as ‘US president’). If we also consider the ontology
rules, however, we obtain dbc (i.e., Bill Clinton) as an answer.

Our notion of interface motivates the class of faceted queries,
i.e., PEQs that can be captured by some faceted interface.

DEFINITION 8. A first-order formula ϕ is a faceted query if
there exists a faceted interface I such that ϕ and Q[I] are iden-
tical modulo renaming of variables.

Note that our notion of interface abstracts from several consid-
erations that are critical to GUI design. For instance, our notion
is insensitive to the order of BFIs composed by ∧- or ∨- branch-
ing, as well as to the order of facet values (which are carefully
ranked in practice). Furthermore, we model type-facet values as
‘flat’, whereas in applications categories are organised hierarchi-
cally. Although these issues are important from a front-end per-
spective, they are immaterial to our technical results.

3.2 Faceted Interfaces with Refocussing
The interface in Example 5 finds presidents (such as Bill Clinton)

who graduated from either Harvard or Georgetown and have chil-
dren who graduated from Stanford. If we want to know who these
children are (i.e., see Chelsea Clinton as an answer), we must pro-
vide refocussing (or pivoting) functionality [9, 10]. We next extend
faceted interfaces to allow for such functionality.

DEFINITION 9. Let focus be a symbol not occurring in C ∪
UP ∪ BP. An extended basic faceted interface (EBFI) is either

Extended Basic Faceted Interfaces: J(F,Σ ∪ {focus}), v, xwK =

F |1(v, xw) if Σ = ∅
J(F, {focus}), v, xwK if Σ 6= ∅ and

Σ ⊆ C ∪ {any}
J((F, {focus})/((type,∨F |2),Σ)

)
, v, xwK if Σ 6= ∅ and

Σ ⊆ UP ∪ {any}
Nesting: J((F,Σ ∪ {focus})/I), v, xwK =

F |1(v, xw) ∧ JI, xw, xw·0K if Σ = ∅
J((F, {focus})/I), v, xwK if Σ 6= ∅ and

Σ ⊆ C ∪ {any}
J((F, {focus})/(((type,∨F |2),Σ) ∧ I

))
, v, xwK if Σ 6= ∅ and

Σ ⊆ UP ∪ {any}

Table 3: Semantics of extended faceted interfaces

a BFI or a pair (F,Σ ∪ {focus}), where (F,Σ) is a BFI and
F |1 ∈ BP. Moreover, the set of extended faceted interfaces (EFIs)
is defined by the same grammar given in Definition 5, but where I0
is a BFI and I1 = (F,∆) is an EBFI with F |1 ∈ BP. Finally,
each EFI I must have at most one occurrence of the symbol focus.

The special value focus is used to change the free variable of
the query Q, which determines the kinds of objects returned as an-
swers. Thus, refocussing is used over a facet that generates new
variables in the query, which by Table 2 requires that F |1 ∈ BP.

The query encoded by an extended interface can be specified in
terms of first-order logic as given next.

DEFINITION 10. Let I be an EFI and JI, xε, x0K be a formula
defined by the extension of Table 2 with the rules in Table 3. Then
the query of I is the formula Q[I] defined as follows:

Q[I] =

{
JI, xε, x0K if focus does not occur in I ,
∃xε JI, xε, x0K otherwise.

Finally, a formula ϕ is an extended faceted query if there is an EFI
I s.t. ϕ and Q[I] are identical modulo renaming of variables.

For example, consider the following EFI I , which is focused on
the children of the US presidents:
(
(F1, {USpres}) ∧ (F3, {dh , dg})

)
∧
(
(F2, {focus})/(F3, {ds})

)
.

Then,Q[I] is obtained fromQex(x) in Example 7 by first dropping
the existential quantifier ∃z fromQex(x), and then adding the exis-
tential quantifier ∃x to the resulting query, thus obtaining Q′ex(z):

∃x
(
USpres(x) ∧

(
∃y1 (grad(x, y1) ∧ y1 ≈ dh)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈ dg)
)

∧
(
child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈ ds)

))
.

The answer to Qex(z) is precisely dcc (Chelsea Clinton).

4. ANSWERING FACETED QUERIES
Each time a user selects a facet value to refine the search results,

a faceted search system must compute the answers to a query. Thus,
query evaluation is a key reasoning problem for the development of
efficient and robust faceted search systems.

As discussed in Section 3, faceted queries are monadic positive
existential queries resulting from the selection of facet values in an
interface. By standard results for relational databases, PEQ evalu-
ation is an NP-hard problem, even if we restrict ourselves to CQs
and ontologies consisting of just a dataset.

Our main result is that, in contrast to PEQs (and even CQs),
faceted query evaluation over datasets is tractable; furthermore, the
problem remains tractable in most cases if we consider ontologies
belonging to the OWL 2 profiles. Our tractability results concern

Algorithm 1: ANSWER-FQ: Faceted Queries over Datasets
INPUT : D a dataset; Q a faceted query
OUTPUT: Answers to Q w.r.t. D

1 S := Set of disjunctive subformulas of Q
2 �:= partial order on S s.t. ϕ � ϕ′ iff ϕ is a subformula of ϕ′
3 for each ϕ = (ϕ1 ∨ ϕ2) ∈ S listed in ascending �-order do
4 for each 1 ≤ i ≤ 2 do
5 ϕ′i := REWRITE(ϕi)
6 Ansi := ANSWER-TREE-CQ(ϕ′i,D)
7 D := D ∪ {Cϕ1∨ϕ2 (d) | d ∈ Ans1 ∪ Ans2}
8 Q′ := REWRITE(Q)
9 Ans := ANSWER-TREE-CQ(Q′,D)

10 return Ans

Function REWRITE

INPUT : ϕ a faceted query
OUTPUT: A conjunctive query

1 case ϕ an atom return ϕ
2 case ϕ = ∃z.ϕ′ return ∃z.REWRITE(ϕ′)
3 case ϕ = ϕ1 ∧ ϕ2 return REWRITE(ϕ1) ∧ REWRITE(ϕ2)
4 case ϕ = ϕ1 ∨ ϕ2 return Cϕ1∨ϕ2 (y) with y = fvar(ϕi)

combined complexity, which takes into account the size of the en-
tire input (i.e., ontological rules, RDF data and queries).

4.1 Faceted Query Answering Over Datasets
The rationale behind our tractability result is that PEQs originat-

ing from faceted interfaces are of a rather restricted shape, which
is determined by Table 2 in Section 3. A closer look at the table
reveals that variables in a faceted query can be arranged in a tree
with root xε and where each variable xw.i is a child of xw.

DEFINITION 11. Let Q(x) be a monadic PEQ. The graph of Q
is the smallest directed graph GQ with a node for each variable
in Q and a directed edge (y, y′) for each atom R(y, y′) occur-
ring in Q where R is different from ≈. Moreover, Q is tree-shaped
if (i) GQ is a (possibly empty) directed tree rooted at x; (ii) for
each edge (y, y′) there is at most one binary atom in Q of the form
R(y, y′).

Note that query Qex(x) in Example 7 is tree-shaped. The second
observation in Table 2 is that disjunction in a faceted query origi-
nates from either a disjunctive facet or from ∨-branching between
paths. In either case, disjunctive subqueries are monadic tree-shaped
PEQs. These observations are summarised as follows:

PROPOSITION 12. Every faceted query Q is a monadic tree-
shaped PEQ with the following property: if ϕ = (ϕ1 ∨ ϕ2) is a
subformula of Q, then fvar(ϕ1) = fvar(ϕ2) = {x} for some x.

We next show how the restricted shape of faceted queries can
be exploited to make query answering more efficient. We start by
providing a polynomial algorithm for answering faceted queries
over datasets. The key observation is that the disjunctive subqueries
ϕ = ϕ1 ∨ ϕ2 in the input query Q can be evaluated w.r.t. the input
dataset in a ‘bottom-up’ fashion . To answer one such ϕ, we solve
ϕ1 and ϕ2 independently and ‘store’ the answers as facts in the
dataset using a fresh unary predicate Cϕ uniquely associated to ϕ.

EXAMPLE 13. Query Qex can be answered over the dataset in
our running example as follows. First, solve the subquery ϕ asking
for graduates from either Harvard or Georgetown; each disjunct is
a tree-shaped CQ, and we obtain B. Clinton, T. Roosevelt and K.
Roosevelt as answers. Then, extend the dataset with facts Cϕ(dbc),
Cϕ(dtr) and Cϕ(dkr) over a fresh predicate Cϕ. Finally, rewrite
Qex by replacing ϕ(x) with Cϕ(x) and answer the rewritten query
over the extended dataset. We obtain the empty set of answers since
no document is explicitly categorised as US president.

Algorithm 2: ANSWER-FQ-ACTIVE

INPUT :O an ontology; Q a faceted query
OUTPUT : Active domain answers to Q w.r.t.O

1 D := COMPUTE-ENTAILED-FACTS(O)
2 Ans := ANSWER-FQ(Q,D)
3 return Ans

Algorithm 1 implements these ideas. The algorithm relies on
a specialised algorithm ANSWER-TREE-CQ to answer (monadic)
tree-shaped CQs, which is used as a ‘black box’. The following
theorem establishes correctness of our algorithm.

THEOREM 14. Algorithm 1 computes all answers toQ w.r.t.D.

Thus, faceted queries can be evaluated in polynomial time with
an oracle for the evaluation of tree-shaped CQs. By a classic result,
acyclic CQs (and hence also tree-shaped CQs as in Def. 11) can be
answered in polynomial time [16]. Thus, tractability tree-shaped
CQ evaluation transfers to the evaluation of faceted queries.

COROLLARY 15. Faceted query evaluation over datasets is fea-
sible in polynomial time.

In what follows we study query answering over ontologies (and
not just datasets) under both active domain and classical semantics.

4.2 Active Domain Semantics
In practice, queries over ontology-enhanced RDF data are typi-

cally represented in SPARQL and executed using off-the-shelf rea-
soning engines with SPARQL support. The specification of SPARQL
under entailment regimes [15] is based on active domain semantics,
which requires existentially quantified variables in the query Q to
map to actual constants in the input ontologyO. In this case, we can
answer queries using Algorithm 2, which first computes the dataset
D of all facts entailed by O and then answers Q w.r.t. the dataset
D. The correctness of Algorithm 2 follows directly from Theorem
14 and the following proposition.

PROPOSITION 16. Let Q be a PEQ, let O be an ontology, and
let D be the set of all facts α such that O |= α. Then, the active
domain answers to Q w.r.t. O and w.r.t. D coincide.

Fact entailment is tractable for all the OWL 2 profiles; thus, by
committing to the active domain semantics of SPARQL we can
achieve tractability without emasculating the ontology language.

THEOREM 17. Active domain evaluation of faceted queries is
in PTIME w.r.t. all normative OWL 2 profiles. Furthermore, it is
PTIME-complete w.r.t. the EL and RL profiles.

4.3 Classical Semantics
Classical and active domain semantics coincide if we restrict our-

selves to Datalog ontologies. Thus, Algorithm 2 can also be used
for query answering under classical semantics if the input ontology
is Datalog. An immediate consequence is that our results in Theo-
rem 17 transfer to OWL 2 RL ontologies under classical semantics.

In contrast to RL, the EL and QL profiles can capture existen-
tially quantified knowledge and hence active domain and classi-
cal semantics may diverge for queries with existentially quantified
variables. To deal with EL ontologies, we exploit techniques de-
veloped for the combined approach to query answering [17, 18].
These techniques are currently applicable to guarded EL ontolo-
gies, i.e., EL ontologies without axioms of Type (5). The idea is to
rewrite rules of Type (3) in Table 1 into Datalog by Skolemising
existentially quantified variables into fresh constants.

DEFINITION 18. Let O be in EL. The ontology Ξ(O) is ob-
tained fromO by replacing each ruleA(x)→ ∃y.[R(x, y)∧B(y)]
with A(x) → P (x, cR,B), P (x, y) → R(x, y), P (x, y) → B(y),
where P is a fresh predicate and cR,B is a globally fresh constant
uniquely associated with R and B.

Although this transformation strengthens the ontology, it pre-
serves the entailment of facts [17]. The following theorem estab-
lishes that the evaluation of faceted queries is also preserved.

THEOREM 19. Let Q be a faceted query, O a guarded EL on-
tology, and c a constant in O. Then, O |= Q(c) iff Ξ(O) |= Q(c).

Thus, we can answer faceted queries over an EL ontology O
by applying Algorithm 2 to Ξ(O). Since Ξ is a linear transforma-
tion and Ξ(O) is an RL ontology, we can conclude tractability of
faceted query evaluation for EL (a result consistent with existing
results for acyclic CQs in EL [19]). In contrast, the evaluation of
acyclic CQs is already NP-hard for OWL 2 QL [20] and we can
show that faceted query evaluation is NP-complete for OWL 2 QL.
The following theorem summarises our results.

THEOREM 20. Faceted query evaluation under classical seman-
tics is (i) PTIME-complete for RL and guarded EL ontologies; and
(ii) NP-complete for QL ontologies.

4.4 Extended Faceted Queries
We conclude by arguing that the refocussing functionality does

not increase complexity of query evaluation. PEQs obtained from
EFIs satisfy Proposition 12, with the only difference that the cor-
responding query graph is no longer rooted in the answer variable.
Algorithm 1 can be extended to prove that Corollary 15 also holds
for extended faceted queries. From this, and using the same tech-
niques as in the proofs of Theorems 17 and 20, we obtain that:

PROPOSITION 21. Extended faceted query evaluation under
classical semantics is (i) PTIME-complete for RL and guarded EL;
and (ii) NP-complete for QL. Moreover, active domain evaluation
of extended faceted queries is in PTIME w.r.t. all normative OWL 2
profiles, and it is PTIME-complete for RL and EL.

5. INTERFACE GENERATION & UPDATE
Faceted navigation is an interactive process. Starting with an

initial interface generated from a keyword search, users ‘tick’ or
‘untick’ facet values and the system reacts by updating both search
results (query answers) and facets available for further navigation.

EXAMPLE 22. Consider the interactive construction of our ex-
ample interface Iex. Navigation starts with the following interface
with no selected value, which may have been generated as a re-
sponse to a keyword search (facets Fi are given in Example 3):

I0 = (F1, ∅) ∧ (F3, ∅) ∧ (F2, ∅) ∧ (F5, ∅).
We may then select the category USpres in F1, which narrows down
the search to US presidents. In response, the system may construct
the following new interface I1:

I1 = (F1, {USpres}) ∧ (F3, ∅) ∧ (F2, ∅).
Interface I1 incorporates the required filter on US presidents. Fur-
thermore, it no longer includes facet F5 since US presidents have
only US nationality and hence any filter over this facet becomes
redundant. Next, we select Harvard and Georgetown in facet F3,
which narrows down the search to US presidents with either a Har-
vard or Georgetown degree and yields the following interface:

I2 = (F1, {USpres}) ∧ (F3, {dh, dg}) ∧ (F2, ∅).

Next, we select any in facet F2 to look for presidents with children.
In response, the system constructs the following interface:

I3 = (F1, {USpres}) ∧ (F3, {dh , dg}) ∧
(
(F2, {any})/(F3, ∅)

)
.

Interface I3 provides a nested BFI (F3, ∅), which allows us to se-
lect the university that children of US presidents attended. We pick
Stanford, and the system finally constructs Iex.

We next propose interface generation and update algorithms that
are ‘guided’ by the (explicit and implicit) information in O. Our
algorithms are based on the same principle: each element of the
initial interface (resp. each change in response to an action) must
be ‘justified’ by an entailment in O. In this way, by exploring the
ontology, we guide users in the formulation of meaningful queries.

There is an inherent degree of non-determinism in faceted navi-
gation: if a user selects a facet value, it is unclear whether the next
facet generated by the system should be conjunctive or disjunctive,
and whether it should be incorporated in the interface by means
of conjunctive or disjunctive branching. In applications, however,
different values in a facet are typically interpreted disjunctively,
whereas constraints imposed by different facets are interpreted con-
junctively. Thus, to resolve such ambiguities and devise fully de-
terministic algorithms, we focus on a restricted class of interfaces
where conjunctive facets and disjunctive branching are disallowed.

DEFINITION 23. A faceted interface I is simple if all facets oc-
curring in I are disjunctive, and it does not contain sub-interfaces
of the form (path1 ∨ path2).

5.1 The Ontology Facet Graph
We capture the facets that are relevant to an ontology O in what

we call a facet graph. The graph can be seen as a concise represen-
tation ofO, and our interface generation and update algorithms are
parameterised by such graph rather than by O itself.

The nodes of a facet graph are possible facet values (unary pred-
icates and constants), and edges are labelled with possible facet
names (binary predicates and type). The key property of a facet
graph is that every X-labelled edge (v, w) is justified by a rule or
fact entailed by O which ‘semantically relates’ v to w via X . We
distinguish three kinds of semantic relations: existential, where X
is a binary predicate and (each instance of) v must be X-related
to (an instance of) w in the models of O; universal, where (each
instance of) v is X-related only to (instances of) w in the models
of O; and typing where X = type, and (the constant) v is entailed
to be an instance of (the unary predicate) w.

DEFINITION 24. A facet graph forO is a directed labelled multi-
graphG having as nodes unary predicates or constants fromO and
s.t. each edge is labelled with a binary predicate from O or type.
Each edge e is justified by a fact or rule αe s.t. O |= αe and αe is
of the form given next, where c, d are constants, A,B unary predi-
cates and R a binary predicate:

(i) if e is c R−→ d, then αe is of the form

R(c, d) or R(c, y)→ y ≈ d;

(ii) if e is c R−→ A, then αe is a rule of the form

>(c)→ ∃y.[R(c, y) ∧A(y)] or R(c, y)→ A(y);

(iii) if e is A R−→ c, then αe is a rule of either of the form

A(x)→ R(x, c) or A(x) ∧R(x, y)→ y ≈ c;

(iv) if e is A R−→ B, then αe is a rule of the form

A(x)→ ∃y.[R(x, y) ∧B(y)] or A(x) ∧R(x, y)→ B(y);

(v) if e is c
type−−→ A, then αe = A(c).

