
Project No: FP7-318338

Project Acronym: Optique

Project Title: Scalable End-user Access to Big Data

Instrument: Integrated Project

Scheme: Information & Communication Technologies

Deliverable D6.2
Transformation System Configuration Techniques

Due date of deliverable: (T0+24)

Actual submission date: November 3, 2014

Start date of the project: 1st November 2012 Duration: 48 months

Lead contractor for this deliverable: FUB

Dissemination level: PU – Public

Final version

Executive Summary:
Transformation System Configuration Techniques

This document constitutes deliverable D6.2 of project FP7-318338 (Optique), an Integrated Project supported
by the 7th Framework Programme of the EC. Full information on this project, including the contents of this
deliverable, is available online at http://www.optique-project.eu/.

More specifically, the present deliverables describes the activities carried out and the results obtained in
Task 6.1 of Optique. This task is concerned with the techniques for configuring the query transformation
system that constitutes the core component of the Optique architecture, towards meeting user requirements
in terms of scalable answering of SPARQL queries formulated over an ontology.

From the foundational point of view, we have obtained results regarding the various phases of the trans-
lation of user queries. We first concentrate on the role of mappings in the query answering process, and
study what affects the efficient translation of SPARQL queries formulated over (virtual) RDF data, to SQL
queries over the relational data sources to which the RDF data is mapped. We then address the challenges
posed by the additional presence of an ontology formulated in the standard OWL 2 QL fragment.

From the implementation point of view, we discuss how the user requirements, and specifically those
coming from the Optique use cases have shaped the features with which the query transformation system
has been extended. Several of these features are tightly related to the integration in the Optique Platform.
We have then optimized the reasoning tasks at the level of the TBox, and have added functionalities for
checking the consistency of the ontology, and for verifying the emptiness of classes and properties. A further
extension of Ontop with spatial features has been carried out and is reported.

We observe that the above results reported in this deliverable, are complemented by those already reported
in D6.1 (WP6 Year 1 Progress Report), which also refers to activities carried out in Task 6.1.

List of Authors
Konstantina Bereta (UoA)
Elena Botoeva (FUB)
Diego Calvanese (FUB)
Benjamin Cogrel (FUB)
Davide Lanti (FUB)
Martin Rezk (FUB)
Sarah Komla-Ebri (FUB)
Guohui Xiao (FUB)

2

http://www.optique-project.eu/

Contents

1 Introduction 4

2 Foundational Results on OBDA 7
2.1 Efficient SPARQL-to-SQL with R2RML Mappings . 7

2.1.1 Experiments . 8
2.2 Answering SPARQL Queries over Databases under OWL2QL Entailment Regime 9

2.2.1 Evaluation . 10

3 Implementation Development 12
3.1 Integration with the Optique Platform . 12

3.1.1 Integration of the Optique R2RML API . 13
3.1.2 SQL Support in the Mapping Language . 13
3.1.3 SQL Multi-schema Support . 14
3.1.4 SPARQL Support Extension . 15
3.1.5 Sesame API Upgrade . 16

3.2 Novel Reasoning Functionalities . 16
3.2.1 Efficient TBox Reasoning via DAG Manipulation . 16
3.2.2 Consistency Checking . 17
3.2.3 Checking for Empty Classes and Properties . 17

3.3 Extending Ontop with Spatial Features . 19
3.3.1 Supported Spatial Features . 20
3.3.2 Future work . 22

3.4 Releases . 22
3.4.1 Maven . 22
3.4.2 Released Versions . 23

Bibliography 23

A Efficient SPARQL-to-SQL with R2RML Mappings (JWS Paper) 26

B Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime
(ISWC 2014 Paper) 63

3

Chapter 1

Introduction

We start by recalling the main ideas behind the Query Transformation module in Optique, which is being
developed in WP6, exploiting state-of-the-art query translation techniques for query answering in Ontology-
Based Data Access (OBDA) systems. In OBDA, the aim is to query data sources, which typically are
databases managed by a relational database management system (but more in general might be also graph
structured data sources or triple stores), through an ontology over which queries are formulated, and which
provides a conceptual high-level representation of the domain of interest and of the information stored in the
data source. The relationship between the information maintained by the ontology and the data stored at
the sources is specified in a declarative way by means of a set of mappings, where in general each of these
mappings relates a query over the data sources to a query over the ontology. The OBDA system makes use
of the logical axioms that constitute the ontology and of the mappings between the ontology and the data
sources to transform queries that users express in terms of the ontology into queries that can be directly
handled by the system managing the data layer. The ides is to compile into the resulting query both the
ontology axioms and the mapping assertions, so that it suffices to evaluate such a query over the data sources
to obtain the answer to the original query formulated by the user.

OBDA has been investigated extensively in the past years under the assumption that ontologies are
expressed in fragments of OWL 2 (which is the standard language for which Description Logics (DLs) [2]
provide the formal counterpart). Specifically, in a context like the one of the Optique project, where one needs
to access large amounts of data, it has been shown that the OWL 2 QL fragment of OWL 2 (corresponding
to the DL-Lite family of DLs [7, 1]) provides a very good tradeoff between expressive power in the ontology
language and computational complexity of query answering, specifically when measured in terms of the size
of the data (i.e., for data complexity). Moreover, proposals for using mappings to overcome the impedance
mismatch between the (relational) data sources storing values and the ontology maintaining abstract objects
have been devised, and techniques have been studied for compiling the mapping assertions into the query
over the data sources [17, 6].

However, transferring the good theoretical results about (complexity of) query answering to a practical
setting like the one of Optique, where ontologies are potentially very large, mappings are numerous and
have a complex structure, and we are in the presence of big data, turned out to be rather challenging. In
Optique wP6, we are concerned with the development of techniques for query transformation in OBDA, that
on the one hand make the whole transformation process efficient, and on the other hand (and even more
importantly) produce SQL queries that can be evaluated efficiently over the underlying data sources by the
query execution layer (cf. WP7). In addition, such techniques are to be implemented in a highly efficient
query transformation engine, that constitutes the core of the Optique Platform.

In Task 6.1, the aim is to configure the various components of the query transformation system so as
to make efficient query transformation possible. This involves several specific design choices for the various
levels of the query transformation system, most importantly the features supported in the mapping language,
the expressive power of the user query language, and the inference done at the level of the ontology. The
choices are guided by the requirements coming from users of the OBDA system, and specifically from the

4

Optique Deliverable D6.2 Transformation System Configuration Techniques

Optique use cases. In Task 6.1, we proceeded in parallel with Task 6.2 “Runtime Query Rewriting”, about
which we will report in Deliverable D6.3 at the end of month 36 of the Optique project.

In this deliverable, we describe the main contributions that have been provided in Task 6.1 in Year 2
of Optique towards the above objectives, and that we overview in the remaining part of this chapter. We
observe that the results reported here, are to be complemented with those already reported in D6.1 (WP6
Year 1 Progress Report), which also refer in part to the activities that have been carried out in Task 6.1 in
Year 1 of Optique, and that are not repeated here.

Overview of Contributions

The contributions we have provided are of two main kinds:

1. foundational results related to the design and configuration of the query transformation component,
which improve the state-of-the-art in the area.

2. implementation of novel features in the Ontop OBDA system.

As for item 1, we have obtained results regarding the two phases of the translation of user queries. We
first concentrate on the role of mappings in the query answering process, and study what affects the efficient
translation of SPARQL queries formulated over (virtual) RDF data, to SQL queries over the relational
data sources to which the RDF data is mapped (see Section 2.1 and Appendix A). Then we address the
challenges posed by the additional presence of an ontology formulated in the standard OWL 2 QL fragment
(see Section 2.2 and Appendix B).

As for item 2, we recall that the core of the query transformation component in the Optique Platform
(cf. WP2) is provided by the Ontop system developed in the last years by FUB, and that has been brought
by FUB as background to Optique. While Ontop implements state-of-the-art technology for OBDA, it was
still not able to effectively cope with the challenges posed by the Optique use-cases. The main development
effort, effectively carried out in Task 6.4 of WP6 in Year 2, continuing the work started in Year 1, has been
directed towards the implementation of the techniques devised in Task 6.1 (and also Task 6.2), and towards
a better integration in the general Optique Platform.

In WP6, we have worked in close interaction with Statoil and UiO. Indeed, a major effort has been the
extension of the Ontop system with features that on the one hand were driven by the Optique use cases, and
on the other hand were required to improve the conformance to W3C recommendations and/or to industrial
standards. In particular, the features of the system have been configured in such a way that it is able to
deal with the requirements that came up during the experimentation within the Statoil use case, both with
the NPD Factpages and with the EDPS database. We describe below the main extensions that have been
carried out, referring to Chapter 3 in the report where different activities and accomplishments related to
this effort are described in mode detail.

Integration with the Optique Platform. Several adaptations were done to Ontop to better integrate it
in the Optique platform. Moreover to improve also the support for standard languages and libraries, various
extensions of the system functionalities have been implemented (see Section 3.1). Specifically, we carried out
the following improvements of the system:

• support for the R2RML API of the standard R2RML mapping language (Section 3.1.1);

• support for extended SQL in the mapping language, to be able to accommodate, e.g., nested subqueries,
and queries that carry out complex navigation over the data by means of regular expressions, both of
which are required to capture the Statoil use case. (Sections 3.1.2);

• support for queries over multiple schemas (Section 3.1.3), which was required due to the fact that
EPDS contains multiple schemas, each with several tables;

5

Optique Deliverable D6.2 Transformation System Configuration Techniques

• improved support for the SPARQL query language (Section 3.1.4), and

• support for the OpenRDF Sesame API, and migration to the newest version of Sesame (Section 3.1.5).

Novel Reasoning Functionalities. We have optimized TBox reasoning and realized novel ontology rea-
soning functionalities that support the diagnosis of incorrect elements in the ontology and in the mappings,
thus improving the design phase (cf. also Optique WP4) (Section 3.2). Specifically, we have provided a new
efficient implementation of the TBox reasoner (Section 3.2.1), and we have implemented functionalities to
check the consistency of the ontology with respect to the database and mappings (Section 3.2.2), and to
check for empty classes and properties (Section 3.2.3). We have also developed an extension of Ontop with
spatial features (Section 3.3).

6

Chapter 2

Foundational Results on OBDA

In this chapter, we describe some foundational results on OBDA that have been obtained in Optique in the
context of WP6. These results have been published in prestigious international venues, and the corresponding
publications are included as appendixes in this report. In this chapter, we provide a brief overview of the
obtained results in terms of short summaries of the publications, and refer to the publications in the appendix
for a comprehensive treatment of the presented results.

• Martin Rezk, Mariano Rodriguez-Muro.
Efficient SPARQL-to-SQL with R2RML mappings. To appear in Journal of Web Semantics (JWS),
2014.

The main results of this publication (which is included as Appendix A), are summarized in Section 2.1.

• Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, and Michael Zakharyaschev.
Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime. In Proc. of the
13th Int. Semantic Web Conference (ISWC), 2014.

The main results of this publication (which is included as Appendix B), are summarized in Section 2.2.

2.1 Efficient SPARQL-to-SQL with R2RML Mappings

One of the most promising approaches for on-the-fly query answering over virtual RDF is query answering by
query rewriting. That is, answer the queries posed by the user (e.g., SPARQL queries) by translating them
into queries over the database (e.g., SQL). This kind of technique has several desirable features; notably,
since all data remain in the original source there is no redundancy, the system immediately reflects any
changes in the data, and well-known optimizations for relational databases can be used.

To be efficient in practice, the query rewriting technique must produce “reasonable” SQL queries, that
is, queries that are not excessively large or too complex to be optimized by the DB engine. Thus, the
query rewriting technique needs to tackle two different issues: (i) a query translation problem that involves
RDB-to-RDF mappings over arbitrary relational schemas, and (ii) a query optimization problem.

There exist a number of techniques and systems that address the problem of SPARQL to SQL translation,
such as the ones described in [10, 8, 19]. However, each of these approaches has limitations that affect critical
aspects of query answering over virtual RDF. These limitations include the generation of inefficient or even
incorrect SQL queries, lack of formal background, and poor implementations.

In order to optimize the queries and generate efficient SQL, we exploit datasource metadata such as
primary and foreign keys to eliminate redundant joins. This redundancy arises often because the RDF data
model (over which SPARQL operates) is a ternary model (s p o) while the relational model is n-ary. Hence,
the SPARQL equivalent of SELECT * FROM t on an n-ary table t requires exactly n triple patterns. When
translating each of these triple patterns, a SPARQL-to-SQL technique will generate an SQL query with
exactly n − 1 self-join operations. It is well known that keeping these redundant joins is detrimental for

7

Optique Deliverable D6.2 Transformation System Configuration Techniques

SPARQL query q

R2RML mappings

Datalog ΠM
Q Relational Algebra

SQL queriesRelational DB

+

translation

+

Optimization

DB Metadata

Figure 2.1: Proposed approach for translation of SPARQL to optimized SQL through Datalog with R2RML
mappings

performance and a lot of research has been devoted to optimizing SQL queries in these cases. The most
prominent area that investigates this subject is Semantic Query Optimization (SQO), from which we borrow
techniques to optimize SPARQL translations.

The approach presented here, and depicted in Figure 2.1, deals with all the aforementioned issues. First,
the SPARQL query and the R2RML mappings are translated into a Datalog program; the Datalog program
is not meant to be executed, but instead we view this program as a formal representation of the query and the
mappings that we can manipulate and transform into SQL. Second, we perform a number of structural and
semantic optimizations on the Datalog program, including optimization with respect to database metadata. We
do this by adapting well known techniques for optimization of logic programs and SQL query optimization.
Once the program has been optimized, the final step is to translate it to relational algebra/SQL, and to
execute it over the relational database. The technique is able to deal with all aspects of the translation,
including URI and RDF Literal construction, RDF typing, and SQL optimization. It is implemented by the
Ontop system, which provides the core query answering engine in the Optique architecture.

2.1.1 Experiments

We provide an evaluation of our SPARQL-to-SQL technique implemented in Ontop using DB2 and MySQL
as backends. We compared Ontop with two systems that offer similar functionality to Ontop (i.e., SPARQL
through SQL and mappings): Virtuoso RDF Views 6.1 (open source edition) and D2RQ 0.8.1 Server over
MySQL. We also compared Ontop with three well known triple stores: OWLIM 5.3, Stardog 1.2, and Virtuoso
RDF 6.1 (open source).

We considered the following benchmarks:

BSBM. The Berlin SPARQL Benchmark (BSBM) [5] evaluates the performance of query engines utilizing
use cases from the e-commerce domain.

FishMark. The FishMark benchmark [3] is a benchmark for RDB-to-RDF systems that is based on a fragment
of the FishBase DB, a publicly available database about fish species.

We observed that for BSBM, the query rewriting step takes around 10 ms in average. This is around
20%- 40% of the execution time. The queries had very high selectivity, therefore the execution time is small.
For instance, Ontop requires 4ms to rewrite Query 1, and 17ms to perform the whole execution (including
rewriting). The harder is the execution in the database, the smaller is the impact of the query rewriting step
on the execution time.

We also compared the execution time of the SPARQL queries with the original BSBM SQL queries. We
run these queries directly over the database engine, therefore the execution time includes neither the rewriting
time, nor the time to post-process the SQL result set to generate an RDF result set. The performance
obtained by MySQL is clearly much better than the one obtained by all the other Q&A systems, although
the gap gets smaller as the dataset increases. It is worth noting that these queries are not SQL translation
of SPARQL queries, thus they are intrinsically simpler, for instance, by not considering URIs.

Next, we can see is that for BSBM in almost every case, the performance obtained with Ontop’s queries
executed by MySQL or DB2 outperforms all other Q&A systems by a large margin. The only cases in which

8

Optique Deliverable D6.2 Transformation System Configuration Techniques

this doesn’t hold are when the number of clients is less than 16 and the dataset is small (BSBM 25). This
can be explained as follows: Ontop’s performance can be divided in three parts, (i) the cost of generating
the SQL query , (ii) the cost of execution over the RDBMs and (iii) cost of fetching and transforming the
SQL results into RDF terms. When the queries are cached, (i) is absent, and if the scenario includes little
data (i.e., BSBM 25), the cost of (ii), both for MySQL and DB2, is very low and hence (iii) dominates. We
attribute the performance difference to a poor implementation of (iii) in Ontop, and the fact triple stores do
not need to perform this step. However, when the evaluation considers 16 parallel clients, executing Ontop’s
SQL queries with MySQL or DB2 outperforms other systems by a large margin. We attribute this to DB2’s
and MySQL’s better handling of parallel execution (i.e., better transaction handling, table locking, I/O,
caching, etc.). When the datasets are larger, e.g., BSBM 100/200, Ontop (i) stays the same. In these cases,
(ii) dominates (iii), since in both benchmarks queries return few results.

Regarding the FishMark benchmark, Ontop outperforms the rest almost in every case even from 1 single
client. In FishMark, the original tables are structured in such a way that many of the SPARQL JOINs can
be simplified dramatically when expressed as optimized SQL. For example, a FishMark query with 16 Join
operations, when translated into SQL, Ontop is able to generate a query with only 5 joins.

2.2 Answering SPARQL Queries over Databases under OWL2QL Entail-
ment Regime

The SPARQL 1.1 query language, a W3C recommendation since 2013, has been designed to support various
entailment regimes. As in the case of answering conjunctive queries over ontologies, these regimes are
meant to provide more answers to SPARQL queries over RDF graphs by completing the knowledge by
means of ontologies. The OWL2 direct semantics entailment regime allows SPARQL queries over OWL2DL
ontologies and RDF graphs, however query answering under this regime is intractable (coNP-hard for data
complexity). Therefore, we investigate answering SPARQL queries under a less expressive entailment regime,
which corresponds to OWL2QL, a profile of OWL 2 designed for efficient query answering. Moreover, we
assume that data is stored in relational databases, and its relational schema is linked to the vocabulary of
SPARQL queries by means of R2RML mappings.

We show how, given a SPARQL query, an OWL2QL ontology, an R2RML mapping and a database
instance, to obtain an equivalent SQL query that can be evaluated over the database only. This is possible
due to the following intermediate transformations:

1. First, answering SPARQL queries under the OWL2QL direct semantics entailment regime is reducible
to answering queries under simple entailment. That is, for each SPARQL query q and OWL2QL
ontology, we can construct a SPARQL query q† that can be evaluated on any dataset directly. More
precisely, q† is evaluated over the virtual RDF graph obtained from a given relational database instance
through the R2RML mappings.

2. Second, the SPARQL query q† can be translated to an equivalent SQL τ (q†) query over a relational
representation of the virtual RDF graph as a 3-column table.

3. Finally, the resulting SQL query can be unfolded, using the R2RML mapping M, to a SQL query
trM(τ (q†)) over the original database.

These consecutive translations can be represented graphically as follows:

SPARQL query
& ontology SPARQL query

virtual RDF graphentailment
regime

simple entailment

SQL query

triple-database

evaluation

SQL query

database

evaluation

† τ trM

mapping M≈

9

Optique Deliverable D6.2 Transformation System Configuration Techniques

As in the more traditional OBDA setting, rewriting a SPARQL query into an SQL query that can
be evaluated over the database by a relational engine has many advantages. However, for efficient query
answering, the produced SQL query should be of a reasonable size and shape so that the DB engine is able
to process it in an optimal way. Unfortunately, each of the three transformations may involve an exponential
blowup. This problem is tackled in Ontop using the following optimization techniques.

(i) The mapping is compiled with the ontology into a T -mapping and optimized by database dependencies
(e.g., primary, candidate and foreign keys) and SQL disjunctions.

(ii) The SPARQL-to-SQL translation is optimised using null join elimination.

(iii) The unfolding is optimised by eliminating joins with mismatching R2RML IRI templates, de-IRIing
the join conditions and using database dependencies.

These optimization techniques give rise to the following architecture to support answering SPARQL
queries under the OWL2QL entailment regime with data instances stored in a database. As input we have
an ontology T , a database D over a schema Σ, and an R2RML mappingM connecting the languages of Σ
and T . The process of answering a given OWL2QL query (P, V) involves two stages, off-line and on-line.

OFFLINE ONLINE

ontology T
(intensional part)

R2RML
mapping M

OWL 2 QL
reasoner

T -mapping
optimiser

OWL 2 QL
query (P, V)

classified ontology

T -mapping M′

DB integrity constraints Σ

entailment regime
rewriter

OWL 2 QL query (P †, V)
over H-complete RDF graph
under simple entailment

SPARQL to SQL
translator

SQL query trM′(τ (P †))

The off-line stage takes T ,M and Σ and proceeds via the following steps:

(1) An OWL2QL reasoner is used to obtain a complete class / property hierarchy in T .
(2) The compositionMT ofM with the class and property hierarchy in T is taken as an initial T -mapping,

and then optimised by (i) eliminating redundant triple maps detected by query containment with inclu-
sion dependencies in Σ, (ii) eliminating redundant joins in logical tables using the functional dependencies
in Σ, and (iii) merging sets of triple maps by means of interval expressions or disjunctions in logical
tables. LetM′ be the resulting T -mapping over Σ.

The on-line stage takes an OWL2QL query (P, V) as an input and proceeds as follows:

(3) The graph pattern P and T are rewritten to the OWL2QL graph pattern P † over the H-complete virtual
RDF graph GD,M′ under simple entailment by applying the classified ontology of step (1) to instantiate
class and property variables and then using a query rewriting algorithm.

(4) The graph pattern P † is transformed to the SQL query τ (P †) over the 3-column representation triple
of the RDF graph. Next, the query τ (P †) is unfolded into the SQL query trM′(τ (P †)) over the original
database D. The unfolded query is optimised using the techniques similar to the ones employed in
step (2).

(5) The optimised query is executed by the database.

2.2.1 Evaluation

The architecture described above has been implemented in Ontop. We evaluated its performance using the
LUBM Benchmark extended with queries containing class and property variables (a total of 21 queries), and
compared it with two other systems, OWL-BGP r123 and Pellet 2.3.1. We can summarize the performance
of Ontop as follows:

10

Optique Deliverable D6.2 Transformation System Configuration Techniques

• Generally, Ontop requires less time to start up, as it does not perform costly pre-computations as
OWL-BGP and Pellet do.