Moreover, rangeG(R) denotes the set of nodes in G with an in-
coming R-labelled edge.

The first (resp. second) option for each αe in (i)-(iv) encodes the
existential (resp. universal)R-relation between nodes in e, whereas
(v) encodes typing. A graph may not contain all justifiable edges,
but rather those that are deemed relevant to the given application.

EXAMPLE 25. Recall our ontology in Example 1. A facet graph
may contain nodes for dbc (Bill Clinton) and dcc (Chelsea Clin-
ton), as well as for predicates such as USpres and Univ. Exam-
ple edges are: (i) a child-edge linking dbc to dcc, which is jus-
tified by the fact child(dbc, dcc); (ii) a citiz-edge from Person to
Country justified by Rule (4); and (iii) a grad-edge from dcc to
Univ since dcc graduated from Stanford and hence the ontology
entails Person(dcc)→ ∃y.(grad(dcc, y) ∧ Univ(y)).

It follows from the following proposition that facet graph compu-
tation can be efficiently implemented. In practice, the graph can be
precomputed when first loading data and ontology, stored in RDF,
and accessed using SPARQL queries. In this way, reasoning tasks
associated to faceted search are performed offline.

PROPOSITION 26. Checking whether a directed labelled multi-
graph is a facet graph for O is feasible in polynomial time if O is
in any of the OWL 2 profiles.

To realise the idea of ontology-guided faceted navigation, we re-
quire that interfaces conform to the facet graph, in the sense that the
presence of every facet and value in the interface is supported by a
graph edge. In this way, we ensure that interfaces mimic the struc-
ture of (and implicit information in) the ontology and the interface
does not contain irrelevant (combinations of) facets. Since a given
facet or value can occur in many different places in an interface, we
need a mechanism for unambiguously referring to each element in
the interface. To this end, we introduce an alternative representa-
tion of interfaces in the form of a tree. This representation will also
be instrumental to our notions of update in Section 5.3.

DEFINITION 27. The node-labelled tree tree(I) = (N,E, λ)
of a simple EFI I is recursively defined as follows.

(i) If I is an EBFI, then N = {ε}, E = ∅, and λ(ε) = I .
(ii) If I = (I0 ∧ I1) where tree(Ii) = (Ni, Ei, λi), then

N = {ε} ∪ {0w | w ∈ N0} ∪ {1w | w ∈ N1},
E = {(ε, 0), (ε, 1)} ∪ {(iu1, iu2) | (u1, u2) ∈ Ei}.

Furthermore, λ(w) = ε if w = ε, and λ(w) = λi(u) if w of
the form iu with i ∈ {0, 1}.

(iii) If I = (I0/I1), where tree(I1) = (N1, E1, λ1), then

N = {ε} ∪ {0w | w ∈ N1},
E = {(ε, 0)} ∪ {(0u1, 0u2) | (u1, u2) ∈ E1}.

Furthermore, λ(ε) = I0, and for each w ∈ N \ {ε} it holds
that λ(w) = λ1(u) where w = 0u.

A position in I is a pair (w, v) where w is a node in tree(I) with
label an EBFI (F,Σ) and v ∈ F |2 ∪ {focus}.

We can now define conformance of an interface to a facet graph.

DEFINITION 28. Let G be a facet graph for O and I a simple
EFI. Let (w1, v1) and (w2, v2) be distinct positions in I , where
λ(wi) in tree(I) is (Fi,Σi) and Fi|1 = Xi for i = 1, 2. Position
(w2, v2) is justified by (w1, v1) in G if w1 is the least ancestor
of w2 in tree(I) with λ(w1) 6= ε and one of the following holds:
(i) there is anX2-labelled edge from v1 to v2; or (ii) v1 = any and

Algorithm 3: CREATEINTERFACE

INPUT : A facet graph G = (V,E) forO, a set S of nodes in G
OUTPUT : A simple faceted interface

1 Υ = {w | v type−−→ w ∈ E and v ∈ S}
2 I = ((type,∨Υ), ∅)
3 for each R ∈ BP do
4 Γ,Υ′ := ∅
5 for each v ∈ S and v R−→ w ∈ E do
6 if w is a constant then Γ := Γ ∪ {w}
7 else Υ′ := Υ′ ∪ {w}
8 if Γ 6= ∅ then I := I ∧ ((R,∨(Γ ∪ {any})), ∅)
9 if Υ′ 6= ∅ then I := I ∧ ((R,∨(Υ′ ∪ {any})), ∅)

10 return I

there is an X2-labelled edge from some u ∈ rangeG(X1) to v2; or
(iii) v2 = any and v1 has an outgoing X2-edge; or (iv) v1 = v2 =
any and u has an outgoing X2-edge for some u ∈ rangeG(X1).

Interface I conforms to G if for each position (w, v) in I , one
of the following holds: (i) there is no ancestor w′ of w in tree(I)
with λ(w) 6= ε; or (ii) there is a position (w′, v′) in I s.t. λ(w′) is
(F ′,Σ′), v′ ∈ Σ′ and (w, v) is justified by (w′, v′) in G.

Intuitively, (w2, v2) is justified by (w1, v1) if there is an edge
from v1 to v2 labelled with the facet nameX2 of F2. This indicates
that there is an entailment in O that justifies the appearance of v2

given v1 and X2. Our definition, however, must also consider that
v1 can be any, which indicates that any value reachable by using the
facet name X1 of facet F1 can be used to justify v2. Analogously,
v2 can also be any, in which case it is enough to use v1 to justify
any value reachable by using the facet name X2.

5.2 Interface Generation
Algorithm 3 shows how a fresh interface can be generated from a

starting set mS of nodes in a facet graph G. The algorithm starts by
grouping all unary predicates categorising the constants in S in a
BFI (Lines 1-2). Then, for each binary predicateR and each v ∈ S,
the algorithm collects the nodes w with an incoming R-edge from
v and groups them in sets Γ and Υ′ depending on whether they
are constants or unary predicates (Lines 3-7). All constants in Γ
(resp. predicates in Υ′) are put together in a BFI with facet name
R, which is coupled to the interface using ∧-branching (Lines 8-9).

Algorithm 3 can be directly exploited to generate an initial inter-
face from a set of keywords. A faceted search backend would first
compute an initial set D of documents relevant to the keywords
(e.g., using a text search engine), and then generate an initial in-
terface by calling Algorithm 3 with input D and a facet graph for
O. The resulting interface I has no selected facet values or nested
facets, which reflects that I constitutes the starting point to naviga-
tion. Furthermore, I is conformant to the input graph G.

PROPOSITION 29. On input G and S, Algorithm 3 outputs a
simple interface that conforms to G.

5.3 Interface Update
The initial interface where no facet value has been yet selected

marks the start of the navigation process. User actions on an inter-
face can be seen as elementary ‘ticking’ and ‘unticking’ operations
on facet values that result in another interface. We define these ac-
tions by exploiting the tree representation of interfaces (c.f. Defini-
tion 27). We start with the ticking operation.

DEFINITION 30. The action TICK is applicable to a simple EFI
I , a position (w, v) in I , and a facet graph G for O under the
following preconditions: (i) v is not selected in λ(w) and (ii) if an
ancestor w′ of w in tree(I) is labelled with an EBFI (F ′,Σ′), then
Σ′ 6= ∅. The result is the interface computed by Algorithm 4.

Algorithm 4: TICK

INPUT : I, (w, v), and G as in Def. 30, with λ(w) = (F,Σ)
OUTPUT : A simple EFI

1 if v = focus then
2 Iout := remove all occurrences of focus in I , and then replace Σ

in λ(w) with Σ ∪ {focus}
3 else
4 I1 := replace Σ in I with Σ ∪ {v}
5 if v ∈ C ∪UP then I2 := CREATEINTERFACE(G, {v})
6 else I2 := CREATEINTERFACE(G, rangeG(F |1))
7 if w is a leaf in tree(I1) then
8 Iout := replace λ(w) in I1 with (λ(w)/I2)
9 else Iout := replace λ(w0) in I1 with (λ(w0) ∧ I2)

10 return Iout

Algorithm 5: UNTICK

INPUT : I, (w, v) and G as in Def. 32, with λ(w) = (F,Σ)
OUTPUT : A simple EFI

1 if v = focus then Iout := replace Σ in I with Σ \ {focus}
2 else
3 S := {(w′, v′) | (w′, v′) is uniquely justified by (w, v) in G,

λ(w′) = (F ′,Σ′) and v′ ∈ Σ}
4 for each (w′, v′) ∈ S do I := UNTICK(I, (w′, v′), G)
5 Iout := replace Σ in I with Σ \ {v}
6 λout := labelling function of tree(Iout)
7 for each node w′ in tree(Iout) do
8 (F ′,Σ′) := λout(w′)
9 if λout(w′′) = (F ′′, ∅) for some ancestor w′′ of w′ in tree(Iout)

then Iout := replace Σ′ in Iout with ∅
10 return Iout

Algorithm TICK starts by checking whether the value v is focus,
in which case it adds v to Σ and removes all other occurrences
of focus in I (Lines 1-2). Otherwise, it generates a fresh EFI I1
from I by adding v to Σ (Line 4), and constructs a new EFI I2
that collects all the values adjacent to v in G (Line 5). Notice that
if v = any, then the value v itself is not considered; instead, v is
replaced by the values in G with an incoming F |1-labelled edge.
Finally, Algorithm TICK includes in I1 the navigation alternatives
encoded in I2 by considering two cases. If w is a leaf in tree(I1),
then we incorporate I2 via nesting by replacing λ(w) in I1 with
(λ(w)/I2) (Line 7); otherwise,w has a nested childw0 in tree(I1),
in which case the navigation alternatives encoded in I2 are included
in w0 by replacing λ(w0) in I1 with (λ(w0) ∧ I2).

PROPOSITION 31. Assume that I , (w, v) and G are as in Def-
inition 30. If I conforms to G, then TICK(I, (w, v), G) is a simple
EFI that also conforms to G.

We next define the unticking operation. Intuitively, when untick-
ing a value v in a given position of an interface all values that were
justified by v (and only by v) should also be unticked. In particu-
lar, we say that (w2, v2) is uniquely justified by (w1, v1) in G if
(w2, v2) is justified by (w1, v1) in G and (w2, v2) is not justified
in G by any pair other than (w1, v1).

DEFINITION 32. The action UNTICK is applicable to a simple
EFI I , a position (w, v) in I and a facet graph G for an ontology
O, if v ∈ Σ with (F,Σ) the label of w in tree(I). The result is the
interface computed by Algorithm 5 .

Algorithm UNTICK considers two cases depending on what kind
of value v is unticked. If v is focus, then the value is simply unse-
lected (Line 1). Otherwise, not only Σ must be replaced in I with
Σ \ {v}, but also all the positions in I that are uniquely justified
by (w, v) have to be unticked (Lines 2-5). Unticking propagates
recursively along the tree of I since positions deeper down the tree
could ultimately be affected. Finally, the algorithm makes sure that
no selected value remains ‘disconnected’ with the rest (Lines 7-9).

PROPOSITION 33. Assume that I , (w, v) and G are as in Defi-
nition 32. If I conforms to G, then UNTICK(I, (w, v), G) is a sim-
ple EFI that also conforms to G.

5.4 Minimising Interfaces
An important issue in the design of faceted interfaces is to avoid

the overload of users with redundant facets or facet values. Intu-
itively, an (unselected) facet value v is redundant if selecting v ei-
ther leads to a ‘dead end’ (i.e., an empty set of answers) or it does
not have an effect on query answers. Then, a faceted interface is
minimal if none of its component BFIs contains redundant values.

DEFINITION 34. Let I be a simple EFI and G a facet graph
for O. Then I is minimal w.r.t. G if for each position (w, v) in I
s.t. TICK is applicable to I , (w, v) and G, the following holds:
(i) Q[TICK(I, (w, v), G)] has non empty answers w.r.t. O; and
(ii) the answers toQ[TICK(I, (w, v), G)] w.r.t.O are different from
the answers to Q[I] w.r.t. O.

Note that the transition from interface I0 to I1 in Example 22
involves a minimisation step. The BFI in I0 involving F5 is pruned
since ticking a value will either not affect the search results (if any
or dus is ticked) or yield an empty set of answers (if duk is ticked).

To avoid overwhelming users with irrelevant information, our
system minimises the output of Alg. 4 before showing it to the
user. Our system ‘runs’ each possible expansion of a EFI in the
background by calling the reasoning engine, and prunes all facet
values that do not change query answers, or make them empty.

6. IMPLEMENTATION AND TESTING
We have developed a faceted search platform providing the fol-

lowing main functionality: (i) computation of facet graphs from an
ontology; (ii) interface generation from facet graphs; and (iii) inter-
face update in response to user actions. Our platform relies on an
external triple store for querying and OWL reasoning.

In our implementation, facet graphs are represented in RDF: each
R-labelled edge from v to w is stored as a triple (v,R,w). A graph
G can be either loaded from an existing RDF document, or con-
structed from (the facts entailed by) the ontology O by adding ad-
ditional edges. The kinds of relevant additional edges are described
by means of customisable rules, and the edges themselves are com-
puted by materialisation of such rules. Furthermore, our platform
implements Algorithm 3 for generating interfaces, Algorithms 4
and 5 for interface update, and strategies for interface minimisa-
tion. Our algorithms can operate both under the assumption that
the facet graphG is explicitly materialised, or it is defined virtually
using rules and then generated ‘on the fly’ as needed.

We have implemented a proof-of-concept system, called SemFacet,
that bundles our platform with JRDFox3 as triple store, Lucene for
keyword search, and an HTML 5 GUI [21]. The system’s architec-
ture is given in Figure 2(c). Our system is available online.4

6.1 Performance Metrics
Performance of our platform critically depends on the follow-

ing parameters of the underlying triple store, which can be esti-
mated empirically by benchmarking the triple store over the dataset
of interest: (i) t[run query]: time to execute an atomic query; and
(ii) t[look up]: time to iterate over query results.

Interface generation (Algorithm 3) requires computing all triples
(v, w, u) in the facet graph G for each v in the input nodes S, and
then iterating over the results to compose the interface. Thus, to
estimate the cost of interface generation (tCI), we can use Alg. 6

3
www.cs.ox.ac.uk/isg/tools/RDFox/

4
http://www.cs.ox.ac.uk/isg/tools/SemFacet/

#(answers) JRDFox Stardog Sesame

100 0.000 0.010 0.011

1, 000 0.000 0.064 0.060

10, 000 0.002 0.521 0.294

100, 000 0.021 2.934 0.566

1, 000, 000 0.206 4.475 2.513

10, 000, 000 2.056 n/a n/a

(a) Average runtime in seconds for lookup in
a set of query answers

#(queries) JRDFox Stardog Sesame

1 0.000 0.007 0.012

10 0.000 0.188 0.233

100 0.004 2.414 0.630

1, 000 0.059 5.666 3.683

10, 000 0.498 15.025 26.126

100, 000 4.799 n/a n/a

(b) Average runtime in seconds for
processing a set of queries

Faceted Query
Interface

Answers as
Snippets

GUI

Platform

Data

Facet
Generator

Query
Converter

Snippet
Generator

Ontology:
Facts, RulesRDFox

Lucene

Keyword
Search

Invert. Index
on Ontology

(c) Architecture of our faceted search
system

Figure 2: Experimental results for JRDFox, Stardog, and Sesame

Algorithm 6: CREATEINTERFACEIMPLEMENTED

INPUT : G: facet graph; S: set of nodes in G
OUTPUT: A simple faceted interface

1 I := Empty interface
2 for each v ∈ S do
3 Triplesv := SELECT ?y,?z FROM G WHERE (v, ?y, ?z)
4 for each t ∈ Triplesv do I := COMPOSEINTERFACE(t, I)

instead of Alg. 3. We assume constant time for the call to COMPO-
SEINTERFACE. The cost can then be estimated as follows:

tCI = (|S| × t[run query]) + (#[answers]× t[look up]). (5)

In this expression, #[answers] is the union of all sets Triplesv for
each v ∈ S. In the worst-case, #[answers] is |G|, whereas in the
best-case it corresponds to |S|. For improved efficiency, our plat-
form implements a variation of Algorithm 6 where facets are com-
puted lazily: facet names are computed first, and values are com-
puted ‘on demand’ when users click on a facet. For this, we mod-
ify the query in Line 3 such that ?y is the only answer variable.
Then, #[answers] is estimated as follows, where the number of
facet names corresponds to the number of different edge labels in
G, and the number of facet values to the number of nodes:

#[answers]naive = O(#[facet names])×O(#[facet values]),
#[answers]lazy = O(#[facet names]).

The cost tCI in (5) can also be used to estimate the cost of interface
updates. The Algorithm for ticking (Sec. 5.3) can be seen as a vari-
ant of Alg. 6 with S the set of values relevant to the tick. In the case
of unticking, the worst-case cost is estimated as k× tCI, with k the
number of selected values in the interface. Indeed, k measures the
worst-case number of recursive calls to UNTICK (Alg. 5), whereas
tCI estimates the cost of a single recursive call.

6.2 Performance Estimations
To estimate the parameters t[run query] and t[look up], thus also

estimating the cost tCI of interface generation, we have conducted
experiments over a fragment of DBpedia enriched with OWL 2
RL rules and we have used JRDFox, Stardog (http://stardog.
com/) and Sesame (http://www.openrdf.org/). All experiments
were conducted on a MacBook Pro laptop with OS X 10.8.5, 2.4
GHz Intel Core i5 processor, and 8GB 1333 MHz DDR3 memory.
Since triple stores such as JRDFox operate in main memory, and
we wanted to test our algorithms on stock hardware, we considered
a fragment that covers 20% of DBpedia (3.5 million triples) and
which can be loaded using 8GB of RAM. Each experiment was
executed 100 times it total, and we measured average and median
running time for each experiment. Since results never differ in more
than 5% for a single experiment, we report only average times.

Results are summarised in Figures 2(a) and 2(b). Figure 2(a) es-
timates #[answers] × t[look up] by measuring time required to it-
erate over an answer set of a given size. In turn, Figure 2(b) esti-
mates |S| × t[run query] by computing the times required for the
triple store to answer a given number of atomic queries. We can

make the following observations: (i) The time needed to iterate
over query results is small in comparison to query execution times;
for example, to execute 10, 000 queries, JRDFox requires 0.498s,
whereas to iterate over 10, 000 answers it requires 0.002s. This
should be taken into account when optimising interface generation.
(ii) In some triple stores (i.e., Stardog and Sesame), iteration and
query answering times do not grow linearly, and they have to be de-
termined empirically. In contrast, JRDFox shows linear behaviour.

We first discuss query execution times. To generate the initial in-
terface, the size of S is determined by the number of relevant results
returned by the search engine from keywords. If the ranking algo-
rithm of the search engine produces high quality results, one can
establish a cap on S. As shown in Figure 2(b), obtaining a reason-
able cap is important since query execution is expensive. For ex-
ample with a cap of 1, 000 results in S, JRDFox would execute the
queries necessary for interface generation almost instantaneously.

Concerning iteration times over query results, JRDFox could
perform this task in 0.2s for 1 million results and 2s for 10 mil-
lion. We were not even able to conduct experiments with 10 million
answers over Stardog and Sesame since loading the data in our ma-
chine consumed all RAM and system behavior became unstable.
The facet graph for the whole of DBpedia contains 24 million facet
values and 1, 843 facet names [4]. JRDFox would require 5s in the
worst-case to iterate through that many values using the exhaustive
algorithm. When computing interfaces lazily, all triple stores would
complete the required iteration over facet names instantaneously.

7. RELATED WORK
The design of visual interfaces for querying ontologies has re-

ceived significant attention in recent years. Existing systems typi-
cally support query formulation by exploiting either a form of con-
trolled natural language (e.g., Quelo [22]), or different graphical
representations for queries (e.g., SEWASIE [23], iSPARQL [24],
OntoVQL [25], Wonder [26], or the OptiqueVQS [27], or other ap-
proaches, including interactive exploration of [28].

Faceted search over RDF has also attracted a great deal of at-
tention. Developed systems include mSpace [5], /facet [7], Piggy
Bank [8], Tabulator [2], gFacet [6], Humboldt [9], Parallax [10],
Longwell [29], faceted DBpedia [4], X-ENS [3], Broccoli [30], and
others [31–33]. The functionalities provided by these systems in-
clude navigation through different sets of documents, refocussing,
and interface minimisation via elimination of dead-ends.

These works are primarily systems-oriented and their main focus
is on improving user experience, development of ranking functions
and value grouping heuristics [11, 13], and backend optimisation
via indexing schemes [4, 34]. Our framework was inspired by the
capabilities of existing systems, and covers their main functionali-
ties. Since our aim was to study the fundamental properties of query
languages and update tasks, our framework abstracts from (and is
compatible with) usability, ranking, and indexing considerations.

The expressivity of the query languages supported by existing
systems is discussed in the literature mostly verbally, which makes
it difficult to determine the underpinning SPARQL fragment. Most
systems seem to support some form of conjunctive queries (e.g.,

see [11, 13]), and disjunction is present only in a limited form [3,
4]. The approach of [12] allows for conjunction, disjunction, and
other operators, e.g., negation, thus, they cover a wider fragment of
SPARQL than we do. At the same time, [12] is orthogonal to other
faceted search approaches for RDF, including ours: their facet val-
ues are possible queries rather than (set of) documents, and a selec-
tion of a facet value corresponds to a syntactic query transformation
rather than to setting a filter on a set of documents. Expressiveness
of this approach is determined by the expressiveness of queries that
are allowed to be used as facet values.

When query languages have not been formalised, the complexity
of query answering was not addressed. The common assumption is
that user selections in an interface are compiled in SPARQL [12] or
Prolog [7], and executed by a query evaluation engine over the un-
derlying RDF data. Complexity considerations are, however, criti-
cal when RDF data is enhanced with OWL 2 reasoning. This setting
was not addressed by existing systems, where ontological axioms
are limited to class and property hierarchies [7, 11], and reasoning
plays little or no role. Interface generation and update mechanisms
are mostly informally described. A common approach is to gen-
erate and update interfaces from the RDF data graphs. Since we
generate interfaces from facet graphs that subsume RDF datasets,
we see our approach as a generalisation of existing work. Finally,
scalability of faceted search systems over large RDF datasets is an
important concern [4, 34]. Since facet graphs can be much larger
than the underlying RDF datasets, scalability becomes even more
critical in our setting. Our experiments, however, suggest that our
approach is feasible in practice.

The works closest to ours are [11–13]. The query language in [13]
is formalised using CQs, whereas the language in [11] (also con-
junctive) is introduced via set operations. These works, however,
do not study the complexity of query answering, and ontological
reasoning is also not considered. We can also find notions of facet
trees and graphs in the literature [7, 11, 13, 29, 35]. These repre-
sent combinations of (possibly nested) facets displayed in a GUI
as a tree or a graph, and they depend on both search results and
front-end considerations. We see our notions of interface and facet
graph as GUI-independent generalisation of existing notions since
our graphs are derived from ontologies and independently from
search results. Finally, the ‘navigation graph’ of [12] defines nav-
igation links at the syntactic level as query transformations, rather
than semantic relations between sets and objects, as in our case.

8. CONCLUSION AND FUTURE WORK
In this paper, we have established theoretical foundations for

faceted search in the context of RDF and OWL 2. Our results sug-
gest many problems for future work, such as exploring extensions
of our update algorithms beyond simple interfaces. Concerning sys-
tem design, substantial work is needed to improve GUI design, es-
pecially with respect to refocussing. We are also planning to bench-
mark our platform on real-world applications.

9. REFERENCES
[1] D. Tunkelang. Faceted Search. Morgan & Claypool

Publishers, 2009.
[2] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey,

E. Prudhommeaux, and M. M. C. Schraefel. Tabulator
Redux: Browsing and Writing Linked Data. In: LDOW.
2008.

[3] P. Fafalios and Y. Tzitzikas. X-ENS: Semantic Enrichment
of Web Search Results at Real-Time. In: SIGIR. 2013.

[4] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson,
M. Bürgle, et al. Faceted Wikipedia Search. In: BIS. 2010.

[5] m.c. schraefel, D. A. Smith, A. Owens, A. Russell,
C. Harris, and M. L. Wilson. The Evolving mSpace
Platform: Leveraging the Semantic Web on the Trail of the
Memex. In: Hypertext. 2005.

[6] P. Heim, J. Ziegler, and S. Lohmann. gFacet: A Browser for
the Web of Data. In: IMC-SSW. 2008.

[7] M. Hildebrand, J. van Ossenbruggen, and L. Hardman.
/facet: A Browser for Heterogeneous Semantic Web
Repositories. In: ISWC. 2006.

[8] D. Huynh, S. Mazzocchi, and D. R. Karger. Piggy Bank:
Experience the Semantic Web Inside Your Web Browser.
In: J. Web Sem. 5.1 (2007).

[9] G. Kobilarov and I. Dickinson. Humboldt: Exploring
Linked Data. In: LDOW. 2008.

[10] D. F. Huynh and D. R. Karger. Parallax and Companion:
Set-based Browsing for the Data Web. 2013.

[11] E. Oren, R. Delbru, and S. Decker. Extending Faceted
Navigation for RDF Data. In: ISWC. 2006.

[12] S. Ferré and A. Hermann. Semantic Search: Reconciling
Expressive Querying and Exploratory Search. In: ISWC.
2011.

[13] A. Wagner, G. Ladwig, and T. Tran. Browsing-oriented
Semantic Faceted Search. In: DEXA. 2011.

[14] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz. OWL 2 Web Ontology Language Profiles. In:
W3C Recommendation (2009).

[15] W3C: SPARQL 1.1 Entailment Regimes.
www.w3.org/TR/sparql11-entailment/.

[16] M. Yannakakis. Algorithms for Acyclic Database Schemes.
In: VLDB. 1981.

[17] G. Stefanoni, B. Motik, and I. Horrocks. Introducing
Nominals to the Combined Query Answering Approaches
for EL. In: AAAI. 2013.

[18] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and
M. Zakharyaschev. The Combined Approach to
Ontology-Based Data Access. In: IJCAI. 2011.

[19] M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. Tractable
Queries for Lightweight Description Logics. In: IJCAI.
2013.

[20] S. Kikot, R. Kontchakov, and M. Zakharyaschev. On
(In)Tractability of OBDA with OWL 2 QL. In: DL. 2011.

[21] M. Arenas, B. Cuenca Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, and E. Jiménez-Ruiz. SemFacet:
Semantic Faceted Search over Yago. In: WWW. 2014.

[22] E. Franconi, P. Guagliardo, M. Trevisan, and S. Tessaris.
Quelo: an Ontology-Driven Query Interface. In: DL. 2011.

[23] D. Beneventano, S. Bergamaschi, F. Guerra, and
M. Vincini. The SEWASIE Network of Mediator Agents
for Semantic Search. In: J. UCS 13.12 (2007).

[24] iSPARQL QBE. http://dbpedia.org/isparql/.
[25] A. Fadhil and V. Haarslev. OntoVQL: A Graphical Query

Language for OWL Ontologies. In: DL. 2007.
[26] D. Calvanese, C. M. Keet, W. Nutt, M. Rodriguez-Muro,

and G. Stefanoni. Web-based Graphical Querying of
Databases Through an Ontology: the Wonder System. In:
SAC. 2010.

[27] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov,
D. Zheleznyakov, and I. Horrocks. OptiqueVQS: Towards
an Ontology-based Visual Query System for Big Data. In:
MEDES. 2013.

[28] N. Manolis and Y. Tzitzikas. Interactive Exploration of
Fuzzy RDF Knowledge Bases. In: ESWC (1). 2011.

[29] C. Veres, K. Johansen, and A. L. Opdahl. Browsing and
Visualizing Semantically Enriched Information Resources.
In: CISIS. 2010.

[30] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. Easy
Access to the Freebase Dataset. In: WWW. 2014.

[31] O. Suominen, K. Viljanen, and E. Hyvönen. User-Centric
Faceted Search for Semantic Portals. In: ESWC. 2007.

[32] P. Haase, D. M. Herzig, M. A. Musen, and T. Tran.
Semantic Wiki Search. In: ESWC. 2009.

[33] S. Buschbeck, A. Jameson, R. Troncy, H. Khrouf,
O. Suominen, and A. Spirescu. A Demonstrator for Parallel
Faceted Browsing. In: EKAW. 2012.

[34] H. Bast and B. Buchhold. An Index for Efficient Semantic
Full-Text Search. In: CIKM. 2013.

[35] P. Heim, T. Ertl, and J. Ziegler. Facet Graphs: Complex
Semantic Querying Made Easy. In: ESWC. 2010.

Enabling Faceted Search over OWL 2 with SemFacet?

Marcelo Arenas1, Bernardo Cuenca Grau2, Evgeny Kharlamov2,
Šarūnas Marciuška2, and Dmitriy Zheleznyakov2

1 Pontificia Universidad Católica de Chile; 2 University of Oxford

Abstract. Lots of applications nowadays rely on RDF, OWL 2, and SPARQL
1.1 for storing, publishing and querying data. However, SPARQL 1.1 is not tar-
geted towards end-users, and suitable query interfaces are needed. Faceted search
is a prominent approach to facilitate end-users query formulation which is widely
used in information systems. This approach was recently adapted to the context
of RDF, however, the proposed solutions lack rigorous theoretical underpinning
and essentially ignore OWL 2 axioms. We develop a clean theoretical framework
for faceted search that accounts for both RDF data and OWL 2 axioms. We im-
plemented and tested some of our solutions in the SemFacet platform.

1 Introduction
In the last decade we have witnessed a constant increase in the number of applica-
tions that store and publish data in RDF, in the of use OWL 2 ontologies for providing
background knowledge about the application domain and enriching query answers with
information not explicitly given in the data, and in the use of SPARQL 1.1 for query-
ing this data. It was acknowledged by many that writing SPARQL 1.1 queries requires
special training and is not well-suited for the majority of end users. Thus, an important
challenge is the development of simple yet powerful query-formulation interfaces that
capture well-defined fragments of SPARQL 1.1.

This challenge was acknowledged by the community, and a number of approaches
to facilitate query formulation over RDF and OWL 2 have been proposed in the last
decade. Proposed solutions rely on different query formulation paradigms and include
controlled natural language, e.g., [4–8], diagram based approaches, e.g., [9–15], faceted
search interfaces,e.g., [16–18], and others. In this work we focus on faceted search due
to its importance in Web bases information systems and intuitiveness to end users.

Faceted search is a prominent approach for querying document1 collections where
users can narrow down the search results by progressively applying filters, called fa-
cets [19]. A facet typically consists of a property (e.g., ‘gender’ or ‘occupation’ when
querying documents about people) and a set of possible string values (e.g., ‘female’ or
‘research’), and documents in the collection are annotated with property-value pairs.
During faceted search users iteratively select facet values, and the documents anno-
tated according to the selection are returned as the search result. Several authors have
proposed faceted search for querying document collections annotated with RDF, and a
number of RDF-based faceted search systems have been developed, e.g. [16–18, 20–
26]. Although there has been intensive efforts in system development, the theoretical
underpinnings received less attention [27–29].
? Work supported by the Royal Society, the EPSRC projects Score!, Exoda, and MaSI3, and the

FP7 project OPTIQUE [1–3] under the grant agreement 318338.
1 We use the term ‘document’ to refer to any resource that can be referenced using a URI.

In particular, it is unclear what fragments of SPARQL 1.1 can be naturally captured
using faceted search as a query paradigm, and what is the complexity of answering such
queries. Moreover, faceted search interfaces are typically generated and updated based
only on RDF data graphs. We see this as an important limitation as OWL 2 axioms are
essentially ignored by the existing solutions, thus overlooking that ontological axioms
can be used to enrich query answers with implicit information. Besides, these axioms
provide schema-level structure that can be exploited to improve faceted interfaces. Fi-
nally, purely RDF-based faceted search systems are data-centric, and hence cannot be
exploited to browse large ontologies or to pose meaningful queries at the schema level.

We address these limitations of existing solutions by formalising faceted interfaces
that are tailored towards RDF and OWL 2, and which capture the key functionality
implemented in existing faceted search systems. Our interfaces capture both the combi-
nation of facets displayed during search, and the facet values selected by users. In this
way, an interface encodes both a query, whose answers constitute the current search re-
sults, and the facet values available for further selection. Analogously to existing work
on RDF-based faceted search, and in contrast to traditional faceted search, our notion of
interface allows users to ‘navigate’ across interconnected collections of documents and
establish filters to each of them. Furthermore, it abstracts from considerations specific
to GUI design (e.g., facet and value ranking), while at the same time reflecting the core
functionality of existing systems. For faceted queries, i.e., queries that can be encoded
by faceted interfaces, we study the expressivity and complexity of evaluation over RDF
data enhanced with OWL 2 axioms. Finally, we study interface generation and update.
Existing techniques for RDF are based on exploration of the underlying RDF graph: by
generating facets according to the RDF graph, systems can guide users in the formula-
tion of ‘meaningful’ queries. We lift this approach by proposing a special graph-based
representation of OWL 2 ontologies and their logical entailments for the purpose of
faceted navigation. Further details on our techniques can be found in [30].

To put our ideas in practice we developed a faceted search platform, called Sem-
Facet (available for download and installation, and as a Web service [31, 32]), for gen-
erating and updating faceted interfaces. SemFacet relies on an external triple store with
OWL 2 reasoning capabilities, and it is compatible with faceted search GUIs and text
search engines for retrieving documents from keywords. For the demonstration purpose
we bundled SemFacet with the triple store JRDFox, the search engine Lucene, and our
own faceted search GUI. We have tested SemFacet over synthetic ontologies as well as
Yago [33] extended with DBpedia (dbpedia.org/) abstracts with encouraging results.

2 Preliminaries
We use standard notions from first-order logic. We assume pairwise disjoint infinite
sets of constants, unary predicates, and binary predicates. A fact is a ground atom and
a dataset is a finite set of facts. A rule is a sentence of the form ∀x∀z [ϕ(x, z) →
∃yψ(x,y)], where x, z, and y are pairwise disjoint tuples of variables, ϕ(x, z) is a
conjunction of atoms with variables in x ∪ z, and ∃yψ(x,y) is an existentially quanti-
fied non-empty conjunction of atoms ψ(x,y) with variables in x ∪ y. Universal quan-
tifiers are omitted. The restriction of ψ(x,y) being non-empty ensures satisfiability of
any set of rules and facts, which makes query results meaningful. A rule is Datalog if
∃yψ(x,y) has at most one atom and all variables are universally quantified. OWL 2
defines three profiles: RL, EL, and QL, weaker languages with favourable computa-
tional properties [34]. Every profile ontology can be normalised as a set of rules and

facts using the correspondence of OWL 2 axioms with first-order logic and a variant of
the structural transformation (e.g., see [35]). Thus, we define an ontology O as a finite
set of rules and facts. We refer to [30, 35] for the details of rules corresponding to the
OWL 2 profiles. A positive existential query (PEQ) is a formula that may have free
variables which is constructed using ∧, ∨ and ∃. A PEQ s monadic if it has one free
variable, and it is a conjunctive query (CQ) if it is ∨-free.

We consider two different semantics for query answering. Under the classical se-
mantics, given a query Q(x) = ∃yϕ(x,y), we have that a tuple t of constants is an
answer to Q(x) w.r.t. an ontology O if O |= ∃yϕ(t,y). Under the active domain se-
mantics, t is an answer to Q w.r.t. O if there is a tuple t′ of constants from O such
that O |= ϕ(t, t′). The evaluation problem under the classical (resp. active domain)
semantics is to decide, given a tuple of constants t, a PEQ Q and an ontology O in
a language L, whether t is an answer to Q w.r.t. O under the classical (resp. active
domain) semantics. The classical semantics is the default in first-order logic, whereas
active domain is the default semantics of the SPARQL 1.1 entailment regimes [36]. The
difference between both semantics manifests itself only in the presence of existentially
quantified rules and queries; thus, both semantics coincide if either the input ontology
is Datalog, or if all variables in the input query are free.