• For first-order queries, due to the optimizations, the SQL queries produced by Ontop are simple, so
the database engine is able to process them efficiently.

• As for queries with second-order variables, Ontop performs not as good as with the other queries,
however still considerably well.

• While Pellet outperforms Ontop on small datasets, only Ontop is able to provide answers for very large
datasets.

11

Chapter 3

Implementation Development

In this chapter, we present the major changes that have been implemented in Ontop, that were directly
driven by the Statoil use case to tackle a variety of issues that came up during the experimentation both
with the NPD Factpages and with the EDPS database.

In Section 3.1, we describe the adaptations done to Ontop to better integrate it in the Optique platform,
and to improve the support for standard languages and libraries. In Section 3.2, we discuss the new more
efficient TBox reasoning implementation, and the novel ontology reasoning services that exploit it, namely
consistency checking, and checking for empty classes and properties. We describe also the development of
an extension of Ontop with spatial features. Finally, in Section 3.4, we describe the publication of Ontop on
the central Maven repository, and report on the last stable releases of the system.

3.1 Integration with the Optique Platform

The Optique consortium agreed to adopt the following languages and libraries for the Optique platform:

• The mapping language should be W3C R2RML [9] and the mappings should be handled using the
corresponding R2RML API.

• SQL dialects of major database systems should be supported as R2RML source queries.

• End-user queries should be expressed in SPARQL.

• The software interface for RDF, SPARQL, and repository management should be the Sesame API1.

During the second year of the Optique project, a significant part of the development has been dedicated
to support the aforementioned standards and libraries. More specifically:

• We have provided support for R2RML by integrating the new Optique R2RML API (Section 3.1.1).

• We have extended the SQL support by integrating the JSQLParser library (Section 3.1.2) and dealing
with multi-schema queries (Section 3.1.3).

• We have improved the support of SPARQL by accepting BIND expressions and UNIONs inside OP-
TIONAL blocks (Section 3.1.4).

• We have upgraded the Sesame API in Ontop to the latest 2.7.x version (Section 3.1.5).

1http://www.openrdf.org/

12

http://www.openrdf.org/

Optique Deliverable D6.2 Transformation System Configuration Techniques

3.1.1 Integration of the Optique R2RML API

The mapping language R2RML [9] developed by the W3C RDB2RDF Working Group2 has been chosen as
the mapping language in the Optique platform since the beginning of the Optique project. At that time, no
Java API for parsing and representing R2RML was available, therefore, at FUB, we had to develop from
scratch the first version of the R2RML implementation, using the Sesame library to parse the R2RML input
as an RDF graph.

Based on this first implementation, the new Optique R2RML API was developed as a standalone library
by UiO [18] and released under the Apache License3. The core of the new API is designed to be “independent
of the dependencies” [18] and several bridge extensions have been provided for the OWL, Jena, and Sesame
APIs. The new API also fixed several bugs of the former version.

To integrate the Optique R2RML API, we first deployed the new R2RML API to the Bolzano Maven
repository, since it is not available on the official Maven repository yet. The core of the API is:

<dependency>

<groupId>org.optique-project</groupId>

<artifactId>r2rml-api</artifactId>

<version>0.1.3</version>

</dependency>

We also need the Sesame bridge artifact to use the new API with the Sesame library:

<dependency>

<groupId>org.optique-project</groupId>

<artifactId>r2rml-api-sesame-bridge</artifactId>

<version>0.1.3</version>

</dependency>

The next step was to carefully replace the old ad-hoc code by the new API, which makes the bi-directional
translation from R2RML to the native mapping syntax of Ontop easier. The Ontop system is now plainly
accessible to users who are familiar with the R2RML recommendation.

After integrating the new R2RML API, Ontop is able to cover almost all R2RML mappings present in
the Optique use cases. Moreover, it passes 90% (80/87) of the W3C R2RML Compliance Tests4; see the
dedicated Wiki page5 for a detailed report.

3.1.2 SQL Support in the Mapping Language

Mapping assertions contain the correspondence between the predicates of the ontology and the appropriate
SQL queries over the relational data source. The Ontop system needs to process the SQL source queries from
the mapping assertions to transform them into an internal Datalog representation. A critical component of
the SQL query analysis is the SQL parser. The Ontop system was using an ad-hoc SQL parser that was only
supporting a small fragment of the SQL standard.

We decided to integrate a new SQL parser, namely the JSQLParser6, which is an open source library
that has proven its ability to support special features and different syntax of the most common databases. In
particular this API was chosen because it supports the main databases required by Ontop (Oracle, MySQL,
PostgreSQL, MS SQLServer, H2 and DB2) and it is currently still under active development to integrate
new features for the less common SQL features. JSQLParser allows one to parse more general forms of SQL
queries (including subqueries in SQL) present in the mappings. It is structured to parse an SQL statement

2http://www.w3.org/2001/sw/rdb2rdf/
3https://github.com/R2RML-api/R2RML-api
4http://www.w3.org/2001/sw/rdb2rdf/test-cases/
5https://github.com/ontop/ontop/wiki/W3C-R2RML-Compliance
6https://github.com/JSQLParser/JSqlParser

13

http://www.w3.org/2001/sw/rdb2rdf/
https://github.com/R2RML-api/R2RML-api
http://www.w3.org/2001/sw/rdb2rdf/test-cases/
https://github.com/ontop/ontop/wiki/W3C-R2RML-Compliance
https://github.com/JSQLParser/JSqlParser

Optique Deliverable D6.2 Transformation System Configuration Techniques

and translate it into a hierarchy of Java classes; then the generated Java class hierarchy can be navigated
according to the visitor pattern.

JSQLParser has been easily integrated with Ontop as a Maven dependency. We implemented new
Visitor classes to visit the statement (the parsed query) and retrieve information about tables, projections,
selections, join conditions, and alias mappings. The visitor pattern is convenient for incrementally adding
new features. When our parser does not know how to parse the query correctly, we replace the SQL query
by a view. However, such views penalize the performance at evaluation time, so it is recommended to use
supported terms in the mappings as much as possible.

We describe briefly the new supported features. For instance, using a SubSelectionVisitor class, we
have now the possiblity to support simple subqueries of the following form:

select * from

(select * from tb_books) as CHILD, (select * from tb_authors) as PARENT

WHERE CHILD.bk_code = PARENT.bk_code

These subqueries are considered simple subselects because they do not have joins or WHERE conditions.
It is important for Ontop to recognize them and parse them accordingly because they appear frequently in
mappings and they are required to support R2RML mappings. Additionally more SQL functions can be
handled:

• LIKE was introduced by adding a new LIKE expression for Datalog conversion.

• IN is handled using equality and OR expressions.

• BETWEEN is handled using OR and AND expressions.

• Regular expressions are not part of standard SQL and each database supports them differently. DB2
and MS SQL Server do not provide an operator for regular expressions, while the other databases use
different syntaxes. In Ontop, we support REGEX in Oracle, MySQL, PostgresSQL and H2.

The supported operators for regular expressions are:

– in MySQL REGEXP [BINARY]
– in H2 and Postgres ∼, ∼ ∗, ! ∼, ! ∼ ∗
– in Oracle REGEXP_LIKE

The new SQL parser is also used for supporting multi-schema queries, as presented in the coming sub-
section.

3.1.3 SQL Multi-schema Support

Some databases have schemas that can be used to separate a database into different namespaces. The schema
is used as a prefix to the object name. For example, in PostgresSQL, the table animals in schema zoo can be
accessed by the identifier zoo.animals. The prefix is unnecessary when accessing the current/default schema.

In Ontop, we added the multi-schema support in order to allow users to query tables from different
schemas. To achieve this, we improved the Ontop Mapping-to-Datalog converter. It is now able to recognize
the database system from the JDBC connection and to adjust itself to its specificities. Indeed, each database
support schemas differently:

• In PostgreSQL, the default schema is public.

• In Oracle, the default schema is the username.

• In MySQL, schema and database are equivalent.

• In Microsoft SQL Server, the default schema is dbo.

14

Optique Deliverable D6.2 Transformation System Configuration Techniques

• In H2, the default schema is PUBLIC.

• In DB2, the object to be created is assigned to the default schema with the value of the session
authorisation ID.

In the multi-schema settings, the local name of a table is no longer unique. Therefore, the table is identified
by its full prefixed name in Ontop and in the database metadata.

Metadata

The schema information is taken from the database metadata. In Ontop virtual mode, we can fetch metadata
in three different ways:

Constructor. The metadata is provided by the user. In the database metadata, we are able to insert a list
of data definitions. The table definitions should respect the schema.table naming convention.

Full metadata. The data definitions are added to the metadata, and table and column names are retrieved
from the JDBC connection to the database.

Parsed mappings. Table names are extracted from the mappings while column names are retrieved from
the JDBC connection.

In Ontop, multi-schema queries are supported in the constructor and parsed mappinga modes only.
Particular attention must be given to the choice of quotes and cases in the table and column names. The

case handling of identifiers is database-specific. As a general rule, if quotes are consistently not used, Ontop
will always support the identifiers. Unquoted table and view names are translated internally by the Ontop
system to the default case of the database engine. With respect to this, please note that:

• Oracle and H2 change unquoted identifiers to uppercase automatically.

• DB2 names are not case sensitive. Unquoted object names are converted to uppercase. If a name
is enclosed in quotation marks, the name becomes case sensitive. However, the schema name is case
sensitive, and must be specified in uppercase characters.

• PostgreSQL changes unquoted identifiers (both column and alias names) to lowercase.

• MySQL changes the unquoted columns to lowercase. Tables are stored as files in the running server,
so the case sensitivity of database and table names depends on the host operating system.

• Microsoft SQL Server is not case sensitive by default.

3.1.4 SPARQL Support Extension

The SPARQL support has been improved: BIND expressions are now accepted and OPTIONAL blocks are
better handled.

BIND

By supporting the BIND construct, values can be assigned to variables. For instance, in the following query,
the discounted price is computed by the expression BIND (?p*(1-?discount) AS ?price):

PREFIX : <http://it.unibz.krdb/obda/test/simple#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price WHERE

{ ?x ns:hasPrice ?p .

15

Optique Deliverable D6.2 Transformation System Configuration Techniques

?x ns:hasDiscount ?discount .

BIND (?p*(1-?discount) AS ?price) .

FILTER(?price < 20) .

?x dc:title ?title .

}

OPTIONAL

We developed techniques for supporting the SPARQL OPTIONAL construct combined with UNION in the
second argument. Observe that the OPTIONAL construct (unlike JOIN) is not distributive with respect to
UNIONs, and since the process of unfolding the query with respect to the mappings introduces UNIONs,
correctly dealing with OPTIONAL and UNION together required quite significant changes in the unfolding
process and the SQL generation step. Essentially, queries with OPTIONAL cannot always be unfolded to
Union of Conjunctive Queries UCQs, therefore we implemented a new Datalog Unfolder using a bottom-up
approach. In addition, the old implementation of SQL Generator can only handle UCQs. We extended the
SQL Generator so as to handle acyclic Datalog programs. The new SQL generator is also essential for the
new future features in Ontop, like SWRL rules.

3.1.5 Sesame API Upgrade

The OpenRDF Sesame API7 is the Java API used in the Optique platform for integrating Ontop. This
integration is made possible by the fact that in, the Optique platform, Ontop acts as a Sesame Repository
by implementing the Sesame Repository API.

During the reporting period, we have upgraded Ontop to support Sesame 2.7.10, which at the time of the
migration was the newest available version. The migration itself required substantial effort, because Sesame
packages themselves underwent a lot of structural changes with respect to the previous version that was
adopted in Ontop (see the release note of Sesame 2.7.108). Given the substantial changes that had to be
implemented to carry out the migration, this was also the right occasion to refactor the Ontop code, fully
committing package names, artifact ids, and other component names to the name “ontop”.

3.2 Novel Reasoning Functionalities

The TBox reasoner, which is responsible for classifying the concepts and properties of the OWL 2 QL
ontology, is a crucial component of Ontop. Classification provides the basis for all other inference tasks,
notably query answering, to which also consistency checking is then reduced (see Section 3.2.3). Note that,
in the design phase of the OBDA system, where users operating with the Optique Platform make additions
and changes both to the ontology and to the mappings, classification and consistency checking are operations
that need to be carried out repeatedly while interacting with users. Therefore efficiency of classification (and
hence of consistency checking) crucially affects overall usability of the system.

3.2.1 Efficient TBox Reasoning via DAG Manipulation

Ontop supports the OWL 2 QL profile of OWL 2, and for such ontology language, TBox reasoning is
NLogSpace-complete [1]. This means that it relies essentially on reachability in directed acyclic graphs
(DAGs). The previous implementation of Ontop was relying on an ad-hoc non-optimized implementation of
operations for the manipulation of DAGs, and thus was suffering from performance limitations. DAGs were
built directly without paying attention to the presence or introduction of redundant edges, i.e., those edges
that can be derived by transitivity from other ones in the graph.

7http://www.openrdf.org/
8https://openrdf.atlassian.net/secure/ReleaseNote.jspa?projectId=10000&version=10060

16

http://www.openrdf.org/
https://openrdf.atlassian.net/secure/ReleaseNote.jspa?projectId=10000&version=10060

Optique Deliverable D6.2 Transformation System Configuration Techniques

We have devised a new implementation, in which DAGS are not built directly anymore. Instead, we
start creating graphs that already contain all the information present in the ontology but still admit cycles
and redundant edges. Optimized DAGs are built later, giving more flexibility to the system, by using the
JGraphT library9 as a tool for graph manipulation. We put special attention to choose optimal algorithms
for reachability checking. In particular the implemented algorithm for strongly connected components follows
the Cheriyan-Mehlhorn/Gabow approach [11] and we provide new algorithms to iterate and traverse a DAG
for the TBox reasoner. Optimization based on DL-Lite TBox reasoning using DAGs [13] makes reasoning
efficient for query answering. Optimized DAGs built in our implementation are used to index information
and to create a mapping with the database. The TBox reasoner is used for traversing the ontology.

More concretely, starting from the TBox provided by the user, two graphs are generated for properties and
classes, respectively. The graph representation of property inclusions in the ontology contains also implicit
inclusions. For example, it contains an inclusion between the inverses of properties R and S if R is declared
as sub-property of S in the ontology. Graphs are later transformed into optimized DAGs in such a way that
entailment checking in the TBox is reduced to reachability checking in the corresponding graph. Each DAG
vertex represents a set of equivalent classes or properties, while edges form a minimal set, whose transitive
and reflexive closure coincides with the transitive and reflexive closure of the ontology graph. In this way,
the TBox reasoning services, including those that are exploited by the query rewriting algorithm, can be
performed efficiently.

3.2.2 Consistency Checking

Consistency checking is one of the basic DL reasoning tasks. In DL-LiteR (i.e., OWL 2 QL), there are three
types of TBox axioms that can cause inconsistency with respect to the data retrieved via the mappings from
the underlying data source: disjoint class axioms, disjoint properties, and functional properties. Following
the approach described in [7], we have implemented consistency checking by reducing it to answering suitable
SPARQL ASK queries over the given ontology. Such queries correspond to Boolean queries, i.e., queries that
return either true or false. Specifically, the queries are as follows:

• For each disjoint class axiom owl:DisjointClasses(A,B) , we create a query:
ASK { ?x a A ; a B }

• For each disjoint object property axiom owl:DisjointObjectProperties(P,Q) or disjoint data prop-
erty axiom owl:DisjointDataProperties(P,Q), we create a query:
ASK { ?x P ?y; Q ?y }

• For each functional property axiom owl:FunctionalObjectProperty(P) or
owl:FunctionalDataProperty(P), we create a query:
ASK { ?x P ?y; P ?z. FILTER (?z != ?y) }

If one of these ASK queries is evaluated to true, the ontology is inconsistent; otherwise no violations could
be detected and the ontology is consistent.

The consistency checking feature is available in the Java API of Ontop and also in its Protégé Plugin, as
shown in Figure 3.1.

3.2.3 Checking for Empty Classes and Properties

When a class or a property is not mapped to the data sources, i.e., it does not appear in any of the mapping
assertions, Ontop will not be able to retrieve any instances of that class/property from the underlying data.
The same might also happen when the mapping for a class/property is specified incorrectly. In such cases, the
class/property appears to be empty. Hence, checking for empty classes and properties is useful to diagnose
some common mapping problems, and correct them by (properly) defining mappings. We added a new

9https://github.com/jgrapht/jgrapht

17

Optique Deliverable D6.2 Transformation System Configuration Techniques

Figure 3.1: Ontop Inconsistency checking feature for Protégé plugin

feature to the Ontop Protégé plugin that allows the user to find empty classes and properties, and to check
if some of them correspond to missing data.

In Protégé, the user can select in the ontop menu the action Check for empties.... A frame is then displayed
that counts and lists the empty classes and properties (see Figure 3.2). This feature is also available in the
Java API.

Figure 3.2: Ontop Emptiness checking feature for Protégé plugin

In order to achieve this, the respective SPARQL queries generated for each property and concept are:

SELECT * WHERE {?x <property> ?y. }

SELECT * WHERE {?x a <class>. }

Each SPARQL query is translated by Ontop into a SQL query before being evaluated by the database.
If the query provide no result, then the corresponding property or concept is declared to be empty.

18

Optique Deliverable D6.2 Transformation System Configuration Techniques

Figure 3.3: The Linked Open Data cloud

3.3 Extending Ontop with Spatial Features

We describe now the development, carried out at UoA, of an extension of Ontop with spatial features, named
Ontop-spatial. The motivation behind the development of Ontop-spatial is to increase the expressive power
of the queries that can be posed against the Optique platform, by adopting features of GeoSPARQL [15],
especially for the Statoil use case, where geospatial data are handled. With this spatial extension in place,
the geospatial dimension of this data can be fully exploited, by enabling users to pose geospatially rich queries
such as “Find wellbores that are spatially contained in a specific discovery area”.

We were also motivated by the emerging interest of scientific communities from various domains (e.g.,
earth scientists) that produce and process geospatial data to publish them as linked geospatial data in order
to be used combined with other sources. Figure 3.3 illustrates the Linked Open Data cloud (LOD), in which
the datasets that have been published as linked geospatial data appear in yellow colour.

Following to this trend, the Semantic Web community has been very active in the previous years in the
geospatial domain, proposing data models, query languages, systems, and applications for the representation,
querying, and management of geospatial data in the Semantic Web. The development of solutions for the
production, publishing, and use of geospatial data have played central role in EU FP7 projects as well, such
as TELEIOS10, LEO11, MELODIES12, and GeoKnow13. On the other hand, research on relational geospatial
databases counts decades, leading to several efficient geospatial DBMS.

Despite the extensive research in the fields of the relational databases and the Semantic Web on the
development of solutions for handling geospatial data efficiently, there is no -to the best of our knowlege-
OBDA system that enables the creation of virtual, geospatial RDF graphs on top of geospatial databases.
This would be of major importance for scientists that produce and process geospatial data, as they mainly

10http://www.earthobservatory.eu/
11http://www.linkedeodata.eu/
12http://www.melodiesproject.eu/
13http://geoknow.eu/

19

http://www.earthobservatory.eu/
http://www.linkedeodata.eu/
http://www.melodiesproject.eu/
http://geoknow.eu/

Optique Deliverable D6.2 Transformation System Configuration Techniques

store them in traditional geospatial databases (e.g., PostGIS, SpatiaLite, etc.). With the existing solutions
in place, these scientists are forced to transform their data to RDF in order to publish them and/or use them
in combination with other sources. This is the case for most of the use cases in the EU projects mentioned
above. For example, in the project LEO, a tool named GeoTriples14 has been developed. GeoTriples extends
D2RQ in order to transform data that reside in geospatial databases (e.g., PostGIS), or other geospatial
formats (e.g., Shapefiles) in RDF. In the work described in this section, we follow a different direction: Users
do not have to transform their data and then store them in a geospatial RDF store in order to process them
and combine them with other RDF data. They will be able to access them transparently, based on R2RML
mappings.

The need for representing and querying geospatial data in the Semantic Web led to the development of
geospatial extensions in RDF and SPARQL, such as the ones presented in [14, 16, 15]. The data model
stRDF and the query language stSPARQL is an extension of RDF and SPARQL 1.1, respectively, developed
for the representation and querying of spatial [14] and temporal data (i.e., the valid time of triples [4]).
Our partner UoA developed this framework at the same period when GeoSPARQL was being developed.
Another framework that has been developed for the representation and querying of geospatial data on the
Semantic Web is GeoSPARQL, which is an OGC standard. GeoSPARQL and stSPARQL were developed
independently, but they have a lot of features in common, the most important of which are that they both
adopt the OGC standards serializations WKT and GML for representing geometries, and that they both
support spatial analysis functions as extension functions. Their main differences derive from the fact that
stSPARQL extends SPARQL 1.1., so it inherits and extends important features of SPARQL 1.1., providing
support for spatial updates and spatial aggregates.

3.3.1 Supported Spatial Features

In the direction of extending Ontop with spatial features, the first issue that had to be addressed was
selecting which spatially-enhanced query language should be supported, of the ones described above. We
selected GeoSPARQL for the following reasons:

• It is a widely adopted OGC standard

• The topological extension of GeoSPARQL allows binary topological relations to be used as RDF prop-
erties. This could be useful for the Statoil use case

• The additional features offered by stSPARQL (spatial updates, spatial aggregates) do not seem neces-
sary for the use cases of the project.

However, given the fact that GeoSPARQL and stSPARQL are very similar, both languages could be
supported in the future.

By the reporting period, the following features are supported by Ontop-spatial:

• The WKT Datatype. There are two standard ways of expressing geometry serializations in RDF
defined by OGC: using literals of the datatypes WKT and GML. Using standard WKT and GML
literals is also compliant with R2RML, which already supports the use of custom datatypes by using
the rr:datatype primitive. Ontop-spatial extends Ontop with the capability to support standard
WKT literals and GML literals will also be supported in the future.