3 Faceted Interfaces
Our notion of faceted interface comes with a clean first-order logic semantics, and pro-
vides a rigorous foundation for faceted search over RDF graphs enhanced with OWL 2
ontologies. We start with an example based on an excerpt of from Yago [33]. Our goal
is to find presidents who graduated from St. Petersburg or Georgetown and have a child
who graduated from some university.

Example 1. The document dvp and dbc for Vladimir Putin and Bill Clinton are anno-
tated with the category ‘president’, and dvp is also annotated with ‘Russian’. Putin’s
daughter Yekaterina dyp and Clinton’s daughter Chelsea dcc are categorised as ‘per-
son’. The documents for St. Petersburg State Uni. dsp , Stanford Uni. ds , and George-
town Uni. dg are categorised under ‘university’. These annotations are given in RDF
and correspond to the following facts:

President(dvp), President(dbc), Russian(dvp), Person(dyp),
Person(dcc), Univ(dsp), Univ(ds), Univ(dg).

In RDF specific information about documents is represented using literals, e.g.,
Vladimir Putin’s date of birth is encoded as dateOfBirth(dvp , 1952-10-07). Most im-
portantly, documents are also annotated with other documents:

child(dvp , dyp), child(dbc , dcc), grad(dvp , dsp), grad(dbc , dg), grad(dcc , ds).
Moreover, Yago can be extended with ontological rules. Consider for example the

following rule that says that at least one child of each Russian president graduate from
some university, which is a reasonable assumption:

Russian(x) ∧ President(x) ∧ child(x, y)→ child(x, z) ∧ grad(z, w) ∧ Univ(w). (1)

Analogously to traditional faceted search, we represent a facet as a pair of a predi-
cate (or facet name) and a set of values. In the context of RDF, however, documents (and
not just strings) can be used to annotate other documents, and thus annotations form a
graph, rather than a tree. Consequently, facet values can be either document URIs or lit-
erals. Examples of facet names are the relations ‘grad’ and ‘dateOfBirth’, and example

values are documents such as ‘ds’ (Stanford) and literals such as ‘1952-10-07’. Selec-
tion of multiple values within a facet can be interpreted conjunctively or disjunctively,
and hence we distinguish between conjunctive and disjunctive facets. Furthermore, we
distinguish a special facet type, whose values are categories (i.e., unary predicates)
rather than specific documents or literals. Finally, a special value any denotes the set of
all values compatible with the facet name.
Definition 1. Let type and any be special symbols. A facet is a pair (X, ◦Γ), with
◦ ∈ {∧,∨}, Γ a non-empty set, and either

(i) X = type and Γ is a set of unary predicates, or
(ii) X is a binary predicate and Γ is a set that consists of any and either some con-

stants or some unary predicates.
A facet of the form (X,∧Γ) is conjunctive, and a facet of the form (X,∨Γ) is disjunc-
tive. In a facet F = (X, ◦Γ), X is the facet name, denoted by F |1, and Γ contains the
facet values and it is denoted by F |2.
Example 2. Consider the following facets: F1 = (type,∨{President,Univ}), F2 =
(child,∨{any, dyp , dcc}) and F3 = (grad,∨{any, dsp, dg, ds}). The disjunctive facet
F1 can be exploited to select the categories to which the relevant documents belong
(president or university). Facet F2 can be used to narrow down search results to those
individuals with children dyp or dcc ; furthermore, the value any can be used to state that
we are not looking for any specific child. F3 allows to select graduation places. ut

3.1 The Notion of Faceted Interface
Our faceted interfaces encode both a query (whose answers determine the search re-
sults) and the choices of facet values available for further refinement.

Definition 2. A basic faceted interface (BFI) is a pair (F,Σ), with F a facet and Σ ⊆
F |2 the set of selected values. The set of faceted interfaces (or interfaces, for short) is
given by the following grammar, where I0 and I1 = (F,Σ) are BFIs and F |1 ∈ BP:

I ::= path | (path ∧ path) | (path ∨ path), path ::= I0 | (I1/I).

A BFI encodes user choices for a specific facet, e.g., the BFI (F1, {President}) se-
lects the documents categorised as presidents. BFIs are put together in paths: sequences
of nested facets that capture navigation between sets of documents. Documents are an-
notated with other documents by means of binary relations (e.g., child connects parents
to their children); thus, nesting (I1/I) requires the BFI I1 to have a binary relation as
facet name. With nesting we can capture queries such as ‘people with a child who grad-
uated from Stanford’ by using the interface (F2, {any})/(F3, {ds}) which first selects
people having (any) children and then those children with a Stanford degree. Finally,
two types of branching can be applied: (path1∧path2) indicates that search results must
satisfy the conditions specified by both path1 and path2, while (path1∨path2) indicates
that they must satisfy those in path1 or path2.

Example 3. Consider the interface Iex:
(
(F1, {President}) ∧ (F3, {dsp , dg})

)
∧
(
(F2, {any})/(F3, {any})

)
.

It could be visualises it in our system SemFacet as in Figure 1, left. The interface
consists of three paths connected by ∧-branching. In the first path, we select documents

http://en.wikipedia.org/wiki/Bill_Clinton
William Jefferson "Bill" Clinton (born William
Jefferson Blythe III; August 19, 1946) is an American
politician who served as the 42nd President of the
United States from 1993 to 2001. Inaugurated at age
46, he was the third-youngest president. He took
office at the end of the Cold War ...

has child
ANY

type

university
president

More Focus

More Focus

is graduated from
More Focus

is graduated from
More Focus

Remove

Remove

Remove

Remove

ANY

Searchpoliticians

St. Petersburg Uni.

http://en.wikipedia.org/wiki/Vladimir_Putin
Vladimir Vladimirovich Putin, born 7 October 1952,
has been the President of Russia since 7 May
2012. He previously served as President from 2000
to 2008, and as Prime Minister of Russia from 1999
to 2000 and again from 2008 to 2012. During his
last term as Prime Minister, he was also the ...

ANY

Yekaterina Putina
Chelsea Clinton

Georgetown Uni.
Stanford Uni.

St. Petersburg Uni.
Georgetown Uni.
Stanford Uni.

http://en.wikipedia.org/wiki/Bill_Clinton
William Jefferson "Bill" Clinton (born William
Jefferson Blythe III; August 19, 1946) is an American
politician who served as the 42nd President of the
United States from 1993 to 2001. Inaugurated at age
46, he was the third-youngest president. He took
office at the end of the Cold War ...

has child
ANY

type

university
president

More Focus

More Focus

is graduated from

Stanford Uni.

More Focus

is graduated from
More Focus

Remove

Remove

Remove

Remove

ANY

Searchpoliticians

St. Petersburg Uni.

http://en.wikipedia.org/wiki/Vladimir_Putin
Vladimir Vladimirovich Putin, born 7 October 1952,
has been the President of Russia since 7 May
2012. He previously served as President from 2000
to 2008, and as Prime Minister of Russia from 1999
to 2000 and again from 2008 to 2012. During his
last term as Prime Minister, he was also the ...

ANY

Yekaterina Putina
Chelsea Clinton

Georgetown Uni.

has child
ANY

type

university
president

More Focus

More Focus

is graduated from

Stanford Uni.

More Focus

is graduated from
More Focus

Remove

Remove

Remove

Remove

ANY

Searchpoliticians

St. Petersburg Uni.

ANY

Yekaterina Putina
Chelsea Clinton

Georgetown Uni.

http://en.wikipedia.org/wiki/Chelsea_Clinton
Chelsea Victoria Clinton (born February 27, 1980)
is the only child of former U.S. President Bill
Clinton and former U.S. Secretary of State Hillary
Rodham Clinton. She is a special correspondent
for NBC News, and works with the Clinton
Foundation and Clinton Global Initiative...

Fig. 1. Example interfaces implemented in SemFacet platform. Left: without minimisation; Cen-
ter: after minimisation is applied; Right: minimised and refocussed.

categorised as ‘president’. In the second path, we select graduates of St. Petersburg
or Georgetown. In the third path, we first select individuals with a child who have
some degree. Since paths are combined conjunctively, the constraints encoded in them
apply simultaneously. Thus, we obtain the presidents who graduated from either St.
Petersburg or Georgetown and who have a child graduated from some Uni. ut

We formally specify the semantics of the queries encoded by the selected values in
an interface in terms of first-order logic, see [30] for details. Intuitively, Our semantics
assigns to each interface a PEQ with one free variable, which retrieves a set of docu-
ments. For each facet F we have that no restriction is imposed by F if no facet value is
selected. BFIs with a type-facet are interpreted as the conjunction (disjunction) of unary
atoms over the same variable. BFIs having as facet name a binary predicate result in ei-
ther an atom whose second argument is existentially quantified (if any is selected), or in
a conjunction (disjunction) of binary atoms having a variable as second argument that
must be equal to a constant or belong to a unary predicate. Branching (path1 ◦ path2)
with ◦ ∈ {∧,∨} is interpreted in the natural way by constructing the conjunction (dis-
junction) of the queries for each pathi; furthermore, if for some pathi we have that no
value from the facets occurring in pathi is selected, then pathi is ignored. Finally, nest-
ing involves a “shift” of variable from the parent BFI to the nested subexpression. A
first order formula ϕ is a faceted query if there exists a faceted interface I such that ϕ
is are identical modulo renaming of variables to the semantics of I
Example 4. Our example interface Iex encodes the positive existential query Qex(x):

President(x) ∧
(
∃y1

(
grad(x, y1) ∧ y1 ≈ dsp

)
∨ ∃y2

(
grad(x, y2) ∧ y2 ≈ dg

))

∧∃z
(
child(x, z) ∧ grad(z, w).

If we consider only facts, the answer is Bill, since we do not know whether Yekaterina
graduated from some university. If we also consider Rule (1), then both Vladimir and
Bill are answers, since it says that one of the Vladimir’s children has a degree. ut

Note that our notion of interface abstracts from several considerations that are criti-
cal to GUI design. For instance, our notion is insensitive to the order of BFIs composed
by ∧- or ∨- branching, as well as to the order of facet values (which are carefully

ranked in practice). Furthermore, we model type-facet values as ‘flat’, whereas in ap-
plications categories are organised hierarchically. Although these issues are important
from a front-end perspective, they are immaterial to our technical results.
Minimisation of Faceted Interfaces. An important issue in the design of faceted inter-
faces is to avoid the overload of users with redundant facets or facet values. Intuitively,
an (unselected) facet value v is redundant if selecting v either leads to a ‘dead end’
(i.e., an empty set of answers) or it does not have an effect on query answers. Then, a
faceted interface is minimal if none of its component BFIs contains redundant values.
In [30] we provide interface minimisation algorithms. In Figure 1, center, we present a
minimised version of the interface in Figure 1, left.
Faceted Interfaces with Refocussing. The interface in Example 3 finds two presidents.
If we want to know who their children who guaranteed that these presidents returned
by the query, (i.e., see Chelsea Clinton as an answer), we must provide refocussing
(or pivoting) functionality [25, 26] that allows to change the output variable of faceted
queries. In [30] we provide and extension of faceted interfaces to support refocussing.
In Figure 1, right, we have a screenshot of SemFacet where the refocusing is set to the
children and Chelsea is returned by the system. Note that Yekaterina is not in the answer
set since we do not know whether she is the child of Vladimir with a degree.

3.2 Answering Faceted Queries
Each time a user selects a facet value to refine the search results, a faceted search sys-
tem must compute the answers to a query. Thus, query evaluation is a key reasoning
problem affecting efficiency of such systems. As discussed above, faceted queries are
monadic PEQs resulting from the selection of facet values in an interface. By standard
results for relational databases, PEQ evaluation is an NP-hard problem, even for CQs
over datasets. Our main result is that, in contrast to PEQs (and even CQs), faceted query
evaluation over datasets is tractable, feasible in polynomial time; furthermore, the prob-
lem remains tractable in most cases if we consider ontologies belonging to the OWL 2
profiles. Our tractability results concern combined complexity, which takes into account
the size of the entire input: ontological rules, RDF data and queries.

Active Domain Semantics. In practice, queries over ontology-enhanced RDF data are
typically represented in SPARQL 1.1 and executed using off-the-shelf reasoning en-
gines with SPARQL 1.1 support. The specification of SPARQL 1.1 under entailment
regimes [36] is based on active domain semantics, which requires existentially quanti-
fied variables in the query Q to map to actual constants in the input ontology O. In this
case, we can answer queries by first computing the dataset D of all facts entailed by O
and then answers Q w.r.t. the dataset D. Fact entailment is tractable for all the OWL
2 profiles; thus, by committing to the active domain semantics of SPARQL 1.1 we can
achieve tractability without emasculating the ontology language.

Theorem 1. Active domain evaluation of faceted queries is in PTIME w.r.t. all norma-
tive OWL 2 profiles. Furthermore, it is PTIME-complete w.r.t. the EL and RL profiles.

Classical Semantics. Classical and active domain semantics coincide if we restrict our-
selves to Datalog ontologies. Thus, the above result holds for query answering under
classical semantics if the input ontology is Datalog. An immediate consequence is that
our results in Theorem 1 transfer to OWL 2 RL ontologies under classical semantics.

In contrast to RL, the EL and QL profiles can capture existentially quantified knowl-
edge and hence active domain and classical semantics may diverge for queries with ex-
istentially quantified variables. To deal with EL, we exploit techniques developed for the
combined approach to query answering [37, 38]. These techniques are currently appli-
cable to so-called guarded EL ontologies. The idea is to rewrite (EL) rules into Datalog
by Skolemising existential variables. Although this transformation strengthens the on-
tology, it preserves the entailment of facts [37]. We showed [30] that the evaluation of
faceted queries is also preserved. Thus, we conclude tractability of faceted query eval-
uation for EL. In contrast, we can show that faceted query evaluation is NP-complete
for QL under classical semantics. The following theorem summarises our results.
Theorem 2. Faceted query evaluation under classical semantics is (i) PTIME-complete
for RL and guarded EL ontologies; and (ii) NP-complete for QL ontologies.

In [30] we showed that theorems above hold for faceted queries with refocussing.

4 Interface Generation and Update
Faceted navigation is an interactive process. Starting with an initial interface generated
from a keyword search, users ‘tick’ or ‘untick’ facet values and the system reacts by
updating both search results (query answers) and facets available for further navigation.
We propose to generate and update interfaces by ‘traversing’ the (explicit and implicit)
information in O. Our approach is based on a general principle: each element of the
initial interface (resp. each change in an interface as a response of an action) must be
‘justified’ by a suitable entailment in O. In this way, by exploring the ontology, we can
guide users in the formulation of meaningful queries.

There is an inherent degree of non-determinism in faceted navigation: if a user se-
lects a facet value, it is unclear whether the next facet generated by the system should
be conjunctive or disjunctive, and whether it should be incorporated in the interface
by means of conjunctive or disjunctive branching. In applications, however, different
values in a facet are typically interpreted disjunctively, whereas constraints imposed by
different facets are interpreted conjunctively. In [30] we resolve this ambiguities and
devise fully deterministic algorithms for a restricted class of interfaces where conjunc-
tive facets and disjunctive branching are disallowed. Example of such an interface is in
Example 3 and in the screenshots in Figure 1.

The Ontology Facet Graph. We capture facets relevant to an ontology O in what we
call a facet graph. The graph can be seen as a concise representation of O, and our
interface generation and update algorithms are parameterised by such graph rather than
O. The nodes of a facet graph are possible facet values (unary predicates and constants),
and edges are labelled with possible facet names (binary predicates and type). The key
property of a facet graph is that every X-labelled edge (v, w) is justified by a rule or
fact entailed byO which ‘semantically relates’ v tow viaX . We distinguish three kinds
of semantic relations: existential, where X is a binary predicate and (each instance of)
v must be X-related to (an instance of) w in the models of O; universal, where (each
instance of) v isX-related only to (instances of)w in the models ofO; and typing where
X = type, and (the constant) v is entailed to be an instance of (the unary predicate) w.

Definition 3. A facet graph for O is a directed labelled multigraph G having as nodes
unary predicates or constants from O and s.t. each edge is labelled with a binary pred-
icate from O or type, where the latter labels only edges from a constant to a unary

predicate. Each edge e is justified by a fact or rule αe s.t.O |= αe and αe is of the form
given next, where c, d are constants, A,B unary predicates and R a binary predicate:

(i) if e is c R−→ d, then αe is of the form R(c, d) or R(c, y)→ y ≈ d;

(ii) if e is c R−→ A, then αe is a rule of the form >(c) → ∃y.[R(c, y) ∧ A(y)] or
R(c, y)→ A(y);

(iii) if e is A R−→ c, then αe is a rule of either of the form A(x) → R(x, c) or A(x) ∧
R(x, y)→ y ≈ c;

(iv) if e is A R−→ B, then αe is a rule of the form A(x) → ∃y.[R(x, y) ∧ B(y)] or
A(x) ∧R(x, y)→ B(y);

(v) if e is c
type−−→ A, then αe = A(c).

The first (resp. second) option for each αe in (i)-(iv) encodes the existential (resp.
universal) R-relation between nodes in e, whereas (v) encodes typing. A graph may not
contain all justifiable edges, but rather those that needed for a given application.

Example 5. A facet graph for the ontology in Example 1 may contain nodes for dbc and
dcc, as well as for predicates such as President and Univ. Example edges are: a child-
edge linking dbc to dcc, which is justified by the fact child(dbc, dcc); and a grad-edge
from dvp to Univ due to Rule (1) in Example 1 and the facts about dvp. ut

It follows from the following proposition that facet graph computation can be ef-
ficiently implemented. In practice, the graph can be precomputed when first loading
data and ontology, stored in RDF, and accessed using SPARQL 1.1 queries. In this way,
reasoning tasks associated to faceted search are performed offline.