• Spatial filters. Spatial relations can appear as SPARQL extension functions in the filter clause of
the query, as defined in GeoSPARQL. This is a collection of topological query funcitons that oper-
ate on geometry literals defined in the Geometry Topology Extension component of GeoSPARQL.
More specifically, the current version of Ontop-spatial supports the Simple Features relation family
(Requirement 22 of the GeoSPARQL specification), the Egenhofer relation family (Requirement 23 of
the GeoSPARQL specification), and the RCC8 Relation family (Requirement 24 of the GeoSPARQL

14http://sourceforge.net/projects/geotriples/

20

http://sourceforge.net/projects/geotriples/

Optique Deliverable D6.2 Transformation System Configuration Techniques

specification). These functions are implemented as SPARQL extension functions, as specified in the
standard, and can be placed in the FILTER clause of a query, in order to express either spatial selections
or spatial joins. According to the specification, these functions must appear in the SELECT clause of
the query as well, and this feature is not yet supported in this initial version of Ontop-spatial, but it
will be supported in the future.

Examples of geospatial queries that are currently supported in Ontop-spatial are given below.
Example 1. Select the location of wellbores that are contained in field areas.

SELECT distinct ?w2

WHERE { ?x1 :hasGeometry ?g1 .

?g1 geo:asWKT ?w1 .

?x1 rdf:type :fieldArea .

?x2 :hasGeometry ?g2 .

?x2 rdf:type :wellborePoint .

?g2 geo:asWKT ?w2 .

FILTER(geo:contains(?g2,?g1))

}

The query described above uses the boolean extension function geo:contains to express a spatial filter.
This filter is internally translated into the respective spatial operator of the underlying geospatial database,
performing a spatial join.
Example 2. Select the field areas that contain the wellbore located in (2.497514,56.847728).

SELECT distinct ?w

WHERE { ?x rdf:type :fieldArea .

?x :hasGeometry ?g .

?g geo:asWKT ?w .

FILTER(geo:contains(w,"POINT(2.497514 56.847728")))

}

Similarly, this filter is internally translated into the underlying SQL operator, performing a spatial selec-
tion.

Implementation. The current implementation of Ontop-spatial extends Ontop release 1.12. A lot of
extensions had to be performed in the Ontop components (some of them in the core), the most significant
of which are as follows.

• The SPARQL parser. Ontop uses the Sesame15 library to parse SPARQL queries. Sesame in turn
generates its SPARQL parser using javacc16. To support the GeoSPARQL features described above,
such as the spatial extension functions in the FILTER clause of the query, a new javacc parser was
generated for Sesame, and that was used in turn for Ontop-spatial.

• SPARQL-to-Datalog Translator. The boolean extension functions described above are translated into
a Datalog predicate.

• Datalog-to-SQL Translator. Datalog spatial predicates are translated into the respective SQL spatial
function, which is supported by the underlying geospatial DBMS. Note here that, as there is no stan-
dardized syntax for the spatial functions in relational databases, the SQL adapters should be adjusted
accordingly. Currently, PostGIS is supported as an underlying geospatial relational database.

15http://www.openrdf.org/
16https://javacc.java.net/

21

http://www.openrdf.org/
https://javacc.java.net/

Optique Deliverable D6.2 Transformation System Configuration Techniques

• SQL generator. The SQL generator of Ontop was extended so that geometry columns are identified. In
spatial relational databases, geometries are mostly stored in the Well Known Binary (WKB) format,
which is not a standard SQL datatype. Information in WKB is exported as text (WKT) in Ontop.

Theoretical formulation of the translations described above is on-going work, which will be presented in
the future.

3.3.2 Future work

We have presented our work on extending the system Ontop with the ability to represent and query geospatial
information stored in a geospatial back-end, by supporting a big subset of the OGC standard GeoSPARQL.
In the future, we plan to continue our work in the following directions:

• Formalize the translation from GeoSPARQL into “spatial” SQL

• Carry out an experimental evaluation with systems that offer similar functionality (e.g., geospatial
RDF stores). The benchmark presented in [12] could be used in this case.

• Extend our implementation into the direction of supporting more GeoSPARQL features (e.g., spatial
features in the select clause of queries, spatial aggregates, etc.)

The issues described above is on-going work and a publication based on them is under preparation. Also,
we plan to integrate Ontop-spatial into the Optique platform.

3.4 Releases

In agreement with the Optique consortium, in year 2 of Optique we have started releasing Ontop under the
Open Source Apache 2 license. Like many Java libraries, Ontop has been published on the central Maven
repository, so it can be easily integrated as a dependency in any other Java-based system. We keep releasing
new stable versions with bug fixes and new features every three to four months. An internal log reports
around 420 new registrations in this period.

3.4.1 Maven

Apache Maven is a popular software project management and comprehension tool adopted by most of the
open source Java projects. In contrast with the former approach of downloading jar files manually, Maven
allows users to simply declare the dependencies in a dedicated XML file.

All the artifacts of Ontop share the groupId it.unibz.inf.ontop. The artifactIds are ontop-obdalib-core,
ontop-obdalib-owlapi3, ontop-obdalib-protege4, ontop-obdalib-sesame, ontop-obdalib-r2rml,
ontop-quest-db, ontop-quest-owlapi3, ontop-quest-sesame, ontop-reformulation-core.

Since version 1.10, Ontop has been deployed to the central Maven repository. For instance, if a user
wants to use the OWL API interface of Ontop, she can simply declare a suitable dependency by adding the
following code to the file pom.xml:

<dependency>

<groupId>it.unibz.inf.ontop</groupId>

<artifactId>ontop-quest-owlapi3</artifactId>

<version>1.12.0</version>

</dependency>

For the Optique platform, the most important Ontop dependency is its Sesame API interface, which is
available under the ontop-quest-sesame artifact:

22

Optique Deliverable D6.2 Transformation System Configuration Techniques

<dependency>

<groupId>it.unibz.inf.ontop</groupId>

<artifactId>ontop-quest-sesame</artifactId>

<version>1.12.0</version>

</dependency>

3.4.2 Released Versions

In the second year of Optique, we have released four stable versions of Ontop. We provide here a brief
summary of each release. A complete change log is available on a dedicated wiki17.

Version 1.10, released on 06/12/2013. This is the first version released under the Apache 2 license and
published on the central Maven repository (cf. Section 3.4.1).

Version 1.11, released on 19/02/2014. This release integrates the JSQLParser (cf. Section 3.1.2). It intro-
duces support for consistency checking (cf. Section 3.2.2), multi-schema queries (cf. Section 3.1.3), the
SQL terms IN, BETWEEN, and LIKE, and the SPARQL term BIND (cf. Section 3.1.4). The Sesame
API has been upgraded to the version 2.7.10 (cf. Section 3.1.5).

Version 1.12, released on 26/06/2014. This version integrates the new Optique R2RML API (cf. Sec-
tion 3.1.1). It features a faster TBox reasoner implementation (cf. Section 3.2.1), and emptiness
checking for classes and properties (cf. Section 3.2.3).

Version 1.13, released on 29/09/2014. This version features support for regular expressions in mappings
(cf. Section 3.1.2), proper handling of datatypes in ontologies and mappings, stream output in the
Protégé plugin, and support for the HSQL database.

17https://github.com/ontop/ontop/wiki/ObdalibPluginChangeLog

23

https://github.com/ontop/ontop/wiki/ObdalibPluginChangeLog

Bibliography

[1] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The DL-Lite
family and relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2nd edition, 2007.

[3] Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark van Harmelen, Rafael S.
Goncalves, and Cristina Garilao. FishMark: A linked data application benchmark. In Proc. of the Joint
Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW 2012), volume
943, pages 1–15. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2012.

[4] Konstantina Bereta, Panayiotis Smeros, and Manolis Koubarakis. Representation and querying of valid
time of triples in linked geospatial data. In Proc. of the 10th Extended Semantic Web Conf. (ESWC),
volume 7882 of Lecture Notes in Computer Science, pages 259–274. Springer, 2013.

[5] Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark. Int. J. on Semantic Web and
Information Systems, 5(2):1–24, 2009.

[6] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Mari-
ano Rodríguez-Muro, and Riccardo Rosati. Ontologies and databases: The DL-Lite approach. In Sergio
Tessaris and Enrico Franconi, editors, Reasoning Web. Semantic Technologies for Informations Systems
– 5th Int. Summer School Tutorial Lectures (RW), volume 5689 of Lecture Notes in Computer Science,
pages 255–356. Springer, 2009.

[7] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of
Automated Reasoning, 39(3):385–429, 2007.

[8] Artem Chebotko, Shiyong Lu, , and Farshad Fotouhi. Semantics preserving SPARQL-to-SQL transla-
tion. Data and Knowledge Engineering, 68(10):973–1000, 2009.

[9] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF mapping language.
W3C Recommendation, World Wide Web Consortium, September 2012. Available at http://www.w3.
org/TR/r2rml/.

[10] Brendan Elliott, En Cheng, Chimezie Thomas-Ogbuji, and Z. Meral Ozsoyoglu. A complete transla-
tion from SPARQL into efficient SQL. In Proc. of the 2009 Int. Database Engineering & Applications
Symposium (IDEAS), pages 31–42. ACM Press, 2009.

[11] H. N. Gabow. Path-based depth-first search for strong and biconnected components. Information
Processing Lett., 74, 2000.

[12] George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. Geographica: A benchmark for geospatial
RDF stores (long version). In Proc. of the 12th Int. Semantic Web Conf. (ISWC), volume 8219 of Lecture
Notes in Computer Science, pages 343–359. Springer, 2013.

24

http://ceur-ws.org/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/

Optique Deliverable D6.2 Transformation System Configuration Techniques

[13] Sarah Seyenam Adjoa Komla-Ebri. DL-Lite reasoning using directed acyclic graphs. Master’s thesis,
Free University of Bozen-Bolzano, Italy, 2013.

[14] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A semantic geospatial
DBMS. In Proc. of the 11th Int. Semantic Web Conf. (ISWC), volume 7649 of Lecture Notes in Computer
Science, pages 295–311. Springer, 2012.

[15] Open Geospatial Consortium (OGC). GeoSPARQL – a geographic query language for RDF data. OGC
Candidate Implementation Standard, 02 2012.

[16] Matthew S. Perry. A Framework to Support Spatial, Temporal and Thematic Analytics over Semantic
Web Data. PhD thesis, Wright State University, Dayton, OH, USA, 2008. AAI3324256.

[17] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati. Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.

[18] Marius Strandhaug. An R2RML mapping management API in java – making an API independent of
its dependencies. Master’s thesis, Department of Informatics, University of Oslo, 2014.

[19] Fred Zemke. Converting SPARQL to SQL. Technical report, Oracle Corporation, 2006.
Available at http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/att-0058/

sparql-to-sql.pdf.

25

http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/att-0058/sparql-to-sql.pdf
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/att-0058/sparql-to-sql.pdf

Appendix A

Efficient SPARQL-to-SQL with R2RML
Mappings

This appendix reports the paper:

Martin Rezk, Mariano Rodriguez-Muro:
Efficient SPARQL-to-SQL with R2RML mappings. To appear in Journal of Web Semantics (JWS),
2014.

26

Efficient SPARQL-to-SQL with R2RML mappings

Mariano Rodríguez-Muro1 , Martin Rezk1

1 KRDB Research Centre, Free University of Bozen-Bolzano

Abstract

Existing SPARQL-to-SQL translation techniques have limitations that reduce their robustness, efficiency and dependability. These
limitations include the generation of inefficient or even incorrect SQL queries, lack of formal background, and poor implementa-
tions. Moreover, some of these techniques cannot be used over arbitrary DB schemas due to the lack of support for RDB to RDF
mapping languages, such as R2RML. In this paper we present a technique (implemented in the -ontop- system) that tackles all these
issues. We propose a formal approach for SPARQL-to-SQL translation that (i) generates efficient SQL by combining optimization
techniques from the logic programming and SQL optimization fields; (ii) provides a well-defined specification of the SPARQL
semantics used in the translation; and (iii) supports R2RML mappings over general relational schemas. We provide extensive
benchmarks using the -ontop- system for Ontology Based Data Access (OBDA) and show that by using these techniques -ontop- is
able to outperform well known SPARQL-to-SQL systems, as well as commercial triple stores, by several orders of magnitude.

Keywords: OBDA, -ontop-, SPARQL, Datalog, SQL, R2RML, RDF, RDB-to-RDF, RDBMS

1. Introduction

In an Ontology-Based Data Access (OBDA) framework,
queries are posed over a conceptual layer and then translated
into queries over the data layer. The conceptual layer is given
in the form of an ontology that defines a shared vocabulary,
and the data layer is in the form of one or more existing data
sources. In this context, the most widespread data model for the
conceptual layer and its matching query language are RDF (the
Resource Description Framework) and SPARQL. Today, most
enterprise data (data layer) is stored in relational databases, thus
it is crucial that OBDA frameworks support RDB-to-RDF map-
pings. The new W3C standard for RDB-to-RDF mappings,
R2RML [10], was created towards this goal.

R2RML mappings are used to expose relational databases
as virtual RDF graphs. These virtual graphs can be material-
ized, generating RDF triples that can be used with RDF triple
stores, or they can also be kept virtual and queried only dur-
ing query execution. The virtual approach avoids the cost of
materialization and (may) allow to profit from the more than
30 years maturity of relational systems (e.g., efficient query
answering, security, robust transaction support, etc.). One of
the most promising approaches for on-the-fly query answering
over virtual RDF is query answering by query rewriting, that
is, translating the original SPARQL query into an equivalent
SQL query. This SQL query is then delegated to the DBMS
for execution. In order to use these advantages provided by the
DBMS, the query rewriting technique must produce “reason-
able” SQL queries, that is, not excessively large or too complex

Email addresses: mrodrig@us.ibm.com (Mariano
Rodríguez-Muro1), mrezk@inf.unibz.it (Martin Rezk1)

Mariano Rodríguez-Muro is currently working at IBM T.J. Watson Re-
search Center.

to be efficiently optimized by the DB engine. Thus, the query
rewriting technique needs to tackle two different issues: (i) a
query translation problem that involves RDB-to-RDF mappings
over arbitrary relational schemas, and (ii) a query optimization
problem. There exist a number of systems and techniques re-
lated to this problem, such as the ones described in [12, 9, 34],
However, each of these approaches has limitations that affect
critical aspects of query answering over virtual RDF. These lim-
itations include the generation of inefficient or even incorrect
SQL queries, lack of formal background, and poor implemen-
tations. Moreover, some of them lack support for arbitrary DB
schemas. since they do not support RDB to RDF mapping lan-
guages, such as, R2RML.

The approach presented in this paper, and depicted in Fig-
ure 1, deals with all the aforementioned issues. First, the
SPARQL query and the R2RML mappings are translated into
a Datalog program; the Datalog program is not meant to be
executed, instead we view this program as a formal represen-
tation of the query and the mappings that we can manipulate
and then transform into SQL. Second, we perform a number of
structural and semantic optimizations on the Datalog program,
including optimization with respect to database metadata. We
do this by adapting well known techniques for optimization of
logic programs and SQL query optimization. Once the program
has been optimized the final step is to translate it to relational
algebra/SQL, and to execute it over the relational database. The
technique is able to deal with all aspects of the translation, in-
cluding URI and RDF Literal construction, RDF typing, and
SQL optimization. This is the technique implemented in the -
ontop- system for OBDA, a mature open source system that is

http://ontop.inf.unibz.it/

Preprint submitted to Journal of Web Semantics October 31, 2014

currently being used in a number of projects and that currently
outperforms other similar systems, sometimes by several orders
of magnitude. -ontop- is available as a SPARQL endpoint, as a
OWLAPI and Sesame query engine and as a Protege 4 plugin.

The contributions of this paper are four: (i) a formal
approach for SPARQL-to-SQL translation that generates effi-
cient SQL by adapting and combining optimization techniques
from logic programming the query optimization; (ii) a rule
based formalisation of R2RML mappings that can be integrated
into our technique to support mappings to arbitrary database
schemas; (iii) a discussion of the SQL features that are rele-
vant in the context of SPARQL-to-SQL systems and that should
be avoided to guarantee good performance in today’s relational
engines, together with experiments that validate these observa-
tions; (iv) an extensive evaluation comparing -ontop- with well
known RDB2RDF systems and triple stores, showing that using
the techniques presented here -ontop- can outperform them.

The rest of the paper is organized as follows: In Section 2
we briefly survey other works related to SPARQL-SQL trans-
lation. In Section 3 we introduce the necessary background.
In Section 4 we present the core technique for translation of
SPARQL to SQL. In Section 5 we show how to incorporate
R2RML mappings into our approach. In Section 6 we provide
a discussion on the SQL features that degrade performance of
query execution. In Section 7 we describe how to optimise our
technique with respect to the issues discussed in Section 7 by
applying techniques from logic programming and SQL query
optimization. In Section 8 we provide an evaluation of the per-
formance of the technique. In Section 9 we conclude the paper.
All proofs are given in the appendix.

2. Related Work

In this section we briefly survey related works regarding
SPARQL query answering. We focus on two different but
closely related topics: RDF stores and SPARQL to SQL trans-
lations.

RDF stores. Several RDF stores, such as RStar [23] and Vir-
tuoso 6.1 [13], use a single table to store triples. This approach
has the advantage that it is intuitive, flexible, and the mappings
between the conceptual and data layer (if needed) are trivial.
On the other hand such approach cannot use the known opti-
mizations developed for normalized relational DBs—many of
which are currently used in -ontop-. Our approach uses existing
relational databases together with R2RML mappings to obtain
a virtual representation of the RDF graph. In addition to the
RDF stores mentioned above, we explore the commercial RDF
stores Stardog and OWLIM more in detail in Section 8.

Stardog is a commercial RDF database developed by
Clark&Parsia that supports SPARQL 1.1. Although it is a
triplestore, this system uses query-rewriting techniques [25],
but they do not translate SPARQL into SQL. Observe that the
optimizations presented here and that are needed to produce

http://stardog.com/

an efficient SQL, might not be relevant for Stardog (and other
triplestores) since the underlying backend is not a relational
database.

Virtuoso 7 also provides column-wise compressed
storage[14], which may be much faster than traditional
row stores. -ontop- (and any other general SPARLQ-to-
SQL techniques) may also benefit from the performance of
column-stores that support SQL, e.g., MonetDB.

SPARQL-to-SQL. Regarding SPARQL-to-SQL translations,
there have been several approaches in the literature, cf. [12,
9, 34]. In addition one can also include here translations from
SPARQL to Datalog [27, 26, 2] given that: (i) SPARQL (under
set semantics) has the same expressive power of non-recursive
safe Datalog with default negation [2]; and (ii) any recursion-
free safe Datalog program is equivalent to a SQL query [33].
The work in [27] extends and improve the ones in [26, 2] by
modeling SPARQL 1.1 (under bag semantics, where duplicates
are allowed), modeling non-safe queries, and modeling the
W3C standard semantics to the SPARQL Optional. Since [26]
was published before the publication of the SPARQL standard
specification, the semantics presented there was not the same
as in the standard. To keep the presentation simple, in this pa-
per we will use the “academic” set semantics of SPARQL, as
in [24, 26, 2]. We build and re-use several results from the
works mentioned above, however we extend this line of re-
search in several ways. First, we include R2RML mappings
in the picture; second, we provide a (concrete) SQL transla-
tion from the Datalog program obtained from the input query;
and third, we optimize and evaluate the performance of this ap-
proach. It is worth noticing that not any SQL query correctly
translated from the Datalog program is acceptable, since (i) one
has to deal the mismatch between types in SPARQL and SQL;
and (ii) the syntactic form of SQL queries can severely affect
their performance.

In [12, 9] the authors propose a translation function that
takes a query and two many-to-one mappings: (i) a map-
ping between the triples and the tables, and (ii) a mapping
between pairs of the form (triple, pattern, position) and re-
lational attributes. Compared to that approach, -ontop- al-
lows much richer mappings, in particular the W3C standard
R2RML [10]. Moreover, these approaches assume that the un-
derlying relational DB is denormalized, and stores RDF terms.
The SPARQL generation technique presented in [12] lacks for-
mal semantics. Another distinguishing feature of the work pre-
sented here is that it includes an extensive evaluation based on
well-known benchmarks and large volumes of data.

The work in [9] was published before the publication of the
SPARQL standard specification, thus the semantics it uses in
the translation is not the same as in the standard document. The
main difference is in the definition of the Optional algebra oper-
ator that in SPARQL 1.1 it has a non-compositional semantics
with respect to the filter expression in the second argument. The
work in [9] was recently extended in [28] to include R2RML

Non-safe queries: queries with filter expressions that mention variables
that do not occur in the graph pattern being filtered.

2

SPARQL query q

R2RML mappings

Datalog ΠM
Q Relational Algebra

SQL queriesRelational DB

+

translation

+

Optimization

DB Metadata

Figure 1: Proposed approach for SPARQL to optimized SQL through Datalog with R2RML mappings.

mappings in the picture. However, [28] did not update the se-
mantic of the Optional algebra operator to make it composi-
tional.

In [12, 9] they present an ad-hoc evaluation with a much
smaller dataset. The work described in [34] also proposes
a SPARQL-SQL translation, but exhibits several differences
compared to our approach: it uses non-standard SQL con-
structs, it does not formally prove that the translation is correct,
and it lacks in empirical results testing the proposed approach
with real size DBs. Ultrawrap uses a view based technique
for translating SPARQL to SQL [32]; however the optimization
techniques used in the system appear to fail in several scenar-
ios (see Section 4). We are also aware of other (non-published)
techniques used in commercial and open source SPARQL-to-
SQL engines, such as, D2RQ and VirtuosoRDF Views. We
empirically show in Section 8 that the translation provided in
this paper is more efficient than the ones implemented in those
systems.