Proposition 1. Checking whether a directed labelled multigraph is a facet graph forO
is feasible in polynomial time if O is in any of the OWL 2 profiles.

To realise the idea of ontology-guided faceted navigation, we require that any faceted
interface over an ontology O conforms to the facet graph of O , in the sense that the
presence of every facet and value in the interface is supported by edges of the graph. In
this way, we can ensure that interfaces mimic the structure of (and implicit information
in) the ontology and, hence, that the interface does not contain irrelevant (combinations
of) facets. Since a given facet or facet value can occur in many different places in an in-
terface, we need a mechanism that allows us to refer to the elements of an interface in an
unambiguous way. We refer to [30] for a formal definition of conformance. In [30] we
also provide algorithms that by relying on facet graphs allow to create faceted interfaces
(conformant to the graph), e.g., from sets of keywords, and to update such interfaces as
a reaction on users actions, i.e., ‘ticking’ and ‘unticking’ operations on facet values.

5 SemFacet Platform
We have developed a faceted search platform SemFacet providing the following main
functionality: (i) computation of facet graphs from an ontology; (ii) interface generation
from facet graphs; and (iii) interface update in response to user actions. Our platform
relies on an external triple store for querying and OWL reasoning.

We bundled the platform in a prototypical system which powers faceted search over
a fragment of Yago RDF data [33] enriched with DBPedia abstracts and OWL 2 RL Our
system is available for downloading and installation, as well as a Web service [31]. In
the remainder of this section, we will describe the system’s workflow and architecture
and present the results of SemFacet evaluation over both Yago and synthetic data.

Start SemFacet search

User enters keywords

Lucene returns relevant docs

Initial FI is generated Snippets are generated

Snippets and initial FI are displayed

Facet value (un)selected

FI is updated Snippets are updated

FI and snippets are displayed

End SemFacet search

Faceted Query
Interface

Answers as
Snippets GUI

Platform

Data

Facet
Generator

Query
Converter

Snippet
Generator

Ontology:
Facts, RulesRDFox

Lucene

Keyword
Based Search

Inverted Index
on Ontology

Fig. 2. Left: workflow of SemFacet, Right: architecture of SemFacet

5.1 System Architecture and Implementation
If Figure 2, left, we present the workflow diagram for SemFacet. The steps relevant
to users’ activity are depicted in ovals, and those relevant to SemFacet’s activity are
depicted as boxes. Grey boxes represent front-end activity and the remaining ones rep-
resent back-end tasks. Users start their interaction with SemFacet by entering a set of
keywords, and the system returns as initial answers those documents that are relevant to
the keywords; e.g., in Yago we considered as relevant those document URIs whose ab-
stract contains at least one of the keywords. SemFacet displays the answers as snippets,
combining the relevant URIs with the corresponding images and abstracts. The initial
faceted interface is generated from the relevant URIs. Users can then perform faceted
navigation by applying actions on the interface. SemFacet responds to each action by
first updating the interface and then recomputing the query answers. Observe that in
Figure 1 we nest facets to visualise the / operator and users can perform refocusing by
clicking on the button ‘focus’ attached to facets.

The architecture of SemFacet is in Figure 2, right, where the components are ar-
ranged in three layers. SemFacet relies on RDFox [39]2 for storing RDF triples, and
computing answers for SPARQL 1.1 queries. SemFacet converts faceted interfaces in
SPARQL 1.1 queries and executes them using RDFox. Note that RDFox supports only
conjunctive queries; thus, to answer faceted queries, we extended its query module with
a support of UNION. To support keyword search, we load DBpedia abstracts in Lucene
(lucene.apache.org/). Note that the implementation of SemFacet allows to substitute
both Lucene an RDFox with any other software that provide the same functionality.

5.2 Experiments
We evaluated only the back-end of SemFacet (c.f. Figure 2), left. We excluded front-end
activities since they highly depend on the client machine and network connection. In our
experiments we evaluated the runtime performance to compute answer URIs and their
associated snippet, as well as to update the interface. Our system presents ten snippets
at time, thus, snippet generation time is negligible. Since we use Lucene as a black box,
Lucene-related experiments are out of the scope of this paper.

Experimental Setup To evaluate the runtime performance of SemFacet, we used a Mac-
Book Pro laptop with OS X 10.8.5, 2.4 GHz Intel Core i5 processor, and 8GB 1333

2 RDFox is a parallel in-memory RDF triple store; it implements reasoning for OWL 2 RL; it
materialises all implicit data via forward chaining and evaluates CQs over the materialisation.

of queries Avg time

10 0.0001 s
100 0.0181 s
1000 0.1449 s
10,000 1.1676 s
100,000 30.8467 s

(a) RDFox query time performance

of facets Avg time

1 0.0015 s
10 0.0122 s
100 0.0537 s
1000 0.3724 s
10,000 3.2964 s

(b) Interface construction run time

of values Avg time

1 0.005 s
10 0.0263 s
100 0.1054 s
1000 0.4573 s
10,000 3.3762 s

(c) Interface construction run time

of values Avg time

10 0.0027 s
100 0.0317 s
1000 0.1869 s
10,000 1.3101 s
100,000 22.6759 s

(d) Facet value hiding time

of answers # of facets total # of values Avg time

10 10 90 0.4918 s
100 15 727 0.5581 s
1000 21 6538 0.8616 s
10,000 28 51317 3.5472 s

(e) SemFacet time on the real data: Yago and DBpedia

Table 1. Experiment results for SemFacet

MHz DDR3 memory. The laptop runs the Apache Tomcat 7.0, with 4 GB of allocated
memory. Each experiment presented in the following section was executed over 10 dif-
ferent runs to avoid cashing of objects. Each run was repeated 10 times in a FOR-loop
to obtain a bigger sample size. Therefore, each experiment, having different parame-
ters, was executed 100 times it total. We report average and median of running time
performance results for each experiment.

Generation of Initial Interface SemFacet computes the initial interface by (i) gathering
relevant facet names and values, and (ii) combining these in an interface.To perform
Step (i), SemFacet sends to RDFox one atomic query for each relevant URI. Thus, to
evaluate Step (i), we sent from 10 to 100,000 atomic queries to RDFox and measured re-
sponse time. For this, we generated atomic queries and synthetic data containing exactly
one answer per query Note that due to the RDFox indexing, evaluation time of atomic
queries is constant regardless data size. The results are presented in Table 1a. Times
are promising for up to 1,000 atomic queries (0.14 s), which corresponds to a keyword
search that returns 1000 URIs; for 10, 000 queries, average runtime increases to 1.16s
and for 100, 000 queries to 30.8s. Thus, one may need to restrict the number of URIs
returned by Lucene to guarantee reasonable response time for interface construction; in
our online version of SemFacet, the output of Lucene is restricted to 10,000 URIs.

To evaluate Step (ii), we conducted two sets of experiments. In the first experiment
we fixed the number of facets to 10 and increased the number of values in each facet
from 1 to 10,000. In the second, we fixed the number of values per facet to 10 and
increased the number of facets from 1 to 10,000. Results are presented in Tables 1b
and 1c. Generation times for up to 1000 facets having 10 values each is promising (0.37
s). Generation times for 10,000 facets having 10 values each is increased to 3.3s on aver-
age. Moreover, the interface construction time is similar for n facets withm values each
or form facets with n values each. Note that the time in Tables 1b and 1c grows linearly.

Faceted Interface Update The experiments required to evaluate update of faceted in-
terfaces are the same as those described for the generation of the initial interface [30].
Hence, we focus here on interface minimisation. We have evaluated our minimisation
algorithm by generating faceted interfaces of growing sizes from 10 to 100,000 total
facet values. Since RDFox performs reasoning by first materialising implicit data (a
step performed only once) and then answering queries over the materialisation, we did
not use an ontology in our experiments, and relied on synthetic RDF data. Results are

presented in Table 1d: the time to minimise 1000 values is promising (0.18s), and grows
linearly upto 100,000 values (22.6s).

Experiments with Real Data Previous experiments were conducted to evaluate particu-
lar components of SemFacet in isolation. To evaluate the overall performance, we tested
the system’s running time on a fragment of Yago data enriched with DBpedia (dbpedia.
org/) abstracts and OWL 2 RL axioms (around 5 million RDF triples in total). To mimic
a real world scenario, we selected keywords that return from 10 to 10,000 answers. We
measured the number of facets, the total number of values, and the response time of
the system. The results of the experiments are presented in Table 1d: the time to obtain
1000 answers and to generate the corresponding interface is promising (0.86 s), and
grows to 3.5 s for 10,000 answers. About one third of this time is spent by Lucene, one
third by RDFox, and one third by the interface construction component of SemFacet.

6 Conclusion and Future Work
We presented a solid theoretical foundations for faceted search in the context of RDF
and OWL. We have analysed the expressive power and complexity of queries stemming
from faceted interfaces, and developed practical faceted navigation algorithms. Our re-
sults suggest many interesting problems for future work. In particular, we will explore
extensions of our navigation algorithms beyond simple interfaces, as well as the design
of more scalable interface minimisation algorithms. Concerning system design, sub-
stantial work is needed to improve GUI design, in particular with respect to advanced
features such as refocusing. Finally, we are planning to conduct further experiments
with knowledge bases other than Yago and perform user studies.

7 References
[1] E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjæveland, A. Soylu, et al. Optique 1.0:

Semantic Access to Big Data: The Case of Norwegian Petroleum Directorate’s FactPages.
In: ISWC (Posters & Demos). 2013.

[2] E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas, M. Giese, et al. Optique:
Towards OBDA Systems for Industry. In: ESWC (Satellite Events). 2013.

[3] E. Kharlamov, N. Solomakhina, O. Ozcep, D. Zheleznyakov, T. Hubauer, et al. How Se-
mantic Technologies can Enhance Data Access at Siemens Energy. In: ISWC. 2014.

[4] E. Kaufmann and A. Bernstein. Evaluating the usability of natural language query lan-
guages and interfaces to Semantic Web knowledge bases. In: J. Web Sem. 8.4 (2010).

[5] A. Bernstein, E. Kaufmann, A. Göhring, and C. Kiefer. Querying Ontologies: A Con-
trolled English Interface for End-Users. In: ISWC. 2005.

[6] E. Franconi, P. Guagliardo, M. Trevisan, and S. Tessaris. Quelo: an Ontology-Driven
Query Interface. In: DL. 2011.

[7] U. Waltinger, D. Tecuci, M. Olteanu, V. Mocanu, and S. Sullivan. Natural Language Ac-
cess to Enterprise Data. In: AI Magazine 35.1 (2014).

[8] Protege. http://protege.stanford.edu.
[9] A. Soylu, M. G. Skjæveland, M. Giese, I. Horrocks, E. Jiménez-Ruiz, et al. A Preliminary

Approach on Ontology-Based Visual Query Formulation for Big Data. In: MTSR. 2013.
[10] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, and I. Horrocks.

OptiqueVQS: towards an ontology-based visual query system for big data. In: MEDES.
2013.

[11] D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. The SEWASIE Network of
Mediator Agents for Semantic Search. In: 13.12 (Dec. 1, 2007). http://www.jucs.org/
jucs_13_12/the_sewasie_network_of.

[12] A. Fadhil and V. Haarslev. OntoVQL: A Graphical Query Language for OWL Ontologies.
In: DL. 2007.

[13] iSPARQL QBE. http://dbpedia.org/isparql/.
[14] D. Calvanese, C. M. Keet, W. Nutt, M. Rodriguez-Muro, and G. Stefanoni. Web-based

graphical querying of databases through an ontology: the Wonder system. In: SAC. 2010.
[15] A. Russell and P. R. Smart. NITELIGHT: A Graphical Editor for SPARQL Queries. In:

ISWC (Posters & Demos). 2008.
[16] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Prudhommeaux, and M. M. C.

Schraefel. Tabulator Redux: Browsing and Writing Linked Data. In: LDOW. 2008.
[17] P. Fafalios and Y. Tzitzikas. X-ENS: Semantic Enrichment of Web Search Results at Real-

Time. In: SIGIR. 2013.
[18] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, et al. Faceted Wikipedia Search.

In: BIS. 2010.
[19] D. Tunkelang. Faceted Search. Morgan & Claypool Publishers, 2009.
[20] E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator: Combining View- and Ontology-

Based Search with Semantic Browsing. In: XML Finland. 2003.
[21] m.c. schraefel, D. A. Smith, A. Owens, A. Russell, C. Harris, and M. L. Wilson. The

Evolving mSpace Platform: Leveraging the Semantic Web on the Trail of the Memex. In:
Hypertext. 2005.

[22] P. Heim, J. Ziegler, and S. Lohmann. gFacet: A Browser for the Web of Data. In: IMC-
SSW. Vol. 417. 2008.

[23] M. Hildebrand, J. van Ossenbruggen, and L. Hardman. /facet: A Browser for Heteroge-
neous Semantic Web Repositories. In: ISWC. 2006.

[24] D. Huynh, S. Mazzocchi, and D. R. Karger. Piggy Bank: Experience the Semantic Web
Inside Your Web Browser. In: J. Web Sem. 5.1 (2007).

[25] G. Kobilarov and I. Dickinson. Humboldt: Exploring Linked Data. In: LDOW. 2008.
[26] D. F. Huynh and D. R. Karger. Parallax and Companion: Set-based Browsing for the Data

Web. 2013.
[27] E. Oren, R. Delbru, and S. Decker. Extending Faceted Navigation for RDF Data. In: ISWC.

2006.
[28] S. Ferré and A. Hermann. Semantic Search: Reconciling Expressive Querying and Ex-

ploratory Search. In: ISWC. 2011.
[29] A. Wagner, G. Ladwig, and T. Tran. Browsing-oriented Semantic Faceted Search. In:

DEXA. 2011.
[30] M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska, and D. Zheleznyakov. Faceted Search

over Ontology-Enhanced RDF Data. In: CIKM. 2014.
[31] SemFacet. http://www.cs.ox.ac.uk/isg/tools/SemFacet/.
[32] B. C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov, M. Arenas, and E. Jimenez-

Ruiz. SemFacet: Semantic Faceted Search over Yago. In: WWW Demo. 2014.
[33] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowledge. In:

WWW. 2007.
[34] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web

Ontology Language Profiles. In: W3C Recommendation (2009).
[35] B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description Logics.

In: J. Artif. Int. Res. (2009).
[36] W3C: SPARQL 1.1 Entailment Regimes. www.w3.org/TR/sparql11-entailment/.
[37] G. Stefanoni, B. Motik, and I. Horrocks. Introducing Nominals to the Combined Query

Answering Approaches for EL. In: AAAI. 2013.
[38] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The Combined

Approach to Ontology-Based Data Access. In: IJCAI. 2011.
[39] RDFox. www.cs.ox.ac.uk/isg/tools/RDFox/.

On Faceted Search over Knowledge Bases (Abstract)

Bernardo Cuenca Grau1, Evgeny Kharlamov1, Dmitriy Zheleznyakov1,
Marcelo Arenas2, and Šarūnas Marciuška1

1 University of Oxford; 2 Pontificia Universidad Católica de Chile

Motivation An increasing number of applications are relying on RDF [2] and SPARQL
[3] for storing, publishing, and querying semistructured data. The functionality of many
such applications is enhanced with OWL 2 ontologies [1], which are used to provide a
conceptual layer on top of data and enrich query answers with implicit information.

Although the growing popularity of RDF and OWL 2 and the fact that SPARQL has
been accompanied by the development of better and better query answering engines,
it is widely recognised that writing SPARQL queries requires specialised skills and
training, and hence is not well-suited for the majority of users. Thus, an important
challenge is the development of simple yet powerful query interfaces, which can capture
well-defined and efficiently implementable fragments of SPARQL.

Faceted search is a prominent approach for accessing document collections that
allows users to narrow down search results by incrementally applying filters, called
facets, on the annotations associated to documents [12]. Faceted search has become
a mainstream commercial technology, and it is ubiquitous in e-commerce websites.
For example, hotel booking websites such as Booking.com allow users to refine search
results by selecting suitable values in facets such as ‘Price’, ‘Star Rating’, or ‘Facilities’.

Thus, adapting faceted search to the context of RDF and OWL seems to be a promis-
ing direction for the development of simple yet powerful query interfaces for SPARQL.
However, this adaptation poses new research challenges. In contrast to data models un-
derlying faceted search applications, RDF is a graph data model that allows documents
to be annotated with other documents, which could in turn have other annotations at-
tached. Furthermore, the domain knowledge represented in the application ontology
should influence both the results of the search and the interaction with the user during
the search process.

Faceted search has been proposed as a suitable paradigm for querying document
collections annotated with RDF, and several RDF-based faceted search systems have
been developed [4, 7–9]. Existing approaches are, however, rather systems-oriented, and
there is a lack of rigorous theoretical underpinnings. Our goal is to provide such solid
foundations. We have formalised faceted interfaces tailored towards graph-based data
models, and identified a fragment of first-order logic capturing the underlying queries.
We have studied the complexity of answering such queries for RDF and ontologies
expressed in the OWL 2 profiles. Moreover, we have devised practical and generic
algorithms for recomputing faceted interfaces in response to user actions. Finally, we
have implemented and tested our faceted search algorithms in a prototype system [6],
with encouraging results. In this extended abstract, we provide a short overview of the
main ideas underlying our approach.

Technical Approach To illustrate our definitions and make our discussion concrete, we
consider an excerpt of Yago [11] about US presidents, which is depicted in Figure 1.

dusa dh
ds

1783-09-03
dbi dch

dkedth

dg

president person universitycountry

founding
date

gradFromhasChild

citizenOf

Fig. 1. Annotated entities

In this figure, dth and dbi stand
for T. Roosevelt and B. Clin-
ton, which are annotated as US
presidents with ‘USpres’. More-
over, Theodore’s son Kermit dke
and Bill’s daughter Chelsea dch
are categorised as ‘person’. Fi-
nally, Stanford ds , Harvard dh ,
and Georgetown dg are anno-

tated with ‘university’, and the USA dusa with ‘country’, which, in turn, is annotated
with its ‘founding date’ 1783-09-03. Our goal in this example is to find US presidents
who graduated from either Harvard or Georgetown and have a child who graduated
from Stanford.

We model facets as pairs consisting of a predicate (or facet name) and a set of val-
ues (typically documents represented by URIs or literals). Examples of facet names are
the binary relations ‘gradFrom’ and ‘dateOfBirth’, and examples of values for these
facets are specific documents such as ‘ds’ (Stanford) and literals such as ‘1858-10-27’.
Selection of multiple values within a facet can be interpreted either conjunctively or
disjunctively, and hence we distinguish between conjunctive and disjunctive facets. Fur-
thermore, we distinguish a special facet type, whose values are categories (i.e., unary
predicates) rather than specific documents or literals. Finally, we also allow for a spe-
cial value any which denotes the set of all values compatible with the facet predicate.
We assume that C, UP and BP are pairwise disjoint infinite sets of constants, unary
predicates and binary predicates.

Definition 1. Let type and any be symbols that do not occur in C ∪ UP ∪ BP. A
facet is a pair of the form (X, ◦Γ), where ◦ ∈ {∧,∨}, Γ is a non-empty set, and either
(i) X = type and Γ ⊆ UP, or (ii) X ∈ BP and Γ ⊆ C ∪ {any}. A facet is called
conjunctive if ◦ ∈ {∧}, and it is called disjunctive otherwise. Finally, X is called the
facet name and denoted by F |1 and Γ contains the facet values and is denoted by F |2.

The following facets could be of use when searching over these documents.

F1 = (type,∨{USpres, president, person, country, university}),
F2 = (hasChild,∨{any, dke , dch}), F3 = (gradFrom,∨{any, dh, ds, dg}),
F4 = (citizenOf,∧{dusa, duk}), F5 = (citizenOf,∨{dusa, duk}).

F1 can be exploited to restrict types of entities, F2 to narrow down search results to
entities with children, where ‘any’ can be used to say that we are not looking for a
specific child, F3 to select an alma mater, and F4 with F5 to select a citizenship.

Faceted Interfaces. A faceted interface represents an arrangement of facets that can
be displayed for users, and captures the choices of facet values made by them. Thus,
it encodes both a query, whose answers constitute the current search results, and the
possible choices of facet values available to users for further refinement. In contrast to

traditional faceted search, our notion of interface allows the user to ‘navigate’ across
interconnected sets of documents and establish independent filters to each of them.

Definition 2. A basic faceted interface (BFI) is a pair (F,Σ), with F a facet and
Σ ⊆ F |2 a set of selected values. The set of faceted interfaces (FIs) is defined by
the following grammar, where I0 and I1 = (F,Σ) are BFIs with F |1 ∈ BP:

I ::= path | (path ∧ path) | (path ∨ path); path ::= I0 | (I1/I).
A BFI encodes user choices for a particular facet, which introduce specific constraints to
search results as well as the values available for further selection. BFIs are put together
in paths (path), where each path is a sequence of facets that have to be applied accord-
ing to the sequence order and intuitively correspond to navigation between different
sets of documents. Two types of branching can be applied in interfaces: (path1∧path2)
indicates that each of the search results has to satisfy the sequence of conditions speci-
fied by both path1 and path2, while (path1 ∨ path2) indicates that each of these results
must satisfy the conditions specified by path1 or path2. Note that our notion of interface
abstracts from considerations that are specific to GUI design (such as ranking and ar-
rangement of facets), while at the same time reflecting the core functionality available
in both traditional and RDF-based faceted search systems.

The following faceted interface Iex has three paths connected by ∧-branching and
encodes the query ‘return US presidents who graduated from Harvard or Georgetown
and who have a child who graduated from Stanford’. For instance, the first path in Iex
selects entities categorised as USpres.

(
(F1, {USpres}) ∧ (F3, {dh , dg})

)
∧
(
(F2, {any})/(F3, {ds})

)
.

Faceted Queries. Queries encoded in faceted interfaces can be captured by formulae
in the positive existential fragment of first-order logic with one free variable, where
in every disjunction ϕ1 ∨ ϕ2, the subformulae ϕ1 and ϕ2 share at most one variable.
Moreover, these queries involve predicates of arity at most two and are tree shaped.
The output variable of a faceted query is the root variable in the query graph. We also
considered extensions of faceted interfaces that allow us to choose different output vari-
ables (a functionality typically referred to as refocusing [5]). The query encoded by Iex
returns two presidents: Roosevelt and Clinton. We investigated the query evaluation
problem for faceted queries for ontologies expressed in the OWL 2 profiles [10]. We
showed that the problem is PTIME-complete for RL and EL ontologies, NP-complete
for QL, and PTIME-complete for the core fragment of QL. We also investigated the
complexity under the active domain semantics, which is commonly used for SPARQL
query evaluation, and showed that it is PTIME-complete for all the profiles.

Faceted Navigation with Faceted Queries. Users interact with the a faceted search
system, i.e., do faceted navigation, by selecting or unselecting a facet value, and the
system responses by updating the interface and answers. We formally captured this
interaction and proposed a practical algorithm that updates the interface in response to
users’ actions, while taking into account both the data and ontology. Our algorithm is
based on the principle that each individual change in the interface made by the system
in response to an action must be ‘justified’ by a suitable entailment from the ontology
and data. Besides, we provide an extension of the algorithm that minimises the amount
of irrelevant facet values that are available to users for further navigation.

References

1. W3C: OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/
2. W3C: Resource Description Framework (RDF). http://www.w3.org/RDF/
3. W3C: SPARQL 1.1 Query Language. www.w3.org/TR/sparql11-query/
4. Buschbeck, S., Jameson, A., Troncy, R., Khrouf, H., Suominen, O., Spirescu, A.: A Demon-

strator for Parallel Faceted Browsing. In: EKAW (2012)
5. Clarkson, E., Navathe, S.B., Foley, J.D.: Generalized Formal Models for Faceted User Inter-

faces. In: JCDL. pp. 125–134 (2009)
6. Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D., Arenas, M., Jimenez-Ruiz, E.:

SemFacet: Semantic Faceted Search over Yago. In: WWW Demo (2014)
7. Huynh, D.F.: The Nested Faceted Browser. people.csail.mit.edu/dfhuynh/projects/nfb/

(2013)
8. Huynh, D.F., Karger, D.R.: Parallax and Companion: Set-based Browsing for the Data Web.

www.davidhuynh.net (2013)
9. Kobilarov, G., Dickinson, I.: Humboldt: Exploring Linked Data. In: LDOW (2008)

10. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language Profiles. W3C Recommendation (2009)

11. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In:
WWW. pp. 697–706 (2007)

12. Tunkelang, D.: Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and
Services, Morgan & Claypool Publishers (2009)

Faceted Search over OWL 2 Life Science
Datasets and Ontologies with SemFacet?

Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška,
Dmitriy Zheleznyakov, and Yujiao Zhou

Department of Computer Science, University of Oxford
first.middle.lastname@cs.ox.ac.uk

1 Introduction

In the last decade numerous RDF datasets and OWL ontologies in the life sciences
domain have become available [1–3]. Accessing the required information, however, re-
mains a challenging task for end users and often requires proficiency in SPARQL. In
order to make data and ontological knowledge more human accessible numerous query
formulation, data exploration, and browsing tools have been developed. Many such in-
terfaces have beed tailored for specific life science datasets [3, 4]. More generic systems
typically rely on controlled natural language, [5, 6] diagrammatic query constructors [7,
8], or exploratory search [9].

Faceted search is the de facto query paradigm in e-commerce applications [10]. A
facet typically consists of a property (e.g., ‘gender’ or ‘occupation’ when querying doc-
uments about people) and a set of possible string values (e.g., ‘female’ or ‘research’),
and documents in the collection are annotated with property-value pairs. During faceted
search, users iteratively select facet values and the documents annotated according to
the selection are returned as the search result.

Several authors have proposed faceted search for querying RDF, and a number of
systems have been developed [11–15]. Existing systems, however, have been designed
for plain RDF data, and do not take into account ontological axioms other than sub-
sumption statements between atomic classes and properties [16, 17], with reasoning
playing little or no role. In stark constrast to other domains, life sciences applications
tend to require a great deal of the expressive power available in OWL 2; in particular,
data often involves complex class or property assertions (e.g., see FlyBase [3]) and on-
tologies largely consist of complex axioms which encapsulate highly valuable informa-
tion for faceted search. As a result, existing faceted search systems are not well-suited
for typical life sciences applications.

In [18] we developed a faceted search approach for RDF data enhanced with OWL 2
ontologies. Our solution is based on a solid theoretical framework and it addresses
many of the limitations of existing techniques. To put our ideas into practice we de-
veloped SemFacet [18, 19]: a faceted search system that relies on state-of-the-art triple
stores and OWL 2 reasoners to generate and update faceted query interfaces, as well
as for computing search results. For demonstration purposes our platform integrates

? Work supported by the Royal Society, the EPSRC projects Score!, Exoda, and MaSI3, and the
FP7 project OPTIQUE under the grant agreement 318338.

JRDFox [20] and Sesame [21] as RDF triple stores, as well as PAGOdA [22] and Her-
miT [23] as fully-fledged OWL 2 reasoners. Our system is fully generic and can be
used to query arbitrary data and ontologies. In this demonstration we will show how
SemFacet can be used to access several datasets and ontologies from the domain of life
sciences and illustrate the main advantages of our approach over existing techniques
designed for plain RDF.

2 The SemFacet System

SemFacet [24] combines keyword search and faceted navigation to query arbitrary
ontology-enhanced RDF datasets. Our system offers the following main functionality.

– Keyword search. Seach in SemFacet typically starts with a set of keywords, which
are matched against the annotations in the ontology and data.

– Faceted interface generation and update. SemFacet implements dedicated infras-
tructure for automatically generating a faceted interface from the result of a key-
word search as well as for updating an interface in response to users’ actions. A
distinguishing aspect of our algorithms for interface generation and update is that
they are ‘guided’ by both explicit and implicit information in the ontology and data
(see [18] for details).

– Query answering. User selections of facet values in an interface are compiled into
SPARQL queries, which are then evaluated against the ontology and data using
a reasoner. Our system allows for both disjunctive facets (i.e., those where mul-
tiple value selections are interpreted disjunctively) and conjunctive facets. Thus,
the SPARQL graph patters relevant to our approach can be captured by the AND-
UNION fragment of SPARQL 1.1. The current version of SemFacet integrates the
following reasoners: Sesame [21] (a widely used system for RDF(S) reasoning),
JRDFox [20] (a parallel in-memory RDF triple store supporting sound and com-
plete reasoning for OWL 2 RL), HermiT [23] (a standard fully-fledged OWL 2
reasoner), and PAGOdA [22] (a pay-as-you-go reasoner for OWL 2 that combines
JRDFox and HermiT for increased efficiency).

– Refocusing. SemFacet provides functionality for changing the focus of the search
from one type of object to another. For instance, if the system is displaying as search
results neurons that develop from cells, where “develops from” is a facet name and
“cell” is a facet value, we can refocus the search and display as search results the
particular cells that are related to the selected neurons.

– Customisation. Our system is generic and highly customisable for different datasets
and applications. Users can upload arbitrary ontologies and datasets, select the rea-
soner to be exploited for faceted navigation and query answering, customise the
kinds of annotations relevant for keyword search, select which facets should be in-
terpreted disjunctively or conjunctively as well as which facets should be excluded
from the search process, or select what properties are relevant for image thumbnails
and snippets (if any).

On the left-hand-side of Figure 1 we can see a screenshot of SemFacet with a search
over the Adult Brain Anatomy dataset [1]. The navigation map in the interface enables

Faceted Query
Interface

Answers as
Snippets

GUI

Backend

Data and
Reasoning

Facet
Generator

Query
Converter

Snippet
Generator

Ontology
Data

Triple Store:

KBS
Engine

Keyword Based
Search

Inverted Index
e.g. DBpedia

Abstracts

RDFOX, PAGOdA, Hermit, Sesame

textual description
is missing

textual description
is missing

textual description
is missing

textual description
is missing

textual description
is missing

Fig. 1. Left: screenshot of SemFacet over FlyBase OWL 2 data, Right: architecture of SemFacet

refocusing, the filter by section displays the relevant facet names and values, and search
results (i.e., query answers) are displayed on the rightmost part of the interface. The gen-
eral architecture of SemFacet including its main software components is summarised
on the right-hand-side of Figure 1.

3 Demonstration Scenarios

During the demonstration we will show how to explore and query OWL 2 life science
datasets and ontologies with SemFacet. To this end, we will preconfigure the system
for several test cases, including fragments of FlyBase [3], SNOMED CT [2], as well
as a selection of Bio2RDF [1] datasets. In all cases the input for the search will be a
dataset and an ontology. We will demonstrate the following variants of our algorithms
for interface generation and update.

– Data driven, where only the data is exploited for interface generation and update.
This configuration simulates existing approaches to faceted search over RDF.

– Ontology driven, where only the axioms in the ontology are considered. In this
configuration, facet names and values in an interface reflect semantic relationships
between entities in the input ontology.

– Both data and ontology driven, where both the data and ontology are exploited
in interface generation and update. This is the default configuation of SemFacet,
and the aim here is to show how reasoning and ontologies can improve data driven
faceted interfaces and allow for enhanced data exploration.

Besides querying preconfigured scenarios, the demo attendees will be able to try Sem-
Facet end-to-end. This would require to load a data set and ontology, to customise the
system parameters, and to query the uploaded ontology and data with the selected pa-
rameters. For the end-to-end test of SemFacet the demo attendees will be able to use
datasets and ontologies either from the preconfigured scenarios or the ones they provide
(of reasonable size), e.g., by downloading them from the Web.

4 References

[1] F. Belleau, M. Nolin, N. Tourigny, et al. Bio2RDF: Towards a mashup to build bioinfor-
matics knowledge systems. In: Journal of Biomedical Informatics 41.5 (2008).

[2] SNOMED CT. www.ihtsdo.org/snomed-ct.
[3] FLyBase. http://flybase.org/.
[4] N. Milyaev, D. Osumi-Sutherland, S. Reeve, et al. The Virtual Fly Brain browser and

query interface. In: Bioinformatics 28.3 (2012).
[5] E. Franconi, P. Guagliardo, M. Trevisan, and S. Tessaris. Quelo: an Ontology-Driven

Query Interface. In: DL. 2011.
[6] A. Bernstein, E. Kaufmann, A. Göhring, and C. Kiefer. Querying Ontologies: A Con-

trolled English Interface for End-Users. In: ISWC. 2005.
[7] D. Calvanese, C. M. Keet, W. Nutt, et al. Web-based graphical querying of databases

through an ontology: the Wonder system. In: SAC. 2010.
[8] A. Soylu, M. G. Skjæveland, M. Giese, et al. A Preliminary Approach on Ontology-Based

Visual Query Formulation for Big Data. In: MTSR. 2013.
[9] S. Ferré and A. Hermann. Semantic Search: Reconciling Expressive Querying and Ex-

ploratory Search. In: ISWC. 2011.
[10] D. Tunkelang. Faceted Search. Morgan & Claypool Publishers, 2009.
[11] P. Fafalios and Y. Tzitzikas. X-ENS: Semantic Enrichment of Web Search Results at Real-

Time. In: SIGIR. 2013.
[12] R. Hahn, C. Bizer, C. Sahnwaldt, et al. Faceted Wikipedia Search. In: BIS. 2010.
[13] D. F. Huynh and D. R. Karger. Parallax and Companion: Set-based Browsing for the Data

Web. 2013.
[14] P. Heim, J. Ziegler, and S. Lohmann. gFacet: A Browser for the Web of Data. In: IMC-

SSW. 2008.
[15] G. Kobilarov and I. Dickinson. Humboldt: Exploring Linked Data. In: LDOW. 2008.
[16] M. Hildebrand, J. van Ossenbruggen, and L. Hardman. /facet: A Browser for Heteroge-

neous Semantic Web Repositories. In: ISWC. 2006.
[17] E. Oren, R. Delbru, and S. Decker. Extending Faceted Navigation for RDF Data. In: ISWC.

2006.
[18] M. Arenas, B. C. Grau, E. Kharlamov, et al. Faceted Search over Ontology-Enhanced RDF

Data. In: CIKM. 2014.
[19] M. Arenas, B. C. Grau, E. Kharlamov, et al. SemFacet: semantic faceted search over yago.

In: WWW, Companion Volume. 2014.
[20] RDFox. www.cs.ox.ac.uk/isg/tools/RDFox/.
[21] Sesame. http://www.openrdf.org/.
[22] Y. Zhou, Y. Nenov, B. C. Grau, and I. Horrocks. Complete Query Answering over Horn

Ontologies Using a Triple Store. In: ISWC. 2013.
[23] B. Glimm, I. Horrocks, B. Motik, et al. HermiT: An OWL 2 Reasoner. In: Journal of

Automated Reasoning 53.3 (2014).
[24] SemFacet. http://www.cs.ox.ac.uk/isg/tools/SemFacet/.

SemFacet: Semantic Faceted Search over Yago

Bernardo Cuenca Grau
Evgeny Kharlamov

Dmitriy Zheleznyakov
Ernesto Jimenez-Ruiz

University of Oxford
fname.mname.lname@cs.ox.ac.uk

Šarūnas Marciuška
Faculty of Computer Science
Free Univ. of Bozen-Bolzano
marciuska@inf.unibz.it

Marcelo Arenas
Dept. of Computer Science

PUC Chile
marenas@ing.puc.cl

1. INTRODUCTION
Faceted search is a technique for accessing document collec-

tions that combines text search and faceted navigation applied to
the documents’ metadata. With faceted navigation, users can nar-
row down search results by incrementally applying multiple filters,
called facets [18]. Although faceted search has become a main-
stream commercial technology, traditional models impose rather
severe constraints in the way faceted metadata is represented, and
queries are formulated.