Several of these approaches have also discussed different op-
timizations to obtain more efficient SQL queries. We summa-
rized the most relevant ones to this work in Figure 2. In Sec-
tion 6 we described in detail the different optimizations per-
formed by -ontop-. It is worth noticing that although when we
say that a system do not perform a given optimization, we mean
that such optimization has not been published as part of the
system (to the best of our knowledge). In addition, when we
say that a system (beside -ontop-) performs an optimization, it
means that there is a publication that mentions it. However,
often articles such as [32] [28] cover very briefly these topics
omitting important details and issues that are critical for perfor-
mance. For instance, [28] does not tackle URI templates in the
optimization section, and [32] presents a technique that can not
remove string concatenation from JOIN conditions when keys
are missing or when the involved URI templates have different
arity.

3. Preliminaries

In this section we review the material required for the pre-
sentation of the core SPARQL-to-SQL technique and the opti-
mization techniques.

3.1. Logic Programs
We start by reviewing basic notions from standard logic pro-

gramming [22] needed in following sections. Intuitively, a rule
is a logic statement of the form:

If condition A holds then conclude B (1)

Next we present the formal definitions.

Syntax. The language L in traditional logic programming con-
sists of:

• A countably infinite set of variablesV.
• A countably infinite set of function symbolsF , where con-

stants are treated as 0-arity function symbols.
• A countably infinite set of predicates P.
• The symbols {∀,∃,∧,→,not }

Terms and atoms are defined as usual in first order logic. We
denote the set of all atoms in the language as A. Atoms will be
also called positive literals. The symbol not will be used for
default negation. A literal is either an atom or its negation. Lit-
erals that do not mention not are said to be not -free. Otherwise
we say they are not -literals.

A logic program is a collection of statements (called rules)
of the form

∀~x : (l0 ← l1 ∧ · · · ∧ lm ∧ not lm+1 ∧ · · · ∧ not ln) (2)

where each li is a literal, l0 is not -free, and ~x are all the variables
mentioned in l0 . . . ln. The literal l0 is called the head of the rule.
The set of literals {l1, . . . , ln} is called the body of the rule. If the
body is empty, then← can be dropped, and the rule is called a
fact. We may also use the term clause to refer to a rule or a fact.

Given a rule r of the form (2), the sets {l0}, {l1 . . . lm}, and
{lm+1 . . . ln} are referred to as head(r), pos(r) and neg(r) respec-
tively. The set lit(r) stands for head(r) ∪ pos(r) ∪ neg(r).

As standard convention, (2) will be simply written as:

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (3)

We may also replace the symbol ← by :- . An expression—
a rule, a program, or a literal—is called ground if it does not
contain any variable.

Queries are statements of the form

∃X̄ : l1 ∧ ... ∧ lm (4)

where l1, ..., lm are literals and X̄ are all the variables mentioned
in l1, ..., lm. The existential quantifier is usually omitted and
comma is used often in lieu of the conjunction symbol ∧.

Stable model semantics for Logic Programs. In this section,
we review the main concepts of stable model semantics [15].
Intuitively, a stable model of a program is a set I of atoms such
that: (i) for every rule in the program, if the condition of the
rule is satisfied by I, then the conclusion of the rule is in the
model; and (ii) I is minimal in the sense that removing an atom
from I would violate some rule in the program.

3

Name -ontop- [12] [9] Morph[28] Ultrawrap

Self-Join Elimination Yes No No Yes Yes
Push Join into Union Yes No No No No
Detection Unsat. Conditions Yes No No Yes Yes
Remove URIs from Join Yes No No Yes Yes

Figure 2: Optimisations presented in the OBDA literature

For the sake of simplicity, we assume that logic rules are of
the form (3) and ground. Lifting to the non-ground case is done
in a standard way.

The Herbrand universe, U, is just the set of all constants in
the language L. The Herbrand base, B, is a set of all ground
literals in the language. Note that the Herbrand universe and
Herbrand base are infinite, fixed, and depend only on the lan-
guage L.

Definition 1 (Herbrand interpretation). A Herbrand inter-
pretation,M, is consistent a subset of the Herbrand base. 2

Observe that under stable model semantics, interpretations
are 2-valued. Satisfaction of a formula φ by Herbrand interpre-
tation,M, denotedM |= φ, is defined as follows:

• M |= l, where l is a (not -free) literal, iff l ∈ M.
• M |= φ1 ∧ φ2, iffM |= φ1 andM |= φ2.
• M |= not φ, iff it is not the case thatM |= φ.
• M |= r, where r is a ground rule of the form (3), iff l0 ∈ M

wheneverM |= l1 ∧ . . . lm andM |= not (lm+1 ∧ . . . ln).
Given a not -free program Π, we write M |= Π if M |= r

for every rule r ∈ Π. In this case we say that M is a stable
model (a.k.a. answer set) of Π. It is known that every not -free
program Π has a unique least model [3]—a modelM0 such that
for any other model N of Π, l ∈ M0 implies l ∈ N for any l ∈ B.

To extend the definition of stable model (answer set) to arbi-
trary programs, take any program Π, and let I be a Herbrand
interpretation in L. The reduct, Π(S), of Π relative to a subset
of the Herbrand Base S is obtained from Π by first dropping
every rule of the form (3) such that {lm+1, . . . , ln} ∩ M , ∅;
and then dropping the {lm+1, . . . , ln} literals from the bodies of
all remaining rules. Thus Π(M) is a program without default
negation.

Definition 2 (Stable Model). A Herbrand interpretationM is
a stable model for Π ifM is an answer set for Π(M). 2

Observe that not every program has stable models, for in-
stance, the following rule has not stable model.

p← not p

Definition 3 (Entailment). A program Π entails a ground lit-
eral l, written Π |= l, if l is satisfied by every stable model of Π.
2

Let Π be a program and q a query. (for simplicity we assume
that q is a not -free literal), we say that the program Π’s answer
to q is yes if Π |= li for every i = 1 . . .m, no if Π |= not li for
some i = 1 . . .m, and unknown otherwise.

Partial Evaluation. Partial evaluation is a logic programs tech-
nique in which, given a logic program Π, one computes a new
program Π’ that represents the partial execution of Π. This
technique is used to either iteratively simplify the program to
either compute the model of Π or to obtain a more efficient rep-
resentation of the program. In this paper we use two notions of
partial evaluation, i.e., partial evaluation with respect to a set of
facts (used in the proofs of soundness and completeness) and
partial evaluation with respect to a goal (i.e., query) which we
use to optimize our Datalog programs for SQL efficiency. We
now elaborate on both notions.

Partial Evaluation w.r.t. a goal. Let G be a query (a.k.a. goal)
as defined in above (c.f. Equation 4). Given a program Π, in-
tuitively the partial evaluation of Π produces a new program
Π′ that represents a pre-computation of Π needed to answer the
goal G. Observe that Π′ should still provide sound and com-
plete answers with respect to Π, and that G should run more
efficiently for Π′ than for Π.

The notion of partial evaluation with respect to a goal is built
on top of several other logic programming notions. We now
start recalling the basic ones. All of these can be found in [21,
18].

Definition 4 (substitution). A substitution θ is a finite set of
the form {x1/t1, . . . , xn/tn}, where for each i = 1, . . . , n:

1. xi is a variable,

2. ti is a term distinct from xi

3. for each x j (j , i) it holds that xi , x j

Each element xi/ti is called a binding for xi.

Definition 5 (instance). Let θ = {x1/t1, . . . , xn/tn} be a substi-
tution and E be an expression. Then Eθ, the instance of E by θ,
is the expression obtained from E by simultaneously replacing
each occurrence of the variable xi (i = 1, . . . , n) in E by the
term ti.

Definition 6 (unifier). Let S be a nonempty set of expressions
(terms, atoms or a literals). A substitution θ is called unifier
of S if for every pair of expressions E1, E2 ∈ S, it holds that
E1θ = E2θ.

Definition 7 (most general unifier). A unifier θ of a set of ex-
pressionsS is called most general unifier (mgu) ofS if for every
unifier τ of S, every binding in θ is also in τ.

4

We note that computing a mgu for a set of expressions can be
done in linear time [21]. Now we introduce the important no-
tions of partial evaluation the we exploit later. All these notions
where introduced in [20].

Now define how new rules are computed from existing rules,
a core step in SLD-resolution and the base for the computation
of a partial evaluation.

Definition 8 (goal derivation). Let G be the goal
← A1, . . . , Am, . . . , Ak and C be a not -free rule of the
form

A← B1, . . . , Bq

Then G’ is derived from G and C using the most general unifier
(mgu) θ if the following conditions hold:

• Am is an atom in G, called the selected atom,

• θ is a mgu of Am and A, and

• G′ is the goal

← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ

where (A1, . . . , An)θ = A1θ, . . . , Anθ and Aθ is the atom
obtained from A applying the substitution θ

That is, a goal derivation is obtained by computing a mgu
θ between the selected atom and the head of another rule C,
replacing the selected atom with the body of C, and applying θ
to the resulting goal.

Now we introduce a key concept, SLD-Tree’s. That is, the
structure that represents a full SLDNF-resolution computation
for a program. This structure is crucial since it allows us to
manipulate the computation in an abstract way and describe its
properties. The SLD-Tree nodes are resultants, which are de-
fined next:

Definition 9 (resultant). A resultant is an expression of the
form

Q1 ← Q2

where Qi (i = 1, 2) is either absent or a conjunction of liter-
als. All variables in Q1 and Q2 are assumed to be universally
quantified.

Definition 10 (SLD-tree). Let Π be a program and let G be a
goal. Then, a (partial) SLD-Tree of Π ∪ {G} is a tree satisfying
the following conditions:

• Each node of the tree is a resultant,

• The root node is Gθ0 ← G0, where Gθ0 = G0 = G (i.e., θ0
is the empty substitution),

• Let Gθ0 . . . θi ← Gi be a node at depth i ≥ 0 such that
Gi has the form Ai, . . . , Am, . . . , Ak, and suppose that Am

is the selected atom. Then, for each input not -free rule
A ← B1, . . . , Bq such that Am and A are unifiable with
mgu θi+1, the node has a child

Gθ1θ2 . . . θi+1 ← Gi+1

where Gi+1 is derived from Gi and Am by using θi+1, i.e.,
Gi+1 has the form

(A1, . . . , B1, . . . , Bq, . . . , Ak)θi+1

• Nodes that are the empty not -free rule have no children.

Given a branch of the tree, we say that it is a failing branch if
it ends in a node such that the selected atom does not unify with
the head of any not -free rule. Moreover, we say that a SLD-
tree is complete if all non-failing branches end in the empty
not -free rule.

Finally, given a node Qθ ← Qn at depth i, we say that the
derivation of Qi has length i with computed answer θ, where θ
is the restriction of θ0, . . . , θi to the variables in G, i.e., θ is the
subset substitutions in θ0, . . . , θi such that for each substitution
domain is a variable in G.

Now we define the notion of the partial evaluation (PE) of
an atom and the partial evaluation of a query.

Definition 11 (partial evaluation (PE) of A in P). Let Π be a
program, A an atom, and T a SLD-tree for Π ∪ {← A}. Let
G1, . . . ,Gr be a set of (non-root) goals in T such that each non-
failed branch of T contains exactly one of them. Let Ri(i =

1, . . . , r) be the resultant of the derivation from← A down to Gi

associated with the branch leading to Gi. Then

• the set of resultants π = {R1, . . . ,Rr} is a PE of A in Π.
These resultants have the following form

Ri = Aθ1 ← Qi(i = 1, . . . , r)

where we have assumed Gi =← Qi

Definition 12 (partial evaluation of P w.r.t. A). Let Π be a
not -free program and A atom, a partial evaluation of Π with
respect to A is a program Π′ obtained by replacing the set of
not -free rules in Π whose head contains A (called the partially
evaluated predicate) with a partial evaluation of A in Π.

For an example of this process see Section 7.

Partial Evaluation w.r.t. a set of literals. Next we will ex-
plain how partial evaluation is used to iteratively compute the
intended model of a program. In the following, we will work
with stratified programs; these have certain properties that we
will use through out the paper and we now introduce. Intu-
itively, a program Π is stratified if it can be partitioned or split
into disjoint strata Π0 . . .Πn such that: (i) Π = Π0∪· · ·∪Πn, (ii)
Π0 is not -free, and (iii) all the negative literals in Πi (0 < i ≤ n)
are only allowed to refer to predicates that are already defined in
Πi−1. Intuitively, in a stratified program Π, the intended model
is obtained via a sequence of bottom-up derivation steps. In the
first step, Π is split into stratums. The first stratum is a bottom
part that does not contain negation as failure. Since this sub-
program is positive, it has a unique stable model. Having sub-
stituted the values of the bottom predicates in the bodies of the
remaining rules, Π is reduced to a program with fewer strata.

5

By applying the splitting step several times, and computing ev-
ery time the unique stable model of a positive bottom, we will
arrive at the intended model of Π. Further details can be found
in [29].

Definition 13 (Splitting Set [19]). A splitting set for a pro-
gram Π is any set U of literals such that for every rule r ∈ Π,
if head(r) ∩ U , ∅ then lit(r) ⊂ U. If U is a splitting set for
Π, we also say that U splits P. The set of rules r ∈ Π such that
lit(r) ⊂ U is called the bottom of Π relative to the splitting set
U and denoted by bU(Π). The subprogram Π \ bU(Π) is called
the top of Π relative to U. 2

Definition 14 (Partial Evaluation w.r.t. a set of literals).
The partial evaluation of a program Π with splitting set U with
respect to a set of literals X, is the program eU(Π, X) defined as
follows. For each rule r ∈ Π such that

(pos(r) ∩ U) ⊂ X and (neg(r) ∩ U) ∩ X = ∅

put in eU(Π, X) all the rules r′ that satisfy the following property

head(r′) = head(r)
pos(r′) = pos(r) \ U
neg(r′) = neg(r) \ U

2

Definition 15 (Solution). Let U be a splitting set for a pro-
gram Π. A solution to Π with respect to U is a pair (X,Y)
of literals such that

• X is an stable model for bU(Π)
• Y is an stable model for eU(Π \ bU(Π), X)
• X ∪ Y is consistent. 2

Example 1. [5] Consider the following program Π :

a← b,not c
b← c,not a
c←

The set U = {c} splits Π; the last rule of Π belongs to the bottom
and the first two rules from the top. Clearly, the unique stable
model for the bottom of Π is {c}. The partial evaluation of the
top part of Π consists in dropping its first rule, because the
negated subgoal c makes it useless, and in dropping the trivial
positive subgoal c in the second rule. The result of simplifica-
tion is the program consisting of one rule

b← not a (5)

The only stable model for P can be obtained by adding the only
stable model for (5), which is {b}, to the stable model for the
bottom used in the evaluation process, {c}. 2

Proposition 1. [19] Let U be a splitting set for a program Π.
A set S of literals is a consistent stable model for Π if and only
if S = X ∪ Y for some solution (X,Y) of Π with respect to U.

3.2. Relational Algebra and SQL
Relational Algebra is a formalism for manipulating relations

(e.g., sets of tuples). It’s mainly used as the formal grounds
for SQL and we will use it to represent SQL queries (there is
a direct correspondence from one to the other). We now in-
troduce the basic notions of relational algebra. The operations
in relational algebra that takes one or two relations as inputs
and produce a new relation as a result. These operations enable
users to specify basic retrieval request.

In this section we use the following notation: r, r1, r2 denote
relational tables, t, t2 denote tuples, c1, c2 denote attributes,
v1 . . . vn denote domain elements, p denotes a filter condition,
jn denotes join condition of the form r1.ci = r2.c j . . . r1.c′i =

r2.c2
′ and the function col(r) returns the set of attributes of r.

The following are the relational algebra operators used in this
paper:

Union (∪): This binary operator, written as, r1 ∪ r2, requires
that the two relations involved must be union-compatible, that
is, the two relations must have the same set of attributes. The
result includes all tuples that are in r1 or in r2.

r1 ∪ r2 = {t | t ∈ r1 or t ∈ r2}
Cartesian Product (×): This binary operator, written as, r1 × r2,
requires that the two relations involved must have disjoint set of
attributes. The result includes all tuples that are in r1 or in r2.

r1 × r2 = {t1, t2 | t1 ∈ r1 and t2 ∈ r2}
Difference (\): This binary operator, written as, r1 \ r2, requires
that the two relations involved must be union-compatible, that
is, the two relations must have the same set of attributes. The
result includes all tuples that are in r1 but not in r2.

r1 \ r2 = {t | t ∈ r1 and t < r2}
Selection (σ): This operator is used to choose a subset of the
tuples (rows) from a relation that satisfies a selection condition,
acting as a filter to retain only tuples that fulfills a qualifying
requirement.

σp(r) = {t | t ∈ r and p(t)}
Rename (ρ): This is a unary operation written as, ρc1/c2 (r),
where the result is identical to r except that the c1 attribute in
all tuples is renamed to a c2 attribute.

Projection (Π): This operator is used to reorder, select and filter
out attributes from a table.

Πc1...ck (r) = {v1 . . . vk | vk . . . vn ∈ r}
In order to ease the presentation, we will often mimic SQL

and include the renaming in the projection using AS state-
ments. Thus, we write Πc1 AS c2 (r) to denote ρc1/c2 (r). We
will also overload the projection with statements of the form
Πconstant AS c2 (r) where constant is null, or an string, or a con-
catenation of an string and an attribute. Observe that this sec-
ond operation can be easily encoded in relational algebra using
auxiliary tables. For instance, Πconstant AS c2 (r), can be encoded

6

as ρnullttr/c2Πattr(r)\ c2 r × NullTable where NullTable is a table
with a single attribute nullttr and a single null record.

Natural join (1): This is a binary operator written as, r1 1 r2,
where the result is the set of all combinations of tuples in r1 and
r2 that are equal on their common attribute names.

r1 1 jn r2 = Πsc(σ jn(r1 × r2))

Left join (): This is a binary operator written as, r1 r2,
where the result is the set of all combinations of tuples in R
and S that are equal on their common attribute names, in ad-
dition (loosely speaking) to tuples in r1 that have no matching
tuples in r2.

r1 jnr2 = (r1 1 jn r2)∪
((r1 \ Πcol(r1)(r1 1 jn r2))×
NullTableattr(r2)\attr(r1))

where NullTableattr(r2)\attr(r1) is a table with a attributes attr(r2)\
attr(r1) and a single record consisting only on null values.

Recall that every relational algebra expression is equivalent
to a SQL query. Further details can be found in [1].

3.3. SPARQL.
For formal purposes we will use the algebraic syntax of

SPARQL similar to the ones in [26, 2] and defined in the stan-
dard. However, to ease the understanding, we will often use
graph patterns (the usual SPARQL syntax) in the examples. It
is worth noticing, that although in this paper we restrict our-
selves to SELECT queries, in -ontop- we also allow ASK, DE-
SCRIBE and CONSTRUCT queries, which can be reduced or
implemented using SELECT queries.

The SPARQL language that we consider contains the follow-
ing pairwise disjoint countably infinite sets of symbols: I, de-
noting the IRIs, B, denoting blank nodes, L, denoting RDF lit-
erals; and V, denoting variables.

The SPARQL algebra is constituted by the following graph
pattern operators (written using prefix notation): BGP (basic
graph pattern), Join, LeftJoin, Filter, and Union. A basic graph
pattern is a statement of the form:

BGP(s, p, o)

where s ∈ I ∪ B ∪ V, p ∈ I ∪ V, and o ∈ I ∪ B ∪ L ∪ V. In
the standard, a BGP can contain several triples, but since we
include here the join operator, it suffices to view BGPs as the
result of ./ of its constituent triple patterns. Observe that the
only difference between blank nodes and variables in BGPs, is
that the former do not occur in solutions. So, to ease the pre-
sentation, we assume that BGPs contain no blank nodes. The
remaining algebra operators are:

• Join(pattern,pattern)
• LeftJoin(pattern,pattern,expression)
• Union(pattern,pattern)
• Filter(pattern,expression)

http://www.w3.org/TR/rdf-sparql-query/#sparqlAlgebra

and can be nested freely. Each of these operators returns the
result of the sub-query it describes. Details on how to trans-
late SPARQL queries into SPARQL algebra can be found in the
W3C specification, and, in addition, several examples will be
presented along the paper.
Note. Converting Graph Patterns. It is critical to notice that
graph patterns are not translated straightforwardly into algebra
expressions. There is a pre-processing of the graph patterns
where filter expressions are either moved to the top of graph, or
absorbed by LeftJoin expressions. Details can be found in the
SPARQL 1.0 specification.

A SPARQL query is a graph pattern P with a solution modi-
fier, which specifies the answer variables, that is, the variables
in P whose values should be in the output. In this work we
ignore this solution modifiers for simplicity.

Definition 16 (SPARQL Query). Let P be a SPARQL algebra
expression, V a set of variables occurring in P, and G a set of
RDF triples. Then a query is a triple of the form (V, P,G). 2

We will often omit specifying V and G when they are not rele-
vant to the problem at hand.

Example 2. Consider the following SPARQL query Q:

SELECT ?x ?z ?w WHERE
{ ?x :knows ?y . ?y :email ?z . ?y :site ?w . }

This query is then translated into an SPARQL algebra expres-
sion that has the following tree shape:

Project

Join

BGP

T1

Join

BGP

T2

BGP

T3

where T1, T2 and T3 represent (x,′ knows′, y), (x,′ email′, z),
and (x,′ site′, w) respectively. 2

Semantics. Now we briefly introduce the formal set seman-
tics of SPARQL as specified in [26] with the difference that we
updated the definition of the LeftJoin to match the published
standard specifications. The result is a semantic which is more
strict as the one in [27] and the standard W3C semantics in the
sense that:

1. We do not allow joins through null values.
2. We work with set semantics opposed to bag semantics.
3. We do not actually model the “error” value of filter ex-

pressions. Observe that this is not a limitation in practice
since, as specified by the standard, FILTERs eliminate any
solutions that, when substituted into the expression, either
result in an effective boolean value of false or an error.

http://www.w3.org/TR/rdf-sparql-query#
convertGraphPattern

7

It is worth noticing that constraints (1) and (2) can be actually
modelled inside SPARQL by using Select Distinct and adding
BIND filters to avoid null bindings in the variables occurring
in joins and filter expressions. This means that we work with a
fragment of all the possible SPARQL queries, but also implies
we can still re-use the results in [27] regarding the SPARQL-
Datalog translation.

Intuitively, when a query is evaluated, the result is a set of
substitutions of the variables in the graph pattern for symbols
in (I ∪ L ∪ {null}). We now provided the necessary definitions
for this purpose.

Let Tnull denote the following set (I ∪ L ∪ {null}).

Definition 17 (Substitution). A substitution, θ, is a partial
function

θ : V 7→ Tnull

The domain of θ, denoted by dom(θ), is the subset of V where
θ is defined. Here we write substitutions using postfix notation.
2

Definition 18 (Union of Substitution). Let θ1 and θ2 be sub-
stitutions, then θ1 ∪ θ2 is the substitution obtained as follows:

x(θ1∪θ2) =



x(θ1) if x(θ1) is defined and x(θ2) ∈ {null, x(θ1)}
else: x(θ2) if x(θ2) is defined and x(θ1) = null
else: undefined

2

Definition 19 (Compatibility). Two substitutions θ1 and θ2
are compatible when

1. for all x ∈ dom(θ1)∩dom(θ2) it holds that x(θ1∪θ2) , null.

2. for all x ∈ dom(θ1) ∩ dom(θ2) it holds that x(θ1) = x(θ2).

2

Definition 20 (Evaluation of Filter Expressions). Let R be a
filter expression. Let v, u be variables, and c ∈ B ∪ I ∪ L. The
evaluation of R on a substitution θ returns one of three values
{>,⊥, ε} and it is defined in Figure 3. 2

In the following we describe the semantics of the SPARQL al-
gebra.

Definition 21. Let Ω1 and Ω2 be two sets of substitutions over
domains D1 and D2 respectively. Then

Ω1 ./ Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2 are compatible}
Ω1 ∪Ω2 = {θ | ∃θ1 ∈ Ω1 with θ = θD1∪D2

1 or
∃θ2 ∈ Ω2 with θ = θD1∪D2

2 }
Ω1 −R Ω2 = {θ | θ ∈ Ω1 and for all θ2 ∈ Ω2

either θ and θ2 are not compatible
or θ and θ2 are compatible and R(θ ∪ θ2) = ⊥ }

2

The semantics of a algebra expression P over dataset G is
defined next.

Definition 22 (Evaluation of Algebra Expressions).

‖ BGP(t) ‖ = {θ | dom(θ) = vars(P) and tθ ∈ G}
‖ Join(P1, P2) ‖ = ‖ P1 ‖ 1 ‖ P2 ‖
‖ Union(P1, P2) ‖ = ‖ P1 ‖ ∪ ‖ P2 ‖

‖ Le f tJoin(P1, P2,R) ‖ = ‖ Filter(Join(P1, P2),R) ‖ ∪
(‖ P1 ‖ −R ‖ P2 ‖)

‖ Filter(R, P1) ‖ = {θ ∈‖ P ‖ | Rθ = >}
where R is a FILTER expression. 2

Definition 23 (Evaluation of Queries). Let Q = (V, P,G) be a
SPARQL query, and θ a substitution in ‖ P ‖, then we call the
tuple V[(V \ vars(P)) 7→ null]θ a solution tuple of Q. 2

3.4. SPARQL to Executable Datalo
The following technique allows to translate SPARQL queries

(and RDF data) into a Datalog program. The technique was in-
troduced in [27] and intuitively, works as follows. We take the
SPARQL algebra tree of a SPARQL query and generate rules
for each node in the tree, starting from the root. The rules we
generated for a given node encode the semantics of the opera-
tor (the node). The head of the rules project the bindings that
the corresponding SPARQL algebra operator should return, the
body of the rules implements the operation itself. A program is
generated by recursively translating each node, and their chil-
dren, into rules. The leafs of the SPARQL algebra trees are al-
ways access to the RDF data, hence, the corresponding Datalog
rules must do the same. This is done by defining a ternary pred-
icate named triple that serves as container for all the RDF facts.
Once the query is translated, all RDF triples can be translated
into fact rules (tuples for the triple relation) and the program
can be delegated to a Datalog engine for execution.

From this technique, in this paper we will reuse the technique
to translate SPARQL queries into Datalog, hence, we introduce
it here. We present a simplified version of the one in [27] since
at the moment we tackle SPARQL 1.0 and not 1.1. Moreover, to
ease the presentation, we kept some of the notation used in [26]
instead of the one in [27].

Before introducing the formal definition, we will give an ex-
ample to give the intuition behind.

Example 3. Consider the following SPARQL query Q in Ex-
ample 2. For convenient reference we reproduce it here:

SELECT ?x ?z ?w WHERE
{ ?x :knows ?y . ?y :email ?z . ?y :site ?w . }

This query is then translated into an SPARQL algebra expres-
sion that has the following tree shape:

Project

Join

BGP

T1

Join

BGP

T2

BGP

T3

8

R =



isBLANK(v)θ =



> if v ∈ dom(θ) and vθ ∈ B
ε if v < dom(θ) or vθ = null
⊥ otherwise

isIRI(v)θ =



> if v ∈ dom(θ) and vθ ∈ L
ε if v < dom(θ) or vθ = null
⊥ otherwise

(v = c)θ =



> if v ∈ dom(θ) and vθ = c
ε if v < dom(θ) or vθ = null
⊥ otherwise

R =



(v = u)θ =



> if v ∈ dom(θ) and vθ = uθ
ε if v or u < dom(θ) or vθ or uθ = null
⊥ otherwise

(R1 ∧ R2)θ =



> if R1θ = > ∧ R2θ = >
ε if R1θ = ε ∨ R2θ = ε

⊥ otherwise

(R1 ∨ R2)θ =



> if R1θ = > ∨ R2θ = >
ε if R1θ = ε ∧ R2θ = ε and R1θ , > ∨ R2θ , >
⊥ otherwise

Figure 3: Evaluation of R on a substitution θ

where T1, T2 and T3 represent (x,′ knows′, y), (x,′ email′, z),
and (x,′ site′, w) respectively.

To map this algebra expression into Datalog we will create
one predicate symbol for each operator node in the tree, the
predicate will have the form ansop where ans stands for answer.
Now, if we map the dependency graph of these new predicate
symbols, we would get a tree as follows:

ansPro ject

ansJoin1

ansBGP1

T1

ansJoin2

ansBGP2

T2

ansBGP3

T3

The technique introduced in [27] would then produce the fol-
lowing Datalog program.

ansProject(x, w, z) :- ansJoin1 (x, y, z, w)
ansJoin1 (x, y, w, z) :- ansBGP1 (x, y), ansJoin2 (y, w, z)
ansBGP1 (x, y) :- triple(x,′ knows′, y)
ansJoin2 (y, w, z) :- ansBGP2 (y, z), ansBGP3 (y, w))
ansBGP2 (y, z) :- triple(x,′ email′, z)
ansBGP3 (y, w) :- triple(x,′ site′, w)

Note how we have one rule for each operator, and in the rule
for each operator, we refer to the predicates over which the cur-
rent node depends. For example, since our top Join operation
depends on the bindings of the leftmost BGP and right most
join, the rules for ansJoin1 reflect this by making reference to the
predicates ansBGP1 and ansJoin2 .

Now let us proceed with the formal definition. Recall that given
two tuples of variables V and V ′, V[V ′ 7→ c] means that all the
variables in V ∩ V ′ are replaced by c in V .

Definition 24 (SPARQL-Datalog). Let Q = (V, P,G), be a
SPARQL query. The translation of this query to a logic pro-
gram ΠQ is defined as follows:

ΠQ = {G} ∪ τ(V, P)

Where {G} = {triples(s, p, o) | (s, p, o) ∈ G}. The first set of
facts brings the data from the graph, the second is the actual

translation of the graph SPARQL query that is defined recur-
sively in Fig. 4. 2

Intuitively, the LT () operator disassembles complex filter ex-
pressions that includes boolean operators such as ¬, ∧, ∨. The
LT rewrite proceeds as follows: Complex filters involving ¬
are transformed by standard normal form transformations into
negation normal form such that negation only occurs in front
of atomic filter expressions. Conjunctions of filter expressions
are simply disassembled to conjunctions of body literals, dis-
junctions are handled by splitting the respective rule for both
alternatives in the standard way. Expressions are translated as
follows:

• E = Bound(v) is translated to not v = null,
• E = ¬Bound(v) is translated to v = null,
• E = isBlank(v)/isIRI(v)/isLiteral(v) are translated to

their corresponding external atoms.
Observe that in rules (2) and (6) prevent null-bindings, and filter
expressions involving null values.

As the original SPARQL-Datalog translations, we require
well-designed queries [26]. This constraint imposes a restric-
tion over the variables occurring in LeftJoin (Optional) and
Unions operators.

Definition 25 (UNION-free well-designed graph pattern).
An UNION-free query Q is well-designed if for every occur-
rence of a sub-pattern P′ = Le f tJoin(P1, P2) of P and for
every variable v occurring in P, the following condition holds:
if v occurs both in P2 and outside P′ then it also occurs in P1.
2

Definition 26 (Well-designed). A query Q is well-designed if
the condition from Definition 25 holds and additionally for ev-
ery occurrence of a sub-pattern P′ = Union(P1, P2) of P and
for every variable v occurring in P′ , the following condition
holds: if v occurs outside P then it occurs in both P1 and P2. 2

Proposition 2 (Soundness and Completeness [27]). Let Q be
a well-designed SPARQL query and let ΠQ be the Datalog
translation of Q. Then for each atom of the form answerP(~s)
in the unique answer set M of ΠQ, ~s is a solution tuple of the
subquery P in Q. In addition, all solution tuples in Q are rep-
resented by the extension of the predicate answerQ in M.

9

τ(V, BGP(s, p, o)) = answerBGP(s,p,o)(V) :- triple(s, p, o). (1)
τ(V, Join(P1, P2)) = τ(vars(P1), P1) ∪ τ(vars(P2), P2)∪ (2)

answerJoin(P1 ,P2)(V) :- (answerP1 (vars(P1)), answerP2 (vars(P2)))∧
v ∈ vars(P1)∩vars(P2) not v = null.

τ(V, Union(P1, P2)) = τ(vars(P1), P1) ∪ τ(vars(P2), P2)∪
answerUnion(P1 ,P2)(V[V \ vars(P1)→ null]) :- answerP1 (vars(P1)). (3)
answerUnion(P1 ,P2)(V[V \ vars(P2)→ null]) :- answerP2 (vars(P2)).

τ(V, LeftJoin(P1, P2, E)) = τ(vars(P1), P1) ∪ τ(vars(P2), P2)∪ (4)
answerLeftJoin(P1 ,P2)(V) :- answerP1 (vars(P1)), answerP2 (vars(P2)), E
answerLeftJoin(P1 ,P2)(V[vars(P2) \ vars(P1) 7→ null]) :- answerP1 (vars(P1)),

answerP2 (vars(P2)),not E
answerLeftJoin(P1 ,P2)(V[vars(P2) \ vars(P1) 7→ null]) :- answerP1 (vars(P1)),

not answerLJoin(P1 ,P2)(vars(P1))
answerLJoin(P1 ,P2)(vars(P1)) :- answerP1 (vars(P1)), answerP2 (vars(P2))

τ(V, Filter(E, P)) = τ(vars(P), P) ∪ (5)
LT (answerFilter(E,P)(V) :- (answerP1 (vars(P1), E))∧

v ∈ vars(E) not v = null.

Figure 4: Translation SPARQL-Datalog first presented in [26] and extended in [27]

3.5. Datalog to SQL
Recall that safe Datalog with negation and without recur-

sion is equivalent to relational algebra [33]. From the previous
section one can see that it is exactly the fragment of Datalog
that we are working with. Therefore, it follows that any Dat-
alog program obtained from the translation of a well-designed
SPARQL query can translated to SQL.

3.6. R2RML
R2RML is a language that allows to specify mappings from

relational databases to RDF data. The mappings allow to view
the relational data in the RDF data model using a structure and
vocabulary of the mapping author’s choice .

An R2RML mapping is expressed as a RDF graph (in Turtle
syntax). The graph is not arbitrary, a wellformed mapping con-
sists of one or more trees called triple maps with a structure as
shown in Figure 5. Each tree has a root node, called triple map
node, which is connected to exactly one logical table node, one
subject map node and one or more predicate object map nodes.

Example 4. Let DB be a database composed by the table stud
with columns [id, name, course] (primary keys are underlined)
and the table course with columns [id, name]. Let DB contain
the following data:

id name course
20 "John" 1
21 "Mary" 1

id name
1 "SWT 101"

Suppose that the desired RDF triples to be produced from
these database are as follows:

:stud/20 rdf:type :Student ; :name "John" .
:stud/21 rdf:type :Student ; :name "Mary" .
:stud/20 :takes :course/1 .
:stud/21 :takes :course/1 .
:course/1 rdf:type :Course ; :name "SWT 101" .

http://www.w3.org/TR/r2rml/

The following R2RML mapping produces the desired triples:
_:m1 a rr:TripleMap; # First triple map
rr:logicalTable [rr:tableName "stud"] ;
rr:subjectMap [rr:template ":stud/{id}" ;

rr:class :Student] ;
rr:predicateObjectMap [rr:predicate :name ;

rr:objectMap [rr:column "name"]].
rr:predicateObjectMap [rr:predicate :takes ;
rr:objectMap [rr:parentTriplesMap _:m2 ;
rr:joinCondition [rr:child "ID"; rr:parent "ID"]].

_:m2 a rr:TripleMap; # Second triple map
rr:logicalTable [rr:tableName "course"] ;
rr:subjectMap [rr:template ":course/{id}" ;

rr:class :Course] ;
rr:predicateObjectMap [rr:predicate :name ;
rr:objectMap [rr:column "name"]].

This R2RML mapping contains two triple maps. Intuitively,
each triple map states how to construct a set of triples (subject,
predicate, object) using i) the data from the logical table (which
can be a table, view or SQL query), ii) the subject URI speci-
fied by the subject map node, and iii) the predicates and objects
specified by each of the predicate object map nodes. In this par-
ticular case, the first 4 triples are entailed by the triple map that
starts with node _:m1, and the last triple is entailed by _:m2.

Note that the mapping constructs URI’s out of values from
the DB using templates that get instantiated with the data from
the columns of the logical table. Also, the mapping uses a cus-
tom vocabulary (:Student, :Course, :takes and :name).

Having introduced the core idea behind R2RML mappings
we now introduce the core definitions and assumptions of
R2RML that are relevant for the work presented in this paper.
For further detail we refer the reader to the official R2RML
specification.

The logical table of a triple map is a tabular SQL query result
that is to be mapped to RDF triples. It may be either (i) an SQL
base table or view, (i) or an R2RML view. A logical table row
is a row in a logical table.

An SQL base table or view is a logical table contain-
ing SQL data from a database table or view in the input

10

rr:tripleMap rr:SubjectMap

rr:LogicalTable

rr:PredicateObjectMap

IRI

rr:PredicateMap

rr:ObjectMap

rr:logicalTable

rr:subjectMap

rr:predicateObjectMap

rr:class

rr:predicateMap

rr:objectMap

*

*

+

+

Figure 5: A well formed R2RML mapping node

database and is represented by a resource that has exactly one
rr:tableName property with the string denoting the table or
view name.

An R2RML view is a logical table whose contents are the
results of executing a SQL query against the input database. It
is represented by a resource with exactly one rr:sqlQuery
property whose value is a SQL query string.

A logical table has an effective SQL query that produces the
results of the logical table.

The effective SQL query of a table or view is SELECT *
FROM {table} where {table} is replaced with the table
or view name. The effective SQL query of an R2RML view is
the value of its rr:sqlQuery property.

A triple map specifies how to translate each row of a logi-
cal table to zero or more RDF triples. Given a row, all triples
generated from it share the same subject. The triple map has ex-
actly one rr:logicalTable property and one subject map
that specifies how to generate the subject for the triples gen-
erated by a row of the logical table. Last, a triple map may
have zero or more predicate object maps specified with the
rr:predicateObjectMap property. These specifies pairs
of predicate maps and object maps, that together with the sub-
ject generated by the subject map, for the RDF triples for each
row. Predicate, object and subject maps are constructed using
term maps. A term map specifies what is the RDF term used for
a subject, predicate or object and may be either a RDF constant
(i.e., a URI o RDF Value), a column reference or a URI template
to indicate how to construct a URI using strings and column ref-
erences. All referenced columns in a triple map element must
be column names that exists in the term maps.

A subject map may specify one or more class IRI’s repre-
sented by the rr:class property. The value of the property
must be a valid IRI. A class IRI generates triples of the form s
rdf:type i for each row in the logical table, where s is the
IRI generated by the subject map and i is the class IRI specified
by the rr:class property.

Triples are generated by a triple map per row, i.e., each row
in the logical table entails a set of triples. All the triples entailed
by a row share the same subject. Then for each row we generate
the following triples (all share the same subject S, as is defined
by the subjectMap).

• For each rr:class C connected to the subject, we gen-
erate the triple S rdf:type C

• For each predicate-object map of the triple map, we add
the triples S P O, where P is the predicate as specified by

the predicate map map and O is the object as specified by
the object map.

For ease of exposition and due to space constraints, we will
not deal here with RDF types, nor with referencing object maps.
However, it is possible to extend our technique to deal with
these features.

4. SPARQL to SQL through Datalog

We now describe the core technique for SPARQL to SQL.
The translation consists of two steps: (i) translation of the
SPARQL query into Datalog rules, and (ii) generation of a rela-
tional algebra expression from the Datalog program. Once the
relational algebra expression has been obtained, we generate an
SQL query by using the standard translation of the relational
operators into the corresponding SQL operators [1]. We now
describe steps (i) and (ii).

4.1. SPARQL to Datalog Encoding

The first step of the translation process is generating a Dat-
alog program that has equivalent semantics to the original
SPARQL query. For this translation we use a syntactic varia-
tion of the translation proposed by [27] and introduced in Sec-
tion 3.4. The original translation was developed in [26, 27] with
the intention of using Datalog engines for SPARQL execution.
Our intention is different, we will use the rule representation of
the SPARQL query as means to manipulate and optimize the
query before generating an SQL query. We will discuss the key
differences in our translation during the presentation and we
will use the same notation for readers familiar with [27]. To
keep the grounding finite, we only allow functional terms that
has nesting depth of at most 2.

The original translation takes the SPARQL algebra tree of a
SPARQL query and translates each operator into an equivalent
set of Datalog rules. To get an intuition of the process we advice
the reader to see Example 3 in Section 3. Here, we syntactically
modify the techniques output to obtain a more compact result
that (i) uses built in predicates available in SQL and avoid the
use of negation in rules and the exponential growth present in
the original technique, (ii) provides a formal ground to ensure
correctness of the transformation and clearly understand when
this approach deviates from the official semantics. (iii) can be
optimized using slight extensions to standard notions of logic
programming and database theory. It is critical to notice that we

11

do not change the semantics of the Datalog translation, we only
produce a more compact representation of the same program.

In this section, we assume that RDF facts are stored in a 3-ary
relation named triple (which can also be seen as a DB table with
3 columns, s p o). This assumption is the same as in the original
translation in [26], and we will remove this restriction in the
next section, when we introduce R2RML mappings. Observe
the null cannot occur in an RDF triple in the graph, and hence
there are also no null values in the triple relation.

We now provide the translation.

Definition 27 (ΠQ). Let Q = (V, P,G) be a SPARQL query. The
logic program of Q, denoted ΠQ, is defined as:

ΠQ = {G} ∪ τ(V, P)
where {G} = {triple(s, p, o) | (s, p, o) ∈ G} and τ, which is de-
fined inductively in Figure 6, stands for the actual translation of
the SPARQL algebra query to rules. Expressions are translated
as follows:

• E = Bound(v) is translated into isNotNull(v),
• E = ¬Bound(v) is translated into isNull(v),
• We will not consider in this paper the expressions for typ-

ing (isBlank(v), isIRI(v), and isLiteral(v)). How-
ever, these expressions can be handled easily using our
approach.

• Every occurrence of ¬ in E is replaced by NOT . 2

The translation presented in Definition 27 deviates from [27]
in that it exploits SQL built-ins in the generated rules. In par-
ticular, the differences are:

• Rule (4): In [27], the authors translate this operator (c.f.
rule (4) in Section 3.4) using a set of rules. We encode
this set using a single rule and the distinguished predicate
LeftJoin.

• Rule (5): In [26], the authors translate filter boolean ex-
pressions into a set of rules that is exponential in the num-
ber of ∨ operators (c.f., LT operator). We encode this set in
a single rule by leaving the boolean expression untouched.
In [27] instead, the authors translate filter boolean expres-
sions by adding facts that simulate filter evaluation, for
instance, equals(x, x, true). Clearly this is undesirable in
our case.

• Boolean expressions: We encode the expressions Bound,
¬Bound, and ¬ using the distinguished predicates isNull,
isNotNull, and NOT .

We highlight that the semantics of of rules (4) and (5) is ex-
actly that of the corresponding rules in [27]. Hence, our vari-
ation is equivalent to the one in [27] and the soundness and
completeness results for the SPARQL-Datalog translation still
hold (see Appendix).

It is worth noticing that, intuitively, the resulting Datalog pro-
gram can be seen as a tree, where ans1 is the root, and the triple
atoms and boolean expressions are the leaves. Moreover, the
trees representing the SPARQL algebra and the Datalog trans-
lation have very similar structures. The following examples il-
lustrate the concepts presented above.

Example 5. Let Q be a SPARQL query asking for the name
of all students, and the grades of each student by year if such
information exists, as follows:

SELECT * WHERE { {?x :a :Student; :hasName ?y}
OPTIONAL {?x :hasEnrolment ?z .