In particular, conventional faceted search models assume that
documents are not “linked” to each other. E.g., in travel websites
like TripAdvisor.com one can perform independent faceted search
for hotels and then for restaurants, but there are no facets that link
specific hotel and restaurant documents. As a result, values of
facets for different kinds of documents cannot be joined in a single
query; for example, we cannot rely on TripAdvisor’s query inter-
face to formulate a query that returns hotels that have restaurants
serving local specialties: even if we can query for both hotels or
restaurants independently, when we “switch view” from hotels to
restaurants, the constraints imposed on hotels are lost. Data spar-
sity is also an important issue in faceted search applications; in par-
ticular, document annotations are intrinsically incomplete, which
leads to both expected missing answers and facets. For example, in
TripAdvisor one can find 5-star hotels that do not feature a restau-
rant; however, no hotel can be rated as 5-star without a restaurant
on site; as a result, when users select the “restaurant” box in the
“amenities” facet, some relevant hotels are filtered out. There are
also issues concerning the meaning of queries: in a faceted search
front-end, users are presented with facets and are allowed to tick
multiple choices for each facet. Choices within a single facet are
understood as either a logical OR or AND. Ambiguity is resolved
in the back-end when queries are translated into operations over in-
verted indices. This process is ad-hoc and application dependent,
and it is not grounded on a formal query model that can be inde-
pendently studied.

In this paper we demonstrate SemFacet, a proof of concept pro-
totype implementing faceted search enhanced with Semantic Web
technologies. RDF provides the required flexibility to semantically
link documents in arbitrary ways, thus overcoming the limitations
of conventional metadata models for faceted search; furthermore,
RDF is powerful enough to capture existing metadata models for
faceted search, and existing metadata can be easily transformed into
RDF triples. OWL 2 can be used to provide rich domain knowl-
edge on top of faceted metadata, which can not only be exploited
to capture complex dependencies between facets in a declarative
and semantically unambiguous way, but also to provide a schema-
level solution to the data sparsity problem. Finally, faceted queries
can be captured by SPARQL 1.1, which provides not only well-
understood semantics and computational properties, but also pow-
erful application-independent infrastructure for query processing.

Our system SemFacet allows Web developers to automatically
generate faceted query interfaces over any application, provided
that its metadata and domain knowledge are given in RDF and
OWL 2, respectively. For the initial keyword based search Sem-
Facet exploits Lucene [1]. Then, SemFacet implements algo-
rithms for automatically generating facet names and their values
from RDF and OWL documents, as well as for determining which
facets are relevant at any point during faceted navigation. Since
RDF triples can be exploited to link different types of documents,
SemFacet also provides functionality to refocus the search from
one type of document to another (e.g. from hotels to restaurants
and vice-versa), without losing the constraints imposed thus far by
means of facets. User choices in facet values are automatically
translated into SPARQL 1.1 queries, which are then executed using
the OWL 2 RL triple store RDFox [2].

Although our platform is generic, for this demo we have used the
Yago [21] knowledge base extended with DBpedia [3] abstracts.
Further details on semantic faceted search are in our technical re-
port [19]; SemFacet [4] and demo video [17] are available online.

Related Work. RDF has been proposed by many as a promis-
ing metadata model for faceted search [5, 20, 6, 7, 18] and sev-
eral faceted search systems based on RDF have been developed [7,
20, 8]. Prominent examples are Parallax [7] and Humboldt [20].
Parallax provides faceted navigation on top of Freebase [9] and it
supports a limited form of refocusing (it is possible to switch view
between different sets of entities while keeping faceted constraints;
however, when switching back to entities visited before, some con-
straints are lost); it also does not support branching in queries.
Humboldt [20] provides similar functionality to Parallax. Other
RDF-based systems provide more limited functionality and in par-
ticular they do not support refocusing; these include mSpace [10],
/facet [11], Piggy Bank [12], FacetedDBLP [13], a faceted DBpe-
dia browser [14], BrowseRDF [5], Ontogrator [15], Tabulator [6],
parallel faceted browser [8], and many others. Query model un-
derlying all these system is unclear; furthermore, their focus is on
RDF while OWL 2 reasoning plays little or no role.

2. SEMANTIC FACETED SEARCH
In this section, we introduce the basics of semantic faceted search.

First, we describe a metadata model that provides the required flex-
ibility for documents to annotate other documents. This metadata
model is described in an abstract way, and it is not particularly tied
to specific semantic technologies; however, it can be trivially re-
alised using RDF. Then, we describe a query language that provides
the necessary features to enable faceted navigation across different
types of documents. This query language is also independent from
exising query languages for semantic technologies; however, it has
a clean embedding into SPARQL 1.1 (see [4] for details).

"president"

is graduated
fromhas childis citizen of

type

P CPoliticians Children

dusa

Universities

dh

ds

dkr

dtrj

Countries

Figure 1: Example of semantic annotation

Semantic Faceted Annotations. We next formalise an exten-
sion of conventional faceted data models where documents are an-
notated not only with facet values (typically strings), but also with
other documents, which in turn can have their own annotations.

In the remainder of this section, we assume that VN , VL, VD

are pairwise disjoint sets of (facet) names, labels, and documents,
respectively, and that V = VN∪VL∪VD . We will refer to elements
of VN as facet-names and of VL ∪ VD as facet-values.

DEFINITION 1. The semantic annotation of a document d ∈
VD is a subset of VN × (VL ∪ VD). Moreover, d is said to be
n-annotated with x, where n ∈ VN and x ∈ VL ∪ VD , if (n, x)
belongs to the semantic annotation of d.

Note that in terms of this definition, the annotation of a document
with conventional facets is simply a subset of VN × VL; that is,
documents cannot be used to annotate other documents.

EXAMPLE 2. Assume that VD consists of (i) documentsP about
politicians; (ii) documents C about children of politicians, includ-
ing a document dtrj about Theodore Roosevelt Jr. and dkr about Ker-
mit Roosevelt; (iii) a set of (documents about) countries, including
dusa about USA; and (iv) a set of (documents about) universities, in-
cluding dh for Harvard University and ds for Stanford University.
Moreover, assume that VL includes the string president. As illus-
trated in Figure 1, the documents ofP are type-annotated with val-
ues from VL (one of which is president), has_child-annotated with
document from C, and is_citizen_of-annotated with documents abo-
ut countries. Finally, the documents of C are is_graduated_from-
annotated with university documents.

Faceted Queries. A conventional faceted query can be seen as
a filter over a set of documents; it specifies what facet names should
be used to annotate a target document and what faceted values
should be used for each such name. The answer for such a query
is the subset of the given documents satisfying the filter. In the se-
mantic faceted search approach, we go further: a semantic faceted
query can relate sets S1, . . ., Sn of documents with annotations
by describing relations between these sets, and setting separate fil-
ters over each one of them. Analogously to conventional faceted
queries, the effect of these filters is to select subsets S′

1 ⊆ S1, . . .,
S′
n ⊆ Sn. In contrast to a conventional faceted query, we can now

“navigate” between different types of documents and select those
documents S′

i ⊆ Si to be returned as output of the query.
In what follows, we formalise the notion of faceted query, start-

ing with the notion of basic faceted query.

DEFINITION 3. A basic conjunctive faceted query (BCFQ) over
V is a pair F = (X,∧Γ), whereX ∈ VN and Γ ⊆ VL∪VD . A ba-
sic disjunctive facet query (BDFQ) over V is a pair F = (X,∨Γ),
where X and Γ satisfy the same conditions as in BCFQs. A basic
faceted query (BFQ) over V is either a BCFQ or BDFQ over V .

Intuitively, a document satisfies a BCFQ (X,∧Γ) if it is X-
annotated with every value in Γ, and it satisfies a BDFQ (X,∨Γ),
if it is X-annotated with some value in Γ. We do not give the se-
mantics formally (see [4] for details), but rather illustrate BFQs on
an example.

EXAMPLE 4. The following are BCFQs about politicians:

Q1
P = (type,∧{president}), Q3

P = (has_child,∧{}),
Q2

P = (is_citizen_of,∧{dusa}).
The query Q1

P asks for (all the documents about) presidents, Q2
P

for politicians with American citizenship, Q3
P for politicians with

children. The empty condition ∧{} is used in Q2
P since we im-

pose no restrictions on the children. Moreover, the BDFQ QC =
(is_graduated_from,∨{dh, ds}), over the children of politicians
in C asks for documents about children of politicians who gradu-
ated from either Harvard, i.e., dh or Stanford,i.e., ds.

We now define how to combine BFQs in complex queries. Faceted
search is typically initiated by a keyword search that returns the
initial set of documents over which a user can set filters. To model
keyword-based search, we introduce a special set KW disjoint from
V , and assume that every element S ∈ KW stands for a set of docu-
ments retrieved by a specific keyword-based search.

DEFINITION 5. A query expression over V is defined by the
following grammar:

start ::= S | ?(S), expr ::= start | start/rest,
step ::= F | ?(F), path ::= step | step/rest,

rest ::= path | (path ∧ path) | (path ∨ path),

where S ∈ KW and F is a BFQ over V . A (semantic) faceted
query (FQ) over V is a query expression over V where the symbol
? occurs exactly once.

The starting point (start) of a query expression expr captures
the content of the initial search used in typical interfaces (prior
to faceted navigation), which is given by a keyword search. In
each step (step) of the remainder of the query expression (rest),
a BFQ is applied to narrow down the search results. These steps
are put together in paths (path), where each path is a sequence of
BFQs that have to be applied according to the sequence order. Two
different types of branching can be applied in a query expression:
(path1 ∧ path2) indicates that each of the search results has to sat-
isfy the sequence of conditions specified by both path1 and path2,
while (path1∨path2) indicates that each of these results has to sat-
isfy the sequence of conditions specified by path1 or path2. Finally,
the symbol ? in a query expression indicates which documents must
be returned. In a faceted query this symbol is mentioned exactly
once, as the result of such query is one set of documents. We illus-
trate the syntax and semantics of FQs in the following example.

EXAMPLE 6. Consider the following information request about
the scenario introduced in Examples 2 and 4:

Find children of US presidents who graduated from
Harvard University or Stanford University.1

It corresponds to the following FQ:

Spolitician/

(
Q1

P ∧Q2
P ∧ (?(Q3

P)/QC)

)
, (1)

Intuitively, the query first retrieves all documents of Spolitician ∈ KW,
i.e., all documents returned by a keyword search with politicians.
Then these results are filtered with the queries Q1

P and Q2
P , ob-

taining the set of documents about American presidents. Finally,
this set is filtered by using the query ?(Q3

P)/QC , returning the set
of documents about children of American presidents who gradu-
ated from Harvard or Stanford. Notice that QC could be replaced
by (Qs

C ∨ Qh
C), where Qu

C = (is_graduated_from,∧{du}) for
u ∈ {h, s}.
1A similar query was used to illustrate the Parallax system in [7].

http://en.wikipedia.org/wiki/Theodore_Roosevelt,_Jr.
Theodore "Ted" Roosevelt III (generally known as Theodore,
Jr.) (September 13, 1887 – July 12, 1944), was an American
political and business leader, a veteran of both the 20th
century's world wars, who was awarded the Medal of Honor.
He was the eldest son of President Theodore Roosevelt and
Edith Roosevelt. ...

http://en.wikipedia.org/wiki/Kermit_Roosevelt
Kermit Roosevelt MC (October 10, 1889 – June 4, 1943)
was a son of U.S. President Theodore Roosevelt. He was
an explorer on two continents with his father, a graduate of
Harvard University, a soldier serving in two world wars, with
both the English and American Armies, a businessman ...

has child
ANY

rdftype

film
president

More Focus

More Focus

is graduated from
Harvard Uni.

More Focus

Stanford Uni.

is citizen of
More Focus

Remove

Remove

Remove

Remove

United States
France

http://en.wikipedia.org/wiki/Allan_Hoover
Allan Henry Hoover (July 17, 1907 Ð November 4, 1993) was

Searchpoliticians

Figure 2: Semantic Faceted Search Interface

Semantic Faceted Search using RDF and SPARQL. Se-
mantic annotations can be realised using different technologies.
Our demo implementation exploits RDF, which we see as the most
natural choice: URIs can be seen as documents of VD , object and
data properties as facet-names of VN , literals as labels of VL. More-
over, annotations are encoded in RDF as triples: each triple (s, p, o)
corresponds to a p-annotation of a document s with a facet-value o.
As we will see in Sections 3 and 4, RDF gives more than that: by
combining RDF with RDFS and OWL 2, one can use reasoning to
address natural limitations of current faceted search.

We now discuss how to embed our faceted query language in
SPARQL, the standard language for querying RDF [16]. In [19]
we provided semantics to our faceted query language by transla-
tion into first-order logic. It follows from this translation that any
FQ corresponds to a filter-free SPARQL query Q that: (i) is posi-
tive (neither OPTIONAL nor NOT EXISTS nor MINUS occurs in Q);
(ii) is tree-shaped (the dependency graph of Q’s variables, where
?x and ?y are connected if there is a triple ?x Z ?y in Q, is tree-
shaped); and (iii) satisfies the condition that different triples in Q
cannot share more than one variable. Thus, FQs over annotated
documents represented as RDF can be translated in SPARQL and
evaluated using state of the art SPARQL engines. Moreover, as
we discuss in Sections 3 and 4, the restricted shape of the gener-
ated SPARQL queries allows to do reasoning about queries w.r.t.
ontologies efficiently.

EXAMPLE 7. A SPARQL query, where wiki is a name-space for
Wikipedia, corresponding to Equation (1) is:
SELECT ?z
WHERE {?x rdf : type “president”@en ;

?x is_citizen_of wiki :United_States ;
?x has_child ?z ;
{?z is_graduated_from wiki :Harvard_Uni }; UNION
{?z is_graduated_from wiki :Stanford_Uni } ; }.

3. FRONT-END
We next discuss how to provide query formulation support to

end-users, and describe our implementation of a query formulation
interface in the SemFacet system.

3.1 Semantic Faceted Search Interface
In a conventional faceted search interface, users are presented

with facet-values organised in groups according to facet-names;
these groups are typically referred to as simply facets, and we will
follow this terminology. Users can exploit facets to refine the search
by selecting values, and value choices are converted into queries
over the underlying documents. Answers to queries are typically
displayed in the form of snippets combining images, textual de-
scriptions, links, etc.

Keywords

Initial
Facets

Query
Refinement

Initial
Answers

Answers
in Focus

Derived
Facets

Figure 3: workflow of semantic faceted search

Facets in SemFacet. Our implementation relies on conven-
tional facets to support BFQs; complex queries are formed by nest-
ing facets in a hierarchical fashion (see Figure 2 for a screenshot of
SemFacet’s interface).

EXAMPLE 8. Fig. 2 shows how the query in Eq. (1) can be com-
posed using the facets computed by SemFacet. In the screenshot
there are 4 facets with facet-names: (i) rdftype where “president”
is selected, (ii) has_child where “ANY” is selected (it is a special
facet-value meaning “the value is not important” and correspond-
ing to the empty condition ∧{} in Ex. 4), (iii) is_graduated_from
where both “Harvard_Uni” and “ Stanford_Uni” are selected, and
(iv) is_citizen_of where “United_States” is selected.

Focusing in SemFacet. Our interface supports the ?() opera-
tor, which can be used to select the kinds of output documents in
faceted queries. To this end, we allow users to focus on facets:
if the focus is set on a facet, then SemFacet outputs documents
corresponding the facet-values chosen by the user in this facet.

EXAMPLE 9. In Figure 2 the focus of the query is set on a facet
with the name has_child; thus, the system’s output consists only of
documents in C; more precisely, the system outputs all children of
US presidents who graduated from Harvard or Stanford. On the
right hand side of Figure 2, we can see the answers to the query,
namely Theodore and Kermit Roosevelt and Allan Hoover. Note
that the interface also has more and remove buttons, where the
former one allows to expand the list of possible facet-values, and
the latter one allows to hide a facet when it is not needed.

Query Language of SemFacet. Our interface currently sup-
ports only a fragment of the query language specified in Defs 3
and 5. First, SemFacet only supports BDFQs as basic queries, i.e.,
different values within the same facet are interpreted disjunctively.
Second, our interface does not support ∨ in query expressions (i.e.,
values in different facets are always interpreted conjunctively).

EXAMPLE 10. Fig. 2 captures the FQ in Eq. (1). Indeed, Har-
vard and Stanford are values within the facet is_graduated_from,
which corresponds to the BDFQ QC; in contrast, the choices of
“president” in rdftype and United_States in is_citizen_of corre-
spond to the conjunction Q1

P ∧Q2
P .

Workflow of SemFacet. The process of constructing a seman-
tic FQ in SemFacet is summarised in Fig. 3. The first step is
to provide a set of keywords (e.g., in Fig. 2 the keyword “politi-
cians” was used), which leads to a set of initial answers and initial
facets. Query refinement is then an iterative process, where users
can either choose available facet-values, or refocus the query to a
different facet. In response the system updates the query answers
as well as the facets available to continue query refinement.

3.2 Improving the Interface using Axioms
Deriving New Annotations. Data sparsity is an important chal-
lenge for faceted search interfaces. Document annotations are in-
trinsically incomplete, which leads to both missing expected an-
swers and facets. This problem is addressed in SemFacet by ex-
ploiting OWL 2 axioms to enrich RDF data with implicit triples.

EXAMPLE 11. Assume that RDF data contains triples stating
that Kermit Roosevelt is a Harvard alumni, but it does not say that
he graduated from Harvard. Thus, if one queries the data for Har-
vard graduates, Kermit Roosevelt would not be returned as an an-
swer. The relationship between Harvard graduates and alumni can
be modelled at the schema level using the following OWL 2 axiom:

SubClassOf(alumHarvard ObjectHasValue(

is_graduated_from Harvard_Uni)).