?z :hasYear ?w; :hasGrade ?u } }

Using SPARQL algebra:

LeftJoin(
JOIN(BGP(?x, :a, :Student),

BGP(?x, :hasName, ?y)),
JOIN(BGP(?x, :hasEnrolment, ?z) ,

JOIN(BGP(?z, :hasYear, ?w),
BGP(?z, :hasGrade, ?u))),

TRUE)

The Datalog program, ΠQ, for this query is as follows (note,
we use numeric subindexes instead of unique names due to
space constrains):

ans1(x, y, z, w, u) :- LeftJoin(ans2(x, y),
ans3(x, z, w, u), true)

ans2(x, y) :- ans4(x), ans5(x, y)
ans3(x, z, w, u) :- ans6(x, z), ans7(u, w, z))
ans4(x) :- triple(x,′ rdf : type′, Student)
ans5(x, y) :- triple(x,′ hasName′, y)
ans6(x, z) :- triple(x,′ hasEnrolment′, z)
ans7(z, u, w) :- ans8(w, z), ans9(u, z)
ans8(w, z) :- triple(z,′ hasYear′, w)
ans9(u, z) :- triple(z,′ hasGrade′, u) 2

As with the original translation, the dependency graph of the
predicates in the Datalog program corresponds to the depen-
dency graph of the SPARQL algebra operators, as can be seen
in the following graph.

ans1

ans2

ans4

T1

ans5

T2

ans3

ans6

T3

ans7

ans8

T4

ans9

T5

where each Ti represents triple(x,′ rdf : type′, Student),
triple(x,′ hasName′, y), triple(x,′ hasEnrolment′, z),
triple(z,′ hasYear′, w) and triple(z,′ hasGrade′, u),
respectively. 2

4.2. Datalog to SQL.

Next we show how to generate a relational algebra expres-
sion that corresponds to the Datalog program presented above.
This is possible because the program we obtain is stratified and
does not contain any recursion. From this relational algebra
expression we generate the SQL query as usual. Since Data-
log is position-based (uses variables) while relational algebra

12

τ(V, BGP(s, p, o)) = { ansBGP(V) :- triple(s, p, o). } (1)
τ(V, Join(P1, P2)) = τ(vars(P1), P1) ∪ τ(vars(P2), P2) ∪

{ ansJoin(P1 ,P2)(V) :- (ansP1 (vars(P1)), ansP2 (vars(P2))) (2)∧
v ∈ vars(P1)∩vars(P2) isNotNull(v). }

τ(V, Union(P1, P2)) = τ(vars(P1), P1) ∪ τ(vars(P2), P2) ∪
{ ansUnion(P1 ,P2)(V[V \ vars(P1)→ null]) :- ansP1 (vars(P1)). } ∪
{ ansUnion(P1 ,P2)(V[V \ vars(P2)→ null]) :- ansP2 (vars(P2)). } (3)

τ(V, LeftJoin(P1, P2, E)) = τ(vars(P1), P1) ∪ τ(vars(P2), P2) ∪
{ ansLeftJoin(P1 ,P2 ,E)(V) :- (LeftJoin((ansP1 (vars(P1)),

ansP2 (vars(P2))), E)). } (4)
τ(V, Filter(E, P)) = τ(vars(P), P) ∪

{ ansFilter(E,P)(V) :- (ansP(vars(P1)) ∧ E) (5)∧
v ∈ vars(E) isNotNull(v). }

Figure 6: Translation ΠQ from SPARQL algebra to rules.

SQL is usually name-based (use column names) we apply stan-
dard ([1]/Section 4.4) syntactic transformations to the program
to go from one paradigm to the other. These transformations are
not particularly interesting, but for the sake of completeness we
describe them in Appendix C. After this transformation, each
rule body consists of a single atom since joins are made explicit
with a distinguished atom Join and every boolean expression
is added to a Filter atom. Now, we are ready to provide the
relational algebra translation for a program.

Given a Datalog program ΠQ, the operator J·KΠQ
takes an

atom and returns a relational algebra expression. We drop the
subindex ΠQ whenever it is clear from the context. We first
define how to translate ans atoms. Then we define how to
translate triple atoms and the distinguished Join, Filter
and LeftJoin atoms. Intuitively, the ans atoms are the SQL
projections, whereas Join, LeftJoin, and Filter are 1, and σ
respectively.

Definition 28 (ΠQ to SQL). Let Q be a query, ans be defined
predicate symbol in ΠQ, P1, P2 any predicates in ΠQ, ~x,~z
vectors of terms, and E a filter expression. Then:

Jans(~x)K = Π~x(Jbody1
ans(~z1)K ∪ · · · ∪ Jbodyn

ans(~zn)K)

where body j
ans is the atom in the body of the j-th rule defining

ans.

Jtriple(~z)K = Π~z(triple)
JJoin(P1(~x1), P2(~x2), jn)K = 1 jn ((JP1(~x1)K,

JP2(~x2)K))
JLe f tJoin(P1(~x1), P2(~x2), l jn)K = l jn((JP1(~x1)K,

JP2(~x2)K))
JFilter(P1(~x1), E)K = σE(JP1(~x1)K)

2

Observe that in the previous definition, if there are null con-
stants (or any other constant) in the ans atoms, they are trans-
lated as statements of the form “null AS x” in the projections.
Recall that we are overloading the projection algebra operator
to ease the presentation.

Example 6. Let ΠQ be the Datalog program presented in Ex-
ample 5. Then Jans1(~x)K is as follows:

Πas1 ljn(
Πas2 1jn1 (Πas4σfc1 (triple),Πas5σfc2 (triple)),
Πas3 1jn2 (Πas6σfc3 (triple),

Πas7 1jn3 (Πas8σfc4 (triple),Πas9σfc5 (triple))))

Here we omit the definitions of the join, leftjoin, and filter
conditions, and the projections to avoid distracting the reader
from the core of the translation. The full definitions is given in
Example 13 in Appendix C. 2

SQL-compatibility: It is well known that there are some im-
portant differences between SQL and SPARQL with respect to
the scope of results. This differences require restrictions on the
SPARQL queries to guarantee a correct SQL translation. We
now elaborate on this. We start with an illustrating example.

Example 7. Consider the following SPARQL algebra expres-
sion:

Le f tJoin(A(x, z),R(x, y), z > 0)

Following the translation presented in [27], we would obtain a
Datalog program of the following (simplified) form:

answer1(x) :- A(x, z), R(x, y), z > 0
answer1(x) :- A(x, z),not answer2(x, y, z)
answer2(x, y, z) :- R(x, y), z > 0

Although the semantics of this program is correct as far as Dat-
alog is concerned, the fact that the variable z does not occur
in any non-boolean atom in the body of answer2 is a problem
when one tries to translate that into SQL. 2

As the original SPARQL-Datalog translations, we require
well-designed queries [27]. This constraint imposes a restric-
tion over the variables occurring in Optional and Unions oper-
ators. However, in order to produce a sound translation to SQL
we need to require a further restriction—not present in [27]—as
shown by the following example:

Example 8. Consider the following SPARQL query:

SELECT * WHERE {
{?x1 :A ?x3} OPTIONAL {

{?x1 :a :B} OPTIONAL {
{?x1 :a :C} FILTER ?x3 < 1 } } }

13

Next, we show the relevant fragment of ΠQ:

ans3(x1) : − LeftJoin(ans4(x1), ans5(x1), x3 < 1)
ans4(x1) : − triple(x1,′ rdf:type′,′ :B′)
ans5(x1) : − triple(x1,′ rdf:type′,′ :C′)

Observe that using Datalog semantics, the boolean expres-
sion x3 < 1 works almost as an assignment, since as the pro-
gram is grounded, x3 will be replaced for all the values in the
Herbrand Base smaller than 1. However, it does not work in
the same way in relational algebra.

Πas1 l jn1(
Πas2 (σ f c1 triple),

l jn,T1 .o<1(Πas6 (σ f c2 triple),
Πas7 (σ f c3 triple)))

Here we omit the definitions of asi, f ci and l jni since they are
not relevant for this example. Clearly the relational algebra
expression shown above is incorrect since T1.s is not defined
inside the scope of the second left join. This issue arises from
the boolean operation in Datalog rules involving variables that
do not occur in atoms with non built-in predicate symbols. 2

To avoid this issue we require SPARQL queries to be SQL-
compatible, which is defined as follows.

Definition 29 (SQL-Compatible). Let Q be a query. We say
that Q is SQL-compatible if Q is well-designed, and in addi-
tion, ΠQ does not contain any rule r where there is a variable v
in a boolean expression in the body of r such that there is nei-
ther a defined atom, nor an extensional atom in the body of r
where v occurs.

Observe that the previous constraint does not have a major
impact in real-life queries. Queries in well-known benchmarks
such as BSBM [6], LUBM [16], FishMark [4], NPD [7], etc.
hold in this category.

Theorem 1. Let Q be an SQL-compatible SPARQL query, ΠQ
the Datalog encoding of Q, and JansQ(~x)K the relational alge-
bra statement of ΠQ. Then it holds:

~t ∈ JansQ(~x)K↔ ΠQ |= ansQ(~t)

PROOF. See Appendix B. 2

5. Integrating R2RML mappings

In this section we present a translation of R2RML [10] map-
pings into Datalog rules. This translation allows to generalize
our SPARQL-to-SQL technique to be able to deal with any rela-
tional schema. The necessary background needed to understand
this section can be found in Section 3.6.

In the previous section we used the ternary predicate triple
as an extensional predicate, that is, a DB relation in which all
the data is stored (in that particular case, RDF terms). Now
when we introduce R2RML mappings, triple becomes a de-
fined predicate. The rules that define the triple predicate will be

generated from the R2RML mapping (adding one more strata
to the Datalog program). The Datalog rules coming from the
mappings will also encode the operations needed to generate
URI’s and RDF Literals from the relational data.

The objective of our translation R2RML-to-Datalog is to
generate a set of rules that reflect the semantics of every triple
map in the R2RML mapping. Intuitively, for each triple map,
we generate a set of rules whose bodies refer to the "effective
SQL query" of the triple map, and whose heads entail the triples
required by the R2RML semantics (see Section 3.6).

Before providing the formal definition we present an exam-
ple illustrating the idea.

Example 9. Consider the R2RML mapping from Example 4
minus the mappings related to courses, the following Datalog
rules would capture their semantics:

triple(cc(′:stud/′, id),′ rdf:type′,′ :Student′):−
stud(id, name, course), NotNull(id)

triple(cc(′:stud/′, id),′ :name′, name) : −
stud(id, name, course), NotNull(id), NotNull(name)

where cc stands for a built-in function that is interpreted as the
string concatenation operator. 2

First, the following definitions assume that the R2RML map-
ping has been normalized so that:

• All shortcuts for constants are expanded,
• All SQL shortcuts have been expanded,
• All rr:class definitions are replaced by predicate object

maps,
• All predicate-object maps with multiple predicate or ob-

ject definitions are expanded into predicate-object maps
with a single predicate and a single object definition,

• All referencing predicate-object maps have been replaced
by a new triple map equivalent to the predicate-object map,

• All triple maps with multiple predicate-object maps have
been replaced by a set of equivalent triple maps.

These transformations are described in Appendix Appendix A.
Next, we define a function that allows to obtain Datalog

terms and atoms, from R2RML nodes. First, given a term map
node t (those nodes that indicate how to construct RDF terms),
we use tr(t) to denote i) a constant c if t is an constant node
with value c, ii) a variable v if t is a column reference with
name v, iii) cc(~x) if t is a URI template where cc is a built-in
predicate interpreted as the string concatenation function and ~x
are the components of the template to be concatenated (constant
strings and column references denoted by variables) .

Definition 30 (Triple map node translation). Let m be a
triple map node, let Vt the set of variables occurring in the
term map nodes in m, let prop the property map node of the
mapping m, and obj the object map node of prop. Then the
mapping rule for m, denoted ρ(m), is

triple(tr(subjectm), tr(prop), tr(obj)) :-
translated_logical_table, NN

14

and where NN is a conjunctions of atoms of the form
NotNull(xi) for each variable xi appearing in the head
of the corresponding rule, and translated_logical_table is
i) A(x1, . . . , xn) if the logic table is a base table or view with
name A and arity n, or ii) A1(~x1), . . . , An(~xn), B(~y), that is, a
conjunction of table or view atoms, and boolean condition B(~y)
with ~y ∈ ⋃n

1 ~xi if the logic table is an SQL query whose seman-
tics can be captured by the body of a data log rule, iii) otherwise
Aux(x1, . . . , xn), if the logical table is an SQL query of arity n
whose semantics cannot be captured in Datalog. 2

Note that the previous definition avoids the generation of
RDF triples in which null values are involved (as required by
the R2RML standard). Also, it is important to highlight that
processing of translated_local_table in the case of arbitrary
SQL queries requires a system to perform SQL parsing of the
SQL queries in the R2RML mapping. Providing full details on
how to do this goes beyond the scope of this paper. However,
recall that the semantics of a large fragment of SQL can be cap-
tured by Datalog rules. When the query cannot be translated
into Datalog, the translation uses auxiliary predicates Aux, that
captures the semantics of the logical table. By keeping a map
between these auxiliary predicates and the corresponding SQL
query, the SQL generator can then use SQL in-line subqueries
to generate an appropriate translation.

Last, we also note that a system implementing this technique
should aim at implementing an SQL parser that is as complete
as possible, as to be able to avoid the generation of SQL queries
with subqueries. Since these, as we will discuss in the next
section, are detrimental to performance.

Now we continue by extending the definitions so that we can
integrate the SPARQL Datalog translation with the translation
of the R2RML mappings.

Definition 31 (R2RML mapping program). Let M be an
R2RML mapping. Then the mapping program for M, denoted
ρ(M) is the set of rules

ΠM = { ρ(m) | for each triple map node m ∈ M}

2

Now, we can introduce SQL query programs, that is, the pro-
gram that allows us to obtain a full SQL rewriting for a given
SPARQL query through the R2RML mappings.

Definition 32 (SQL query program). Given a SPARQL query
Q, and an R2RML mapping M, an SQL query program is de-
fined as ΠM

Q = ΠQ ∪ ΠM .

In order to show the preservation of soundness and complete-
ness as stated by Proposition 2 it is suffices to prove the follow-
ing:

Lemma 1. Let DB be a database, M be a R2RML mapping for
DB and G be the RDF graph entailed by M and a DB. Then

(s, p, o) ∈ G iff Πm |= triple(s, p, o):−

PROOF. See Appendix. 2

Last, we extend the translation from Datalog to relational al-
gebra to be able deal with the rules introduced by the mappings..

Definition 33 (ΠQ to SQL). Let Q be a query,
M an R2RML mapping, and let triple be de-
fined in ΠM

Q . Then Jtriple(s, p, o)K is defined next:

Jtriple(s, p, o)K =



Jbody1
triple(~z1)K ∪ . . . If triple has

∪Jbodyn
triple(~zn)K n ≥ 1 rules

defining it in ΠQ
JNULL_tableK If triple has

0 definitions
where body j

triple is the body of the j-th rule defining it; and
NULL_table is a DB table that contains the same number of
columns as the number of variables in triple, and 1 single row
with null values in every column. 2

Theorem 2. Let Q be an SQL-compatible SPARQL query, M
an R2RML mapping, ΠQ the Datalog encoding of Q and M,
and JΠQK the relational algebra statement of ΠQ. Then it holds:

~t ∈ Jans1(~x)K↔ ΠQ |= ans1(~t)

PROOF. The proof follows immediately from Theorem 1 and
Lemma 1. 2

Some features of R2RML that are not discussed here due
to space constraints, but can easily be added to the presented
technique are: RDF typing, data errors, default mappings, per-
cent encoding. In particular, an important feature of R2RML
mappings which is not addressed here is inverse mappings. In
the -ontop- (the system that implements our technique) we have
implemented a form of default inverse mapping that allows to
transform URI’s that appear in SPARQL queries into the cor-
responding functional terms (e.g., cc(~x)). An in-depth exten-
sion of our technique to cover inverse R2RML mappings will
be done on a follow up paper.

6. On SQL Performance

We have presented the core of our SPARQL to SQL transla-
tion, however, as is, the technique produces SQL queries which
are suboptimal with respect to performance.

Example 10. Consider the following SPARQL query asking for
the URI and name of all the students.

SELECT * WHERE { ?x a :Student; :name ?y }

together with the following R2RML mappings (in Datalog
syntax)

triple(cc(“stud1/id′′, id), “rdf:type′′, “:Student′′) :-
stud1(id, name)

triple(cc(“stud1/id′′, id), “:name′′, name) :-
stud1(id, name)

triple(cc(“stud2/id′′, id), “rdf:type′′, “:Student′′) :-
stud2(id, name)

triple(cc(“stud2/id′′, id), “:name′′, name) :-
stud2(id, name)

15

a direct translation of the SPARQL query to SQL would ren-
der a query similar to query (a) in Figure 7. This is in fact the
kind of queries that our technique, as far as it has been pre-
sented up to now, will generate.

We have observed that queries structured in this way per-
form poorly in most databases (see experiments in this section).
However, it is very often possible to obtain equivalent queries
that perform much better, e.g., query (d) in our example.

To arrive to query (d), -ontop- performs a procedure called
partial evaluation (c.f. Section 3.1), extended with semantic
query optimization.

The process transforms the query, roughly, through the steps
shown in Figure 7. However, this transformations are done to
the Datalog program, which is easier to manipulate than the
algebra expression or the SQL query. We will describe this pro-
cess formally in Section 7. Next we will isolate the features of
these queries that trigger this bad performance, propose opti-
mized alternatives, and evaluate their impact on the query exe-
cution time.

6.1. Structural analysis of direct SPARQL-to-SQL translations
Consider query (a) in Figure 7. There are 4 features of this

query that we highlight as triggers for bad performance:
• JOINs over URI templates,
• JOINs of UNION-subqueries,
• unsatisfiable conditions, and
• redundant JOINs with respect to keys.
We will now elaborate on each point, describing why these

are present and what are the alternatives.

JOINs over URI templates. URI templates in R2RML are
usually translated as functional terms. We refer as functional
terms—in the context of SQL— as values that result from a
computation, e.g., string manipulation, arithmetic operation,
etc. Functional terms in the context of SPARQL to SQL ap-
pear whenever a query involves URI templates, and they may
appear in SELECT clauses to construct URIs, or as terms in
boolean conditions of JOIN or WHERE clauses. For example,

SELECT name as Y FROM student
WHERE ':stud/'||ID = ":stud/22"

or

SELECT ':stud/'||v1.ID as X, name as Y
FROM student v1 JOIN student v2
ON 'stud/'||v1.ID = ':stud/'||v2.ID

Our technique as is produce this kind of terms.

Example 11. Consider the from Example 10 and let cc be a
function to compute string concatenation and suppose we have
the following R2RML mappings that includes a URI template
in the subject position (in Datalog syntax) .

triple(cc(“stud/id′′, id), “rdf:type′′, “:Student′′) :-
stud(id, name)

triple(cc(“stud/id′′, id), “:name′′, name) :-
stud(id, name)

our translation of this SPARQL query to SQL with these map-
pings would produce a query similar to the second SQL query
presented in this section. In particular, this SQL query is pro-
duced form the following relational expression:

ΠT1.s as X,T2.o as Y (
1T1.s=T2.s (
Π“stud/id” || ID AS T1.s, “rdf:type” AS T1.p, “:Student” AS T1.o (stud),
Π“stud/id” || ID AS T2.s, “:name” AS T2.p, “:name” AS T2.o (stud)))

2

Evidence that queries with this feature perform poorly has
been reported for all major databases engines [30, 32] and in
our new experiments (see next section). The reason for the bad
performance is that query planners are not able to use indexes
to evaluate the conditions.

At the same time, in the context of SPARQL-to-SQL sys-
tems, it is often possible to transform a query with expressions
over functional terms to a semantically equivalent query where
the function does not appear. For example, the previous query
can be rewritten as:

SELECT ':stud/'||v1.ID as X, name as Y
FROM stud v1 JOIN stud v2
ON v1.ID = v2.ID

This alternative queries usually perform significantly better,
as shown in the next section. However, performing these trans-
formations is not trivial, e.g., to arrive to query (c) in Figure 7
first we need to transform a JOIN of UNIONs into a UNION
of JOINs. In some cases it is impossible to perform such trans-
formation (see our comment on OPTIONAL/LEFT JOIN with
UNIONs on their right argument).

It is critical to notice that often such optimization is only cor-
rect in the context of R2RML mappings, for example, the ON
expression in the following SQL query:

SELECT *
FROM courseGrade v1 JOIN courseGrade v2
ON
'http://course'||v1.studid||'/'||v1.courseid =
'http://course'||v2.studid||'/'||v2.courseid

can be simplified to the expression

ON v1.studid = v2.studid AND
v1.courseid = v2.courseid

only if we know that the slash character ’/’ does not appear
in the columns studid and courseid. However, the R2RML
standard does have a restriction on the form of the URI tem-
plates that guarantee this (see safe separator in Section 7.3 in
http://www.w3.org/TR/r2rml/).

Recall that we are overloading the projection algebra operator to ease the
presentation.

16

SELECT v1.s as X, v2.o as Y FROM (
SELECT 'stud1/id'||id as s, 'rdf:type' as p, ':Student' as o FROM stud1 UNION ALL
SELECT 'stud1/id'||id as s, ':name' as p, name as o FROM stud1 UNION ALL
SELECT 'stud2/id'||id as s, 'rdf:type' as p, ':Student' as o FROM stud2 UNION ALL
SELECT 'stud2/id'||id as s, ':name' as p, name as o FROM stud2) v1

JOIN (
SELECT 'stud1/id'||id as s, 'rdf:type' as p, ':Student' as o FROM stud1 UNION ALL
SELECT 'stud1/id'||id as s, ':name' as p, name as o FROM stud1 UNION ALL
SELECT 'stud2/id'||id as s, 'rdf:type' as p, ':Student' as o FROM stud2 UNION ALL
SELECT 'stud2/id'||id as s, ':name' as p, name as o FROM stud2) v2

ON v1.p='rdf:type' AND v1.o=':Student' AND v2.p=':name' AND v1.s=v2.s

(a)
SELECT v1.s as X, v2.o as Y FROM (
SELECT 'stud1/id'||id as s, 'rdf:type' as p, ':Student' as o FROM stud1 UNION ALL
SELECT 'stud2/id'||id as s, 'rdf:type' as p, ':Student' as o FROM stud2) v1

JOIN (
SELECT 'stud1/id'||id as s, ':name' as p, name as o FROM stud1 UNION ALL
SELECT 'stud2/id'||id as s, ':name' as p, name as o FROM stud2) v2

ON v1.s=v2.s

(b)
SELECT 'stud1/id'||v1.id as X, v2.name as Y FROM stud1 v1 JOIN stud1 v2 ON v1.id=v2.id

UNION ALL
SELECT 'stud2/id'||v1.id as X, v2.name as Y FROM stud2 v1 JOIN stud2 v2 ON v1.id=v2.id

(c)

SELECT 'stud1/id'||v1.id as X, v2.name as Y FROM stud1 v1
UNION ALL

SELECT 'stud2/id'||v1.id as X, v2.name as Y FROM stud2 v1

(d)

Figure 7: SQL for the SPARQL query and mappings in Example 10. Variations are: (a) SQL queries with UNION-subqueries (b) simplified UNION-subqueries (c)
equivalent query without subqueries (d) optimal query.

17

UNION-subqueries. We refer as UNION-subqueries—in the
context of SQL—to in-line subqueries with UNION or UNION
ALL operators. These may appear in any location where a table
reference is allowed, e.g., in FROM clauses, JOIN operators,
IN, etc. As with any table reference, columns from the subquery
can be referenced to impose conditions in WHERE clauses or
in ON conditions of JOIN operations.

UNION-subqueries in the context of SPARQL-to-SQL tech-
niques appear in SQL queries due to several reasons.

The first possibility is because the original SPARQL query
may have UNION operators, which is usually translated as an
SQL UNION of the translations of the graph patters involved in
the SPARQL UNION. This is the case with our basic technique.

The second possibility is the SPARQL-to-SQL technique it-
self, which often translate BGPs in the SPARQL query into a
UNION of SQL queries. Recall that, intuitively, each BGP gets
replaced by a subquery that is the union of all the SQL queries
derived from the R2RML mappings. See for instance query
(a) in Example 10. Although the technique takes the union of
all SQL queries, in practice one takes only the SQL queries
relevant for the given BGP. Finding out the relevant mappings
is in general a simple task, just by looking at the constants in
the SPARQL query and the mappings. For example, query (a)
in Example 10 can be simplified to query (b) by using only
mappings for rdf:type :Student and mappings for :name to con-
struct the subquery for the first and second BGP of the SPARQL
query (respectively). This kind of simplification is done by
most OBDA systems.

However, in the case where there exist multiple mappings
for a given predicate/class, this simplification can not avoid the
UNION. This is a common scenario that appears constantly,
particularly in scenarios for data integration where multiple
tables/queries provide relevant data for any given property or
class . An example of this, again, is Example 10 where we have
two mappings for the class Student and two mappings for the
property name. In this cases, it is not possible to simplify the
query beyond query (b).

This kind of query performs worse than the simplified alter-
native in the form of a UNION of JOIN queries (query (c)),
mostly because in the second form it is possible to simplify the
JOIN expressions (as we will show in our experiments).

This transformation is in general non-trivial, especially in the
presence of functional terms. In particular, UNIONs can never
be eliminated from the right side of a OPTIONAL operator in
SPARQL since the OPTIONAL operator is non distributable
with respect to UNION.

Unsatisfiable conditions. We distinguish two types of unsat-
isfiable conditions. The first type, already mentioned in the
previous section, is related to URI constants in Predicate and
Object (Class) maps in R2RML mappings. These URIs interact
with URI constants in Predicate and Object (Class) positions in
BGPs of SPARQL queries.

As a side note beyond the scope of this paper, this is a recurrent issue
when query rewriting is used to support RDFS or OWL entailment regimes in
SPARQL 1.1

The second type is related to functional terms, in particular,
those used for URI templates.

The first type yields unsatisfiable conditions as those in
query (a) in Figure 7 in which there is a condition that re-
quires that v1.p = ’rdf:type’, v1.o= ’:Student’
and v2.p=’:name’ holds, but the nested UNIONs include
subqueries which do not satisfy those conditions.

When detected, it allows to go from query (a) to query (b) in
the same example. As mentioned before, this situation is easy
to avoid and almost all OBDA system for SPARQL and OWL
support it (e.g., -ontop-, Ultrawrap, Mastro, Quonto, Requiem).

Here, we focus on detecting the second kind of unsatisfiable
conditions. Such conditions involve URI templates that partici-
pate in JOINs. For example:

'http://example/data1/' || v1.u1 || '/' || v1.u2 ==
'http://example/data2/' || v2.u1 || '/' || v2.u2

or, the more complex

'http://example/' || v1.u1 || '/1/' || v1.u2 ==
'http://example/' || v2.u1 || '/2/' || v2.u2

This kind of conditions arise in data integration scenarios in
which classes and properties are mapped to multiple tables and
hence, URI templates are often different to reflect the fact that
the tables contain object of a different nature.

To detect such unsatisfiable expressions, one needs to go
from UNION of JOINs to JOIN of UNIONs as in query (c)
in the example.

Redundant JOINs w.r.t. KEYs. This situation arises when
a SPARQL query is translated into a union of JOIN queries
in which some of these JOINs are redundant w.r.t. primary or
foreign keys. The situation is relevant only after transforming
JOIN of UNIONs into UNIONs of JOINs (since keys are de-
fined only over tables), as in query (c) from Figure 7, which
can be simplified into query (d) in the presence of a primary
key over the column ID.

This redundancy arises often because the RDF data model
(over which SPARQL operates) is a ternary model (s p o) while
the relational model is n-ary, hence, the SPARQL equivalent
of SELECT * FROM t on an n-ary table t requires exactly n
triple patterns. When translating each of these triple patterns,
a SPARQL-to-SQL technique will generate an SQL query with
exactly n-1 self-JOIN operations.

It is well known that keeping those redundant JOINs is detri-
mental for performance and a lot of research has been devoted
to optimizing SQL queries in these cases. The most promi-
nent area that investigates this subject is Semantic Query Opti-
mization (SQO), from which we borrow techniques to optimize
SPARQL translations.

6.2. Experiments

In this section we present a series of experiments that demon-
strate that: (i) the SQL features discussed in Section 6 are
detrimental to performance; (ii) the alternatives discussed in
the same section—and obtiained by -ontop- through partial
evaluation— perfom better.

18

We setup an environment based on the Wisconsin Bench-
mark [11]. This benchmark was designed so that performance
of a database could be tested in a controlled way. To do this,
the designers created a schema and data generator that has clear
semantics and whose data distribution is well understood. This
allows to produce queries that isolate the features that need to
be tested.

The benchmark defines a single table definition (which can
be used to instantiate multiple tables). The table, which we now
call simple T, contains 16 attributes as shown in Figure 8.

CREATE TABLE t
(

unique1 integer NOT NULL,
unique2 integer NOT NULL PRIMARY KEY,
two integer NOT NULL,
four integer NOT NULL,
ten integer NOT NULL,
twenty integer NOT NULL,
onePercent integer NOT NULL,
tenPercent integer NOT NULL,
twentyPercent integer NOT NULL,
fiftyPercent integer NOT NULL,
unique3 integer NOT NULL,
evenOnePercent integer NOT NULL,
oddOnePercent integer NOT NULL,
stringu1 char(52) NOT NULL,
stringu2 char(52) NOT NULL,
string4 char(52) NOT NULL

)

Figure 8: Wisconsin Benchmark schema description

The data for each attribute is generated with a distribution
that allows to easily compute the degree of selectivity of SQL
operations (in JOINs with conditions, WHERE clauses, cross
products, unions). In particular, given a target number of rows
N, the data for each attribute is generated as follows:

• unique1. Integers from 0 to N (sequential).
• unique2. Integers from 0 to N (randomly ordered)
• stringu1. A 6 character alphabetic string generated

from unique1.
• stringu2. A 6 character alphabetic string generated

from unique2.
We refer the reader to [11] for details on the algorithm that
generates stringu1 and stringu2. Using these definitions
we created databases with 5 tables and 100,000 rows per ta-
ble. In addition we defined unique indexes on each of the four
attributes above.

In the following sub-sections we describe the queries used in
the different experiments. These queries do not belong to the
Wisconsin benchmark, and were crafted to evaluated different
forms of SQL that are relevant in the context of SPARQL-to-
SQL translations. All the queries and their respective execution
times are available online

All experiments were conducted on a HP Proliant server with
24 Intel Xeon CPUs (144 cores @3.47GHz), 106GB of RAM
and a 1TB 15K RPM HD. The OS is Ubuntu 12.04 64-bit edi-
tion. Note that all queries where ran sequentially, and hence

https://github.com/marianormuro/onto-wisbench

only one core was used at a time. This was a conscious choice
meant to isolate performance of the SQL queries at hand from
the capacities of the underlying OS and DB engine w.r.t. to
parallelism.

The database engines used where MySQL 5.6, Postgres 9.1
and DB2 Express-C 10.5, chosen as representatives of two
classes of engines, open source and industrial. All the query
execution times presented here refer to cold execution (as in, a
freshly started DB engine and flushed caches).

Combined case. In this experiment we show that indeed,
SPARQL translations that combine nested-subqueries, JOINs
over URI templates and unsatisfiable conditions are signifi-
cantly slower than the equivalent optimized queries. That is,
queries expressed as UNION of JOINs, where JOIN conditions
are over table columns and which avoid unsatisfiable condi-
tions. For instance:

SELECT v1.subj FROM (
SELECT 'http://example/data1'||'/'||unique1 as s,

unique1 FROM t1
UNION ALL
SELECT 'http://example/data2'||'/'||unique1 as s,

unique1 FROM t2
) v1
JOIN (
SELECT 'http://example/data1'||'/'||unique1 as s,

unique1 FROM t1
UNION ALL
SELECT 'http://example/data2'||'/'||unique1 as s,

unique1 FROM t2
) v2
ON v1.s = v2.s
WHERE v2.unique1 = 666

against queries of the form

SELECT 'http://example/data1/'||v1.unique1 as s
FROM t1 v1 JOIN t1 v2 ON
v1.unique1 = v2.unique1 WHERE v2.unique1 = 666

UNION ALL
SELECT 'http://example/data2/'||v1.unique1 as s
FROM t2 v1 JOIN t2 v2 ON
v1.unique1 = v2.unique1 WHERE v2.unique1 = 666 ;

-ontop- generates these optimised queries.
In each experiment we evaluated 2 sets of 4 series of queries.

In one set we evaluated JOINs of UNION queries (JU) where
the JOIN conditions involve URI templates. In the second set
we evaluated UNION of JOINs (UJ) where JOIN conditions
are expressed over plain columns. In each set, each of the 4
series stands for a form of JOIN condition. We considered the
following 4 cases:

• u1 JOIN on unique1
• u1,u2 JOIN on unique1 and unique2
• st1 JOIN on stringu1
• st1,st2 JOIN on stringu1 and stringu2
In the cases of JU queries, the JOIN conditions are always of

the form v1.s = v2.s. However, the inner subqueries construct
values for s as URIs using string concat operations as it would
be done for a URI template, i.e., with a URI prefix, and series
of of values separated by the slash character ’/’. The values

19

being concatenated in each series depend on the kind of JOIN
we want to evaluate. For example, if we are evaluating (st1,st2),
the concatenation expression is of the form:

'http://example/' || v1.stringu1 ||
'/' || v2.stringu2

To introduce unsatisfiable conditions we used two different
prefixes for the URI templates in the inner subqueries, that is

http://example.org/data1/

and

http://example.org/data2/

To verify the behavior of the queries w.r.t. to the volume
of data returned by the query, each series contains 7 queries
with decreasing degree of selectivity. This was accomplished
through constraints over the column unique1 in the WHERE
clause of the query. In particular we used the following (de-
creasingly selective) constraints:

1. v1.unique1 = 666
2. v1.unique1 > 5000 AND v1.unique1 < 6000
3. v1.unique1 BETWEEN 5000 AND 6000
4. v1.unique1 > 20000 AND v1.unique1 < 30000
5. v1.unique1 BETWEEN 20000 AND 30000
6. v1.unique1 > 10000 AND v1.unique1 < 30000
7. v1.unique1 BETWEEN 10000 AND 30000

This experiment evaluates a total of 56 queries.
The results of this experiment are shown in Figure 9. In all

cases, our optimized queries (dashed lines) outperform the cor-
responding non-optimized queries, often by several orders of
magnitude. While selectivity of the query does affect the per-
formance of each query, it does not seem to affect the difference
in performance between optimized and not optimized queries.
Also, in some cases, the type of column being JOINed appears
to affect the performance of the queries. This is particularly vis-
ible in the non-optimized queries in MySQL, where queries that
JOIN URIs constructed with integer values (square and triangle
marks) are considerable slower than queries that concatenate
only strings (circle and crossed circle marks). Last, an inter-
esting side observation is that indeed, in all databases we see
different performance for the queries in which BETWEEN is
used to express ranges (3,5,7) instead of inequalities (2,4,6). In
most cases BETWEEN seems to offer better performance.

Having confirmed the general claim, we now present the ex-
periments that allow us to understand this performance differ-
ences. In particular, we will evaluate the effect of each of the
features we discussed in the previous section in isolation.

JOIN over URI templates. In this experiment we compare
the performance of JOIN queries in which the ON condition
is expressed over plain attributes against that of JOIN queries
in which the condition is expressed over a string concatenation
operation as those generated by URI templates. That is, queries
of the form:

SELECT * FROM t1 v1 JOIN t2 v2
ON t1.stringu1 = t2.stringu1

against queries of the form

SELECT * FROM t1 JOIN t2
ON 'http://example.org/' || t1.stringu1 =

'http://example.org/' || t2.stringu1

As before, we evaluated 8 series of 7 queries each. Four
of these series are queries that join on original columns, while
half of them join on CONCAT operations for URI templates. In
particular. The 8 join conditions we consider are:
u1

v1.unique1 = v2.unique1
u1, u2

v1.unique1 = v2.unique1 AND v1.unique2 =
v2.unique2

st1
v1.stringu1 = v2.stringu1

st1, st2
v1.stringu1 = v2.stringu1 AND v1.stringu2 =
v2.stringu2

|| u1
’http://example.org/’ || v1.unique1 =
’http://example.org/’ || v2.unique1

|| u1, u2
’http://example.org/’ || v1.unique1 || ’/’ ||
v1.unique2 = ’http://example.org/’ || v2.unique1
|| ’/’ || v2.unique2

|| st1
’http://example.org/’ || v1.stringu1 =
’http://example.org/’ || v2.stringu1

|| st1, st2
’http://example.org/’ || v1.stringu1 || ’/’
|| v2.stringu2 = ’http://example.org/’ ||
v2.stringu1 || ’/’ || v2.stringu2

As before, the seven queries decreasing degrees of selectivity
and we use inequalities or BETWEEN to describe intervals (see
previous section). We evaluated a total of 56 queries.

The results of this experiment is summarized in Figure 10.
In general, the results confirm our expectation, i.e., JOINs over
plain columns outperforms the equivalent query with concat.
The results also show that it does not make a difference if
the join involves one or two columns, or integers vs strings
columns. The only exception being DB2 in which JOINs over
integer columns involved concat operators perform poorly w.r.t.
to the rest, and where joins with or without concats for the rest
of the series appear to behave similarly. Note that this good per-
formance in concat operations involving only strings is anoma-
lous, We will investigate this situation further in a follow-up
paper.

UNION-subqueries. In this experiment we compare the per-
formance of queries in the form of JOIN of UNIONs (JU)
against the performance of queries that are a UNION of JOINs
(UJ). In this case we will not mix join conditions (i.e., plain
columns vs. concatenation of strings) nor we will involve un-
satisfiable conditions. That is, we will compare queries of the
form

SELECT * FROM
(SELECT * FROM t1 UNION ALL SELECT * FROM t2) v1

JOIN
(SELECT * FROM t1 UNION ALL SELECT * FROM t2) v2

ON v1.unique1 = v2.unique1
WHERE v2.unique1 > 5000 AND v2.unique1 < 6000

20

1 2 3 4 5 6 7

0

2,000

4,000

6,000

MySQL

1 2 3 4 5 6 7

0

2,000

4,000

PostgreSQL

1 2 3 4 5 6 7

0

0.5

1

1.5

·104 DB2

u1 (JU) u1,u2 (JU) st1 (JU) st1,st2 (JU) u1 (UJ) u1,u2 (UJ) st1 (UJ) st1,st2 (UJ)

Figure 9: Full summary, non-optimal vs. optimal queries. Execution time in milliseconds

1 2 3 4 5 6 7

0

0.5

1

1.5
·106

MySQL

1 2 3 4 5 6 7
0

1,000

2,000

PostgreSQL

1 2 3 4 5 6 7

0

0.5

1

·106 DB2

|| u1 || u1,u2 || su1 || su1,su2 u1 u1, u2 su1 su1, su2

Figure 10: Performance of JOIN on concat expressions vs simple columns.

against queries of the form

SELECT * FROM t1 v1 JOIN t1 v2 ON
v1.unique1 = v2.unique1
WHERE v2.unique1 > 5000 AND v2.unique1 < 6000

UNION ALL
SELECT * FROM t1 v1 JOIN t2 v2 ON

v1.unique1 = v2.unique1
WHERE v2.unique1 > 5000 AND v2.unique1 < 6000

UNION ALL
SELECT * FROM t2 v1 JOIN t1 v2 ON

v1.unique1 = v2.unique1
WHERE v2.unique1 > 5000 AND v2.unique1 < 6000

UNION ALL
SELECT * FROM t2 v1 JOIN t2 v2 ON

v1.unique1 = v2.unique1
WHERE v2.unique1 > 5000 AND v2.unique1 < 6000

As before, we will have 2 sets of series, one for JUs and one
for UJs. In each of these sets we will have 4 types of joins (u1),
(u1,u2), (str1) and (str1,str2). The selectivity of the queries will
also be decreased from query 1 to query 7, as before.

The results of this experiment are summarized in Figure 11.
As expected, these results indicate that UNIONs of JOINs out-
perform JOINs of UNIONs.

To further understand the behavior of these queries we re-
peated the experiment now expressing JOIN conditions only
using concatenation operations as described before. That is,
we compare queries of the form

SELECT * FROM (

SELECT 'http://example/'||u1 as s, u1 FROM t1
UNION ALL
SELECT 'http://example/'||u1 as s, u1 FROM t2
) v1
JOIN (
SELECT 'http://example/'||u1 as s, u1 FROM t1
UNION ALL
SELECT 'http://example/'||u1 as s, u1 FROM t2
) v2 ON v1.s = v2.s WHERE v2.u1 = 555

against the equivalent of the form

SELECT * FROM t1 v1 JOIN t1 v2 ON
'http://example/'||v1.u1 = 'http://example/'||v2.u1
WHERE v2.u1 = 555
UNION ALL
SELECT * FROM t1 v1 JOIN t1 v2 ON
'http://example/'||v1.u1 = 'http://example/'||v2.u1
WHERE v2.u1 = 555
UNION ALL
SELECT * FROM t1 v1 JOIN t1 v2 ON
'http://example/'||v1.u1 = 'http://example/'||v2.u1
WHERE v2.u1 = 555
UNION ALL
SELECT * FROM t1 v1 JOIN t1 v2 ON
'http://example/'||v1.u1 = 'http://example/'||v2.u1
WHERE v2.u1 = 555

Surprisingly, as we can see from Figure 12, the results show
that queries expressed as JOINs of UNIONs tend to outperform
queries expressed as UNIONs of JOINs when JOIN conditions
contain string concatenation. This indicates that when JOIN are

21

1 2 3 4 5 6 7
102

103

104

MySQL

1 2 3 4 5 6 7

100

101

102

103

PostgreSQL

1 2 3 4 5 6 7
100

102

104

DB2

u1 (JU) u1, u2 (JU) st1 (JU) st1, st2 (JU) u1 (UJ) u1, u2 (UJ) st1 (UJ) st1, st2 (UJ)

Figure 11: UNION of JOINs vs. JOIN of UNIONs. JOINs over table columns. Time in milliseconds, log scale.

1 2 3 4 5 6 7

103

104

105

106

MySQL

1 2 3 4 5 6 7
102

103

104

PostgreSQL

1 2 3 4 5 6 7
102

103

104

DB2

|| u1 (UJ) || u1, u2 (UJ) || st1 (UJ) || st1, st2 (UJ) || u1 (JU) || u1, u2 (JU) || st1 (JU) || st1, st2 (JU)

Figure 12: UNION of JOINs vs. JOIN of UNIONs. JOINs over string concatenation. Time in milliseconds, log scale.

expensive (due to string concatenation) it is better not to push
the JOIN inside the unions.

Unsatisfiable conditions. In this experiment we isolate the ef-
fect in performance unsatisfiable conditions in queries. We fo-
cus on unsatisfiable conditions on string concatenation, of the
form used to create URIs as specified by URI templates.