Together with the triple (Kermit_Roosevelt rdftype alumHarvard),
this axiom entails the triple

(Kermit_Roosevelt is_graduated_from Harvard_Uni).

Another benefit of axioms is that they can naturally model hier-
archical facets (e.g., documents about hotels can be annotated with
facet-values B&B, or hostel, which are both kinds of accommo-
dation). In traditional faceted search applications each document
needs to be annotated with all values in a path from the root of
the hierarchy to the specific value of interest (e.g., when annotat-
ing a hotel document with B&B, one would also need to annotate
with accommodation). Modelling such ISA relationships between
facet-values as OWL 2 axioms has the advantage that only the most
specific values are required in annotations since the remaining ones
can be derived using a reasoner.

Showing Relevant Information. Another important challenge
for faceted search interfaces is to avoid “dead ends” (i.e., facet-
value selections that lead to queries with empty answer). In con-
ventional faceted search applications, the detection of such dead
ends is data driven, in the sense that the interface does not dis-
play facet-values for which no document exists. Axioms provide
an alternative, declarative, way to detect dead ends during faceted
search. E.g., in the presence of the axiom

DisjointClasses(USPresident FrenchPresident)

once the facet-value USPresident is selected, the interface should
not display the value FrenchPresident. Axioms are particularly
important when annotations are inconsistent (this can happen with
automatically generated annotations). SemFacet uses both axiom-
and data-driven techniques to avoid dead ends during faceted search.

4. BACK-END
SemFacet is available as a Web service [4] and runs on a ma-

chine with 1vCPU, 4Gb of memory, and 20Gb of disk space. Sem-
Facet is implemented on top of a fragment of Yago [21] and DB-
pedia [3] abstracts; it contains around 15 million RDF triples ex-
tended with OWL 2 axioms. A general architecture of SemFacet
is in Figure 4. SemFacet’s back-end relies on RDFox [2] for
storing RDF triples, performing reasoning, and answering queries.
RDFox is a massively parallel in-memory RDF triple store; it im-
plements reasoning for the OWL 2 RL profile. RDFox supports
only a conjunctive fragment of SPARQL 1.1, thus, to answer faceted
queries, we extended its query module with a support of UNION.

In short, the back-end’s workflow is the following. First, DBpe-
dia abstracts are loaded to Lucene and RDFox; Yago is loaded in
RDFox only. Every initial user’s input via keyword based search
is executed over Lucene that returns initial relevant document IDs,
and a view of IDs is created. Based on the view of IDs the initial
facets and answer snippets compound of abstracts, thumbnails, and
links to Wikipedia are generated. Then, the user performs query re-
finement and refocusing as described in Section 3 in the workflow
of SemFacet. Faceted queries Q are executed by RDFox and the
projections of results on the Q’s first variable are intersected with
the view of IDs. We rely on Lucene’s ranking function to display

Faceted Query
Interface

Answers as
Snippets

Presentation
Layer

Application
Layer

Data
Layer

Facet
Generator

Query
Converter

Snippet
Generator

Yago
DBpedia

RDFox

Lucene

Keyword
Based Search

Inverted Index
on DBpedia
Abstracts

Figure 4: General architecture of SemFacet
answers under the default query focus; if the user refocuses the
query, then we display answers in the order they are returned by
RDFox. Note that SemFacet is implemented in such a way that
both Lucene and RDFox can be substituted with any other software
that provide the same functionality.

5. DEMO SCENARIO
During the demo we will show how one can find relevant infor-

mation available in Wikipedia using semantic faceted search. The
search will be performed over Yago using SemFacet system. The
users will see several search scenarios that are hard to accomplish
using conventional search engines, and we will show how they can
be handle using SemFacet. Moreover, the users will be invited to
try to express their own information needs over SemFacet.

6. CONCLUSION
We demonstrated semantic faceted search over Yago. Our ap-

proach is flexible and versatile: the same backend implementation
can be used to power faceted search over any application based on
RDF and OWL 2. Our system is still an early prototype. Further
work includes development of ranking functions for both facets and
answers, extension of the interface to support wider fragments of
our query language, experiments with larger data sets, and work on
improving systems scalability and concurrency of users’ access.

7. REFERENCES
[1] http://lucene.apache.org/.
[2] http://www.cs.ox.ac.uk/isg/tools/RDFox/.
[3] http://dbpedia.org/.
[4] SemFacet. http://tinyurl.com/SemFacet.
[5] https://launchpad.net/browserdf.
[6] http://www.w3.org/2005/ajar/tab.
[7] http://sparallax.deri.ie/.
[8] http://eventmap-ui.appspot.com/.
[9] http://www.freebase.com/.

[10] http://mspace.fm/.
[11] http://slashfacet.semanticweb.org/.
[12] http://simile.mit.edu/wiki/Piggy_Bank.
[13] http://dblp.l3s.de/.
[14] http://dbpedia.org/FacetedSearch.
[15] http://www.ontogrator.org/.
[16] http://www.w3.org/TR/rdf-sparql-query/.
[17] Demo Video. http://tinyurl.com/www14demo.
[18] D.Tunkelang. Faceted Search. Morgan & Claypool Pubs.’09.
[19] M. Arenas et al. Semantic faceted search: Foundations, alg-

orithms, implementation. www.tinyurl.com/qazsvle.
[20] G. Kobilarov and I. Dickinson. Humboldt: Exploring linked

data. In LDOW’08.
[21] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core

of Semantic Knowledge. In WWW 2007.

Towards Semantic Faceted Search

Marcelo Arenas†

Dept. of Computer Science
PUC Chile

Bernardo Cuenca Grau‡

Dept. of Computer Science
University of Oxford

Evgeny Kharlamov‡

Dept. of Computer Science
University of Oxford

Šarūnas Marciuška‡

Dept. of Computer Science
University of Oxford

Dmitriy Zheleznyakov‡

Dept. of Computer Science
University of Oxford

ABSTRACT
In this paper we present limitations of conventional faceted search
in the way data, facets, and queries are modelled. We discuss how
these limitations can be addressed with Semantic Web technologies
such as RDF, OWL 2, and SPARQL 1.1. We also present a system,
SemFacet, that is a proof-of-concept prototype of our approach im-
plemented on top of Yago knowledge base, powered by the OWL 2
RL triple store RDFox, and the full text search engine Lucene.

1. MOTIVATION AND PROPOSAL
Faceted search is a technique for accessing document collec-

tions that combines text search and faceted navigation applied to
the documents’ metadata. With faceted navigation, users can nar-
row down search results by incrementally applying multiple filters
called facets [6]. During the last decade, faceted search has be-
come a mainstream commercial technology, and it is ubiquitous in
e-commerce websites and online libraries. Despite the numerous
success stories, however, traditional faceted search models impose
severe constraints in the way (i) faceted metadata is represented,
(ii) facets are defined, and (iii) queries are formulated [4, 14]. Push-
ing the boundaries of faceted search beyond the current state-of-
the-art requires addressing several challenges, which we discuss
next. To make the discussion concrete, suppose we are looking in a
travel website such as TripAdvisor for accommodation in Seoul to
attend the WWW 2014 conference. We look for a 4-star or 5-star
hotel with a Korean or Japanese vegetarian restaurant.

Limitations of the data model. Classical faceted search mod-
els assume that documents are not “linked” to each other. We can
start our search in TripAdvisor by filling in an initial form to obtain
all available hotel documents in Seoul during the conference dates.
The search can then be further refined by using the facets “hotel
class” and “amenities” to select 4-star or 5-star hotels with restau-
rants. To complete our query, we need additional constraints about
restaurant documents; however, the relevant facets are associated to
restaurants, and not to hotels. Thus, we switch to the interface for
restaurants, where we can use the available facets to select Japanese

†Email: marenas@ing.puc.cl
‡Email: firstname.middlename.lastname@cs.ox.ac.uk

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577011.

or Korean vegetarian-friendly restaurants in Seoul. Although the
hotel-specific and the restaurant-specific “views” have in common
the information provided in the initial search form (i.e., city and
dates), there is no link between hotel and restaurant documents and
hence the constraints we imposed to restaurants are not transferred
to the hotel view. Thus, although many hotels featured in TripAd-
visor satisfy our query, narrowing down the search to only those
hotels requires significant manual browsing effort.

Limitations of the facet model. In their most basic form,
facets consist of a heading and a set of values; e.g., hotel star rat-
ings in TripAdvisor are modelled as a facet having one value for
each 1-star to 5-star rating. Many applications, however, also de-
fine facets that are hierarchical. For example, accommodation in
TripAdvisor is divided into hotels, B&B, and rentals; hotels into
luxury, business etc. Hierarchical facets provide background do-
main knowledge which can be exploited to improve faceted search;
however, they are still rather limited. Although a hierarchical facet
establishes dependencies between its values, the underlying seman-
tic relationship (e.g., “is-a”, “part-of”) is undefined. There are also
issues concerning dependencies between facets, which cannot be
represented in such a simple model. E.g, the type of hotel and
the star ratings are correlated (e.g., motels cannot be 5-star); these
dependencies are typically implemented ad-hoc, which negatively
impacts systems’ maintainability, performance, and reliability.

Limitations of the query model. The limitations above af-
fect queries that users can pose. In particular, facet values for dif-
ferent kinds of documents cannot be joined in a single query. Thus,
in TripAdvisor our example query cannot be formulated: even if
we can query for both hotels or restaurants independently, when
we “switch view” from hotels to restaurants, the constraints im-
posed on hotels are lost. Similar limitations were observed for
faceted search over interlinked documents [3, 14], webpages [12],
databases [7], dataspaces [17], and knowledge bases [3, 12]. Or-
thogonally, there are issues with the meaning of queries, which af-
fect the way they are processed in the backend and their results are
interpreted by users. In a faceted search front-end, users are pre-
sented with facets and allowed to make a multiple choice within
each facet. Typically, choices in one facet are understood as logical
OR, and constraints for different facets are combined with logical
AND. Thus, if a user chooses “2-star” and “3-star”, they are looking
for hotels with two or three stars. Multiple choice in a single facet
could also be interpreted conjunctively, e.g., when the users choses
“WiFi” and “parking” facilities. Ambiguity is resolved in the back-
end when queries are translated into operations over inverted indi-
cies. This process is application dependent, and it is not grounded
on a formal query model that can be independently studied.

Semantic Faceted Search. RDF has been proposed by many
authors as a promising technology to overcome some of the lim-

Faceted Query
Interface

Answers as
Snippets

Presentation
Layer

Application
Layer

Data
Layer

Facet
Generator

Query
Converter

Snippet
Generator

Yago
DBpedia

RDFox

Lucene

Keyword
Based Search

Inverted Index
on DBpedia
Abstracts

Figure 1: Architecture of SemFacet

itations of faceted search systems [2, 3, 5, 9, 10, 11, 12, 13, 15,
16, 18]. Although several RDF-based faceted search systems have
been developed, there is a lack of rigorous understanding of the
underlying data and query models. We aim at providing solid foun-
dations to semantic faceted search—the extension of the faceted
search paradigm with Semantic Web technologies. RDF was de-
signed as a language for the representation of loosely-structured
metadata, and it provides the required flexibility to semantically
link different documents in arbitrary ways. OWL 2 can be used to
provide rich domain knowledge on top of faceted metadata: OWL 2
axioms can capture hierarchical facets, and complex dependen-
cies between facets in a declarative and semantically unambigu-
ous way (e.g., business hotels cannot be 2-star, every 5-star ho-
tels has a restaurant etc.). Finally, faceted queries can be captured
by SPARQL 1.1, which provides well-understood semantics, com-
putational properties, and powerful for query processing. Also,
Semantic Web technologies provide important additional benefits.
First of all, semantic facets and faceted query interfaces can be au-
tomatically generated from RDF and OWL 2 ontologies. Then,
OWL 2 axioms can be used to specify which facets and values to
display at each step of query refinement, thus providing valuable
guidance to users. These techniques are orthogonal and comple-
mentary to the facet ranking mechanisms.

OWL 2 can also be used to simplify the annotation of documents
with faceted metadata and deal with sparse and incomplete annota-
tions. E.g., annotating data items with hierarchical facets is cum-
bersome since data must contain a value for each level of the hier-
archy; in contrast, by representing hierarchies in OWL 2, we only
need annotations for the most specific relevant values since the re-
maining ones can be automatically derived. Finally, semantic facets
give a mechanism to query semantically related data sources, and
hence are a natural query paradigm for ontology-enhanced linked
data. We refer the reader to [1, 8] for more details on our approach.

2. THE SEMFACET SYSTEM
Our approach is general and can be used to provide faceted search

over any RDF and OWL 2 ontology. To illustrate its potential
in practice and assess the feasibility of our techniques, we im-
plemented a prototypical faceted search system, called SemFacet
(see [1, 8] for details), on top of (a fragment of) Yago [19] ontology
and DBpedia containing around 15 million triples altogether.

A general architecture of SemFacet is in Figure 1. The back-
end relies on Lucene for keyword based search and RDFox, a mas-
sively parallel in-memory RDF triple store, for storing RDF triples,
performing reasoning, and answering queries. SemFacet is imple-
mented in such a way that both Lucene and RDFox can be substi-
tuted with any other software that provide the same functionality.

The front-end of SemFacet, by relying on nesting of conven-
tional facets, allows users to formulate tree shaped SPARQL que-
ries over RDF and OWL 2. The process of constructing queries
is (see [8] for details): the first step is to provide a set of key-
words, which leads to a set of initial answers and initial facets.
Query refinement is then an iterative process, where users can ei-

ther choose available facet values, or refocus the query to a different
facet. In response the system updates the query answers as well as
the facets available (they are automatically generated from the un-
derlying RDF and OWL 2 ontology) to continue query refinement.

SemFacet also exploits OWL 2 axioms to enrich RDF data with
implicit triples. This helps in addressing sparsity of annotations
and modelling of hierarchical facets. Moreover, OWL 2 axioms
help in avoiding “dead ends” (i.e., facet value selections that lead
to queries with the empty answer). In conventional faceted search
applications, the detection of such dead ends is data driven, in the
sense that the interface does not display facet values for which no
document exists. Axioms provide an alternative, declarative, way
to detect dead ends during faceted search, e.g., by exploiting ax-
ioms expressing disjointness between classes of objects.

SemFacet is available as a Web service [1] and runs on a ma-
chine with 1vCPU, 4Gb of memory, and 20Gb of disk space. Al-
though we have not formally evaluated our system, preliminary ex-
periments show typical response time comparable with well known
conventional faceted search systems.

3. REFERENCES
[1] SemFacet: Semantic Faceted Search Project. http:

//www.cs.ox.ac.uk/isg/projects/SemFacet/.
[2] T. Berners-Lee and et al. Tabulator redux: Browsing and

writing linked data. In LDOW, 2008.
[3] S. Buschbeck and et al. A demonstrator for parallel faceted

browsing. In EKAW’12, 2012.
[4] E. Clarkson, S. B. Navathe, and J. D. Foley. Generalized

formal models for faceted user interfaces. In JCDL’09.
[5] J. Diederich, W.-Tilo Balke, and U. Thaden. Demonstrating

the semantic growbag: automatically creating topic facets for
FacetedDBLP. In JCDL, page 505, 2007.

[6] D.Tunkelang. Faceted Search. Morgan & Claypool Pubs.’09.
[7] G. H. L. Fletcher and et al. Towards a theory of search

queries. ACM Trans. Database Syst., 35(4):28, 2010.
[8] B.Cuenca Grau, E.Kharlamov, Š.Marciuška, D.Zheleznya−

kov, M.Arenas, and E.Jimenez-Ruiz. Semfacet: Semantic
faceted search over yago. In WWW (Companion Volume)’13.

[9] R. Hahn and et al. Faceted wikipedia search. In BIS, 2010.
[10] M. Hildebrand, J. van Ossenbruggen, and L. Hardman.

/facet: A browser for heterogeneous semantic web
repositories. In ISWC’09.

[11] D. Huynh and et al. Piggy bank: Experience the semantic
web inside your web browser. J. Web Sem., 2007.

[12] David F. Huynh and David R. Karger. Parallax and
companion: Set-based browsing for the data web.
www.davidhuynh.net.

[13] E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator:
Combining view- and ontology-based search with semantic
browsing. In XML Finland, 2003.

[14] A. Jameson. How can we support multifocal exploration of
semantic data? www.imash.leeds.ac.uk/event/keynote.html.

[15] G. Kobilarov and I. Dickinson. Humboldt: Exploring linked
data. In LDOW’08.

[16] E. Oren, R. Delbru, and S. Decker. Extending faceted
navigation for rdf data. In ISWC, 2006.

[17] Kenneth A. Ross and Angel Janevski. Querying faceted
databases. In SWDB, pages 199–218, 2004.

[18] M. C. Schraefel and et al. The evolving mSpace platform:
leveraging the Semantic Web on the trail of the memex. In
Hypertext, 2005.

[19] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core
of Semantic Knowledge. In WWW 2007.

	1 Introduction
	2 Extending OptiqueVQS with Ranking
	2.1 Adaptive Query Formulation
	2.1.1 Running Example
	2.1.2 Basic Notions
	2.1.3 Ranking Method

	2.2 Related Work

	3 Support of Geo-spatial Query Formulation
	3.1 Support for Map-based Selection of Features
	3.2 Export of Geo-spatial Query Results

	4 Support of Temporal and Streaming Query Formulation
	5 Semantic Graph for Query Formulation
	5.1 Basic Definitions
	5.2 Semantic Graph
	5.2.1 Query Conformation to Semantic Graph

	5.3 OptiqueVQS
	5.3.1 Queries of OptiqueVQS.

	6 Backend Support
	6.1 Annotation Support
	6.2 Ontology access

	7 User Evaluation and System Demonstration
	7.1 Evaluation with casual users
	7.1.1 Results

	7.2 Results of the Statoil End-User Workshop
	7.2.1 Results

	Bibliography
	A OptiqueVQS: General
	B OptiqueVQS: Extending OptiqueVQS with Ranking
	C OptiqueVQS: Demonstration
	D Faceted Search