In the first experiment we study the effect of unsatisfiable
conditions in JOINs of UNIONs. As we mentioned in the pre-
vious section, unsatisfiable conditions in JOINs on UNIONs of-
ten only make sense once we consider the query plans of these
queries in which the DB actually expands the JOIN of UNIONs
to a JOIN of UNIONs. For example, in the query

SELECT v1.s FROM (
SELECT 'http://example/d1/'||u1 as s, u1 FROM t1
UNION ALL
SELECT 'http://example/d2/'||u1 as s, u1 FROM t2
) v1
JOIN (
SELECT 'http://example/d1/'||u1 as s, u1 FROM t1
UNION ALL
SELECT 'http://example/d2/'||u1 as s, u1 FROM t2
) v2
ON v1.s = v2.s
WHERE v2.u1 = 666

the condition v1.s = v2.s is only unsatisfiable for half of
the rows resulting from the cross product involved in the query.
In particular, it is only unsatisfiable in rows that try to match

strings of the form ’http://example/data1’||u1 with
strings of the form ’http://example/data2’||u1. In
other words, if we transform the query into a UNION of JOINs,
we obtain the query

SELECT * FROM t1 v1 JOIN t1 v2 ON
'http://example/d1/'||v1.u1 =
'http://example/d2/'||v2.u1
WHERE v2.u1 = 666
UNION ALL
SELECT * FROM t1 v1 JOIN t2 v2 ON
'http://example/d1/'||v1.u1 =
'http://example/d2/'||v2.u1
WHERE v2.u1 = 666
UNION ALL
SELECT * FROM t2 v1 JOIN t1 v2 ON
'http://example/d1/'||v1.u1 =
'http://example/d2/'||v2.u1
WHERE v2.u1 = 666
UNION ALL
SELECT * FROM t2 v1 JOIN t2 v2 ON
'http://example/d1/'||v1.u1 =
'http://example/d2/'||v2.u1
WHERE v2.u1 = 666

Comparing these queries is very similar to comparing JOIN
of UNIONs against UNION of JOINs, however, in this case
the strings created by concatenation do not always match, and
hence, the DB engine could detect this and optimize the queries
accordingly. As before, we tested with the 4 different types
of join (with concat), and decreased the selectivity as usual (7
variations) for a total of 56 queries.

22

The results of this experiment where the same (i.e., negligible
variation) those in our tests of UNIONs of JOINs against JOIN
of UNIONs in the presence of string concatenation. This indi-
cates that indeed, this kind of unsatisfiable conditions cannot be
detected and by the database engine.

Redundant JOINs w.r.t. KEYs. It is well-known that remov-
ing redundant JOINs improve the performance of SQL queries,
therefore, we did not evaluate the this scenario.

Conclusions. The previous experiments confirmed that the
SQL queries that we call optimized perform considerably better
than their corresponding non-optimized version. All the fea-
tures we highlighted contribute to this performance difference.
From the four features we listed, the ones that appear to be more
critical are the presence of conditions over string concatenation
functions as well as pushing the JOINs into the UNIONs.

Given that the answer to a SPARQL query should be a set of
RDF terms (that contain URIs) removing boolean condition and
concatenation operations from the SQL UNIONs is non-trivial.
This task becomes particularly complex in presence of multiple
and incompatible forms of templates

In the following section we present a technique that is able
to apply all these transformations in a sound way, generating
optimized queries when it is possible to do so.

7. Optimization through Partial Evaluation and SQO

Partial evaluation is an optimization technique from logic
programming. The intuitive idea behind partial evaluation is
that, given a fixed goal, it is possible to compute variations of
a logic program which are more efficient to execute. Semantic
Query Optimization (SQO) is a research area from the fields
of Deductive Databases and SQL query optimization where the
main objective is to optimize queries by performing static and
semantic analysis of queries. In the current section we will
show how to use both to optimize the SQL query programs
produced by our technique to avoid the issues discussed in the
previous section.

7.1. Partial Evaluation for SPARQL-to-SQL

In this Section we show how to use partial evaluation with
respect to a goal (from now on simply partial evaluation) to
optimize the SPARQL query programs (see Definition 32) to
avoid conditions on functional terms, UNION-subqueries and
conditions on UNION-subqueries. We show how to extend the
original definitions of partial evaluation as 1. to deal with the
nested expressions used in our SPARQL-to-Datalog technique,
2. to deal with partial evaluations of rules involving LeftJoin,
and 3. to stop partial evaluations from evaluating rules that are
ready to be translated into SQL queries. For the original defini-
tions see partial evaluation with respect to a goal in Section 3.1.

It is worth noticing that negation only occurs in filter atoms,
and we use NOT instead of not . Therefore, the program we
obtain is not -free.

We start by showing that even without extensions, applying
partial evaluation allows to eliminate all the aforementioned is-
sues when the original SPARQL query does not involve OP-
TIONAL clauses.

Given a SPARQL query Q, an R2RML mapping M and it’s
SQL query program ΠM

Q , we compute a partial evaluation of
the atom ans1 in ΠM

Q and stop when all non-failing branches
are formed by resultants whose bodies are composed only by
database atoms (i.e., their predicates stand for database rela-
tions) or boolean atoms (as in boolean conditions of the query).

Example 12. Consider the SPARQL query and R2RML map-
pings from Example 10. The partial evaluation would start with
a root resultant of the form

ans1(x, y) :- ans1(x, y)

and would iteratively resolve against ΠM
Q (see Figure 13a). The

progression of the partial evaluation is shown in Figure 13b.
Note how in the end of the partial evaluation we only two

successful branches ending in the resultants r18 and r19, which
constitute the result of the partial evaluation. Also note that
when translated into SQL by our technique, these rules generate
exactly the optimal SQL queries shown in Example 7 (d).

The first thing to note is that the partial evaluation process is
a query answering procedure and filters out options that would
not generate valid answers. For example, this is what happens
with r13 in our example when it generates r14 and r15. Note
that there are 4 candidate rules for the triple in r13, how-
ever, only two of them unify with the atom due to the pres-
ence of the constants rdf:type and :Student. We have a sim-
ilar, but stronger situation for the triple atoms in r16 and r17.
Again, there we have 4 rules that could potentially unify, how-
ever, in each case, only one rule can actually unify with the
atom. In the case of r16, we have that only r6 unifies due to
the presence of the constant :name and the functional symbol
cc(”: stud1/”, id) (similar for r17). This makes it so that only
rules that can produce satisfactory answers are used during the
translation process, strongly simplifying the output.

The second thing to note is that partial evaluation deals with
multiple choices by distribution, eliminating unions in the pro-
cess. That is, whenever there are more than one possibility to
partially evaluate an atom, the definition of partial evaluation
forces the partial evaluation engine to branch. Hence, all unions
are expanded. For an example see again the situation with the
triple atom in in r13 where there are 2 rules that unify with
the atom, and that branch r13 into r14 and r14. This affects
not only SPARQL queries with UNION, but any situation in
which multiple choices may be involved, like in our example
in which multiple mappings exist for a given predicate (com-
mon situation in data integration scenarios) or when the OBDA
system supports entailment regimes for RDFS or OWL 2 QL
(query rewriting techniques usually introduce new rules in the
program to cope with entailments).

Last, note that the functional terms introduced by mappings
(e.g., the concatenation operators) are moved during the deriva-
tions from the rules introduced by the mappings, to the head and

23

body of the resultants and step by step, all non-database atoms
are replaced by database atoms. For example, this is what hap-
pens in r13 in our example when it generates r14 and r15, in
both cases the triple atom is replaced by a database atom and
the derivation process moves the functional terms to locations
in the query in which those functional terms participate. More-
over, the derivation process gets rid of these functional terms in
the end, as can be seen from the triple atoms in r16 and r17. This
has the strong effect that in the end of the process, no condi-
tions are expressed over functional terms and these only appear
in the head of the queries, where they do not affect performance
of query execution.

Extensions for LeftJoin. The original definitions for partial
evaluations were not capable of dealing with Join or LeftJoin
atoms, as required by our translation, since this distinguished
atoms have a semantics not encoded in the program itself. Re-
call that LeftJoin, for instance, encodes a set of rules. LeftJoin
atoms must be handled in a way that maintains the correct se-
mantics of the system, in particular, we cannot allow the right
component of a LeftJoin atom to branch into more than one
branch (since LeftJoin is a non-distributable operation on the
right side relation) and we must ensure that if no rules unify
with the right side of a LeftJoin, then the appropriate bindings
to the null constant are generated. Now we provide the exten-
sions to the definitions that allow for this to happen. We start
by extending the definition of goal derivation to be able to deal
with nested expressions (Join and LeftJoin).

Definition 34 (goal derivation if nested atoms). Let G be the
goal ← A1, . . . , Join(. . . , Am, . . .), . . . , Ak and C be a program
clause of the form A ← B1, . . . , Bq. Then G’ is derived from G
and C using the most general unifier (mgu) θ if the following
conditions hold:

• Am is an atom in G, called the selected atom,
• θ is a mgu of Am and A, and
• G′ is the goal

← (A1, . . . , Join(. . . , Am−1, B1, . . . , Bq, Am+1, . . .), . . . , Ak)θ

where (A1, . . . , An)θ = A1θ, . . . , Anθ and Aθ is the atom
obtained from A applying the substitution θ

Goal derivation of atoms nested in LeftJoins is defined analo-
gously.

Now we extend the definition of SLD-tree as to a) avoid
branching on the right side of a left join, b) stop the derivation
when all atoms are database atoms (extensional atoms).

Definition 35 (partial SLD-tree with Join and LeftJoin).
Let Π be a program and let G be a goal. Then, a (par-
tial) SLD-Tree of Π ∪ {G} is a tree satisfying the following
conditions:

• Each node of the tree is a resultant,
• The root node is Gθ0 ← G0, where Gθ0 = G0 = G (i.e., θ0

is the empty substitution),
• Let Gθ0 . . . θi ← Gi be a node at depth i ≥ 0 such that Gi

and Am be the selected atom in Gi. Then, for each input

clause A ← B1, . . . , Bq such that Am and A are unifiable
with mgu θi+1, the node has a child

Gθ1 · θ2 . . . θi+1 ← Gi+1

where Gi+1 is derived from Gi and Am by using θi+1, except
when Am is the second argument in a LeftJoin atom,

• Nodes that are the empty clause have no children.
Given a branch of the tree, we say that it is a failing branch

if it ends in a node such that the selected atom does not unify
with the head of any program clause. Moreover, we say that
a SLD-tree for a SPARQL-to-SQL translation is complete if
all non-failing branches end in resultants in which only defined
atoms (non-database atoms) appear only on the right side of
LeftJoin atoms.

Correctness of this definition of this extension of partial eval-
uation in the context of SPARQL-to-SQL translations follows
from Theorem 4.3 in [20] (which states soundness and com-
pleteness of partial evaluations) and the following observations:

1. the definition of goal derivation is equivalent to the origi-
nal one if we consider the way in which we interpret Join
and LeftJoin atoms (i.e., syntactic shortcuts for a set of
rules)

2. extensional atoms are the only atoms that may be grounded
in SPARQL-to-SQL programs, and only through the data
in the DB.

7.2. Semantic Query Optimization.

Semantic Query Optimization (SQO) [8, 17] refers to tech-
niques that do semantic analysis of SQL/Datalog queries to
transform them into a more efficient form, for example, by re-
moving redundant JOINs, to detecting unsatisfiable or trivially
satisfiable conditions, etc. SQO techniques often focus on the
exploitation of database dependencies (e.g., SQL constraints)
to do this analysis, and rely heavily on query containment the-
ory. Most work on SQO was developed in the context of rule
based formalisms (e.g., Datalog) and can be directly applied to
our framework.

We will highlight two optimizations that we found critical
in obtaining the best performance in most situations and that
are implemented in the -ontop- system. In particular, optimiza-
tion of queries with respect to keys and primary keys, and opti-
mization of queries with respect to boolean conditions. In both
cases, these optimizations are applied during or after the partial
evaluation procedure.
Keys and Primary Keys. Recall that keys and primary keys are
a form of equality generating dependencies (egd) [1]. That is, a
(primary) key over a relation r defines a set of dependencies of
the form

yi
1 = yi

2 ← r(~x, ~y1), r(~x, ~y2)

for each yi
1, y

i
2 in ~y1 and ~y2, respectively.

For example, given a table stud1 as in our previous exam-
ple, the primary key on the first column, id would generate the

24

r1 : ans1(x, y) :- ans2(x), ans3(x, y)
r2 : ans2(x) :- triple(x, ”rdf:type”, ”:Student”)
r3 : ans3(x, y) :- triple(x, ”:name”, y)
r4 : triple(cc(”:stud1/”, id), ”rdf:type”, ” : Student”) :- stud1(id, name)
r5 : triple(cc(”:stud2/”, id), ”rdf:type”, ” : Student”) :- stud2(id, name)
r6 : triple(cc(”:stud1/”, id), ”:name”, name) :- stud1(id, name)
r7 : triple(cc(”:stud2/”, id), ”:name”, name) :- stud2(id, name)

(a) SQL Query Program ΠM
Q for the SPARQL query and mappings in Example 10

r11 : ans1(x, y) :- ans1(x, y)
by r11, r1 with θ = {x/x1, y/y1}

r12 : ans1(x1, y1) :- ans2(x1), ans3(x1, y1)
by r12, r2 with θ = {x/x1}

r13 : ans1(x1, y1) :- triple(x1, ”rdf:type”, ”:Student”), ans3(x1, y1)
by r13, r4 with θ1 = {x1/cc(”:stud1/”, id1)} and r13, r5 with θ2 = {x1/cc(”:stud2/”, id1)}

r14 : ans1(cc(”:stud1/”, id1), y1) :- stud1(id1, name1), ans3(cc(”:stud1/”, id1), y1)
r15 : ans1(cc(”:stud2/”, id1), y1) :- stud2(id1, name1), ans3(cc(”:stud2/”, id1), y1)

by r14, r3 with θ1 = {x/cc(”:stud1/”, id1), y1/y} and r15, r3 with θ2 = {x/cc(”:stud2/”, id1), y1/y}
r16 : ans1(cc(”:stud1/”, id1), y) :- stud1(id1, name1), triple(cc(”:stud1/”, id1), ”:name”, y)
r17 : ans1(cc(”:stud2/”, id1), y) :- stud2(id1, name1), triple(cc(”:stud2/”, id1), ”:name”, y)

by r16, r6 with θ1 = {id/id1, y/name} and r17, r7 with θ2 = {id/id1, y/name}
r18 : ans1(cc(”:stud1/”, id1), name) :- stud1(id1, name1), stud1(id1, name)
r19 : ans1(cc(”:stud2/”, id1), name) :- stud2(id1, name1), stud2(id1, name)

(b) Progression of the partial evaluation w.r.t. the goal ans1

Figure 13: Partial Evaluation of ans1 in ΠM
Q . Each block shows the leafs of the non-failing branches of the SLD-Tree.

following equality generating dependencies:

x = x← stud1(x, y1), stud(x, y2) (6)
y1 = y2← stud1(x, y1), stud(x, y2) (7)

By chasing the dependencies (e.g., applying the equalities to
the query) we will be able to either detect unsatisfiable queries,
i.e., when two different constants are equated, or generate dupli-
cated atoms which can be safely eliminated since a query with a
duplicated atom is always equivalent to the query in which this
atoms is removed (with respect to the standard query contain-
ment notions [1]). For example, given the query

ans1(id1, name) :- stud1(id1, name1), stud1(id1, name)

by chasing egd 7 one obtains the query

ans1(id1, name) :- stud1(id1, name), stud1(id1, name)

which can be simplified to

ans1(id1, name) :- stud1(id1, name)

Boolean conditions. Another kind of optimization that can have
a strong impact on performance is the detection of unsatisfiable
boolean conditions, or the simplification of queries with respect
to trivially satisfiable conditions.

Unsatisfiable conditions often arise from the partial evalua-
tion process, in particular, when queries contain FILTER ex-
pressions and mappings involve constants. For example, con-
sider the following SPARQL query asking for all people that
attend either NYC or Columbia universities

SELECT ?x WHERE {
?x :attends ?y.
FILTER (?y = :NYC || ?y = :Columbia)

}

Now consider a mapping for the attends property that states
that all people from the table stud1 attend Stanford university,
as follows

triple(cc(“stud1/id′′, id), “:attends′′, “:Stanford′′) :-
stud1(id, name)

then we would have that after the partial evaluation process we
would end up with the following partial evaluation:

triple(cc(“stud1/id′′, id)) :- stud1(id, name),
OR(“:Stanford′′ = “:NYC′′, “:Stanford′′ = “:Columbia′′)

Clearly, this query is empty. However, when translated into
SQL and executed, few relational DBs would be able to real-
ize this since the analysis of arbitrary boolean expressions is
beyond the scope of most query optimizers.

A similar situation arises with trivially satisfied conditions
such as 1 = 1, x = x, etc, which can be simplified or eliminated.

Implementing this kind of optimization requires a partial
evaluation engine that is aware of boolean logic, as well as the
semantics of some built-in operators such as the concat opera-
tor, the SPARQL built-in functions and all the arithmetic oper-
ators. While this kind of optimization is not theoretically very

25

interesting, we have found that in -ontop-, this functionality en-
ables the system to deal effectively with complex situations in
which mappings are not trivial and which otherwise would gen-
erate slow queries, even in commercial database engines.

8. Evaluation

This section provides an evaluation of our SPARQL-to-SQL
technique implemented in -ontop- and using DB2 and MySQL
as backends. We compared -ontop- with two systems that of-
fer similar functionality to -ontop- (i.e., SPARQL trough SQL
and mappings): Virtuoso RDF Views 6.1 (open source edition)
and D2RQ 0.8.1 Server over MySQL. We also compare -ontop-
with three well known triple stores: OWLIM 5.3, Stardog 1.2
and Virtuoso RDF 6.1 (Open Source). Another system that is
relevant in this experiments is Ultrawrap [32], however the sys-
tem is commercial and we were not able to obtain a copy for
evaluation.

Systems. Next, we provide a brief description of each of the
systems we benchmarked:

-ontop- is an open source framework developed in the Free Uni-
versity of Bozen-Bolzano to query databases as Virtual RDF
Graphs using SPARQL 1.0. It relies on the query rewriting
techniques presented in Section 4; and supports RDFS, OWL 2
QL reasoning, and all major DBMS (open-source and commer-
cial) as backends. Regarding the mappings languages, -ontop-
supports both, R2RML and its own mapping language. -ontop-
comes in three different flavors: as an API, as a plugin for
Protege 4—that provides a mapping editor—and as a SPARQL
end-point based in Sesame.

D2RQ is a system for accessing relational databases as vir-
tual RDF graphs. It is developed and maintained by the Free
University of Berlin, and DERI. It offers SPARQL 1.1 query-
answering to the content of relational databases without having
to replicate it into an RDF store. It provides its own mapping
language, and currently it does not support neither R2RML nor
reasoning (with OWL ontologies).

OWLIM is a commercial semantic repository developed by On-
totext that allows to query, reason, and update RDF data. It
relies on top of Sesame API; supports several query languages,
such as, SeRQL and SPARQL 1.1; and several fragments of
OWL, such as, OWL 2 RL and OWL 2 QL.

Virtuoso 6.1 Open Source is a hybrid server developed by Open-
Link Software that allows relational, RDF, and XML data man-
agement. For this reason it can handle SPARQL and SQL
queries. In this paper we work with the Open-Source edition.
Although the Open-Source edition does not include some of the
features available in the commercial edition such as, clustering,
database federation, etc.; such features are not relevant for this
evaluation.

This section extends the work presented in [31].
http://protege.stanford.edu
http://www.openrdf.org

Virtuoso Views is developed by OpenLink Software, and allows
the RDF representation of the relational data. It supports a pro-
prietary mapping language that is equivalent in expressivity to
R2RML (minus a few minor features). We used the free version
of Virtuoso Views which can only be used in conjunction with
open link’s own relational DB (no MySQL or DB2).

Stardog is a commercial RDF database developed by
Clart&Parsia that allows SPARQL 1.1 for queries; and OWL
for reasoning. It provides a command line interface to query,
load, and update the data.

Benchmarks. We considered the following benchmarks:

BSBM. The Berlin SPARQL Benchmark (BSBM) [6] evaluates
the performance of query engines utilizing use cases from e-
commerce domain. The benchmark comes with a suite of tools
for data generation and query execution. The benchmark also
includes a relational version of the data, for which mappings
can be created (D2RQ mappings are included).

FishMark. The FishMark benchmark [4] is a benchmark for
RDB-to-RDF systems that is based on a fragment of the Fish-
Base DB, a publicly available database about fish species. The
benchmark comes with an extract of the database (approx. 16
M triples in RDF and SQL version), and 22 SPARQL queries
obtained from the logs of FishBase. The queries are substan-
tially larger (max 25 atoms, mean 10) than those in BSBM.
Also, they make extensive use of OPTIONAL graph patterns.

These benchmarks use a total of 36 queries and 350+ million
triples.

Experiment setup. The basic setup for the experiment is as
follows: BSBM provides 12 query templates (i.e., queries with
place holders for constant values). A predefined sequence of
25 of these templates constitutes a Query Mix. A BSBM run
is the instantiation of a query mix with random constants and
execution of the resulting queries. Performance is then mea-
sured in Query Mixes per Hour (QMpH). To compute QMpH
we ran 150 query mixes, out of which 50 are considered warm
up runs and their statistics are discarded. The collected statistics
for QMpH over BSBM instances with 25, 100 and 200 million
triples (or the equivalent in relational form). In the case of Fish-
Mark, the 22 queries are already instantiated and they constitute
the query mix. We ran 150 query mixes, discarding the initial
50. We tested with 1, 4, 8, 16 and 64 simultaneous clients.

We exploited -ontop-’s simple SQL caching mechanism
which stores SQL queries generated for any SPARQL query
that has been rewritten previously. This allows to avoid the
rewritten process completely and hence, the cost of query exe-
cution of a cached query is only the cost of evaluating the SQL
query over the DBMS. To force the use of this cache, we re-ran
the BSBM benchmark 5 more times (and averaged the results).
For FishMark, this was not necessary since the queries are al-
ways the same. All experiments were conducted on a HP Pro-
liant server with 24 Intel Xeon CPUs (144 cores @3.47GHz),
106GB of RAM and a 1TB 15K RPM HD. The OS is Ubuntu
12.04 64-bit edition. All the systems run as SPARQL end-

26

points. All configuration files are available online.

Discussion. The results are summarized in Figures 15, 16
and 17. In Figure 15 we show the QMpH for the 12 BSBM
queries. Query 6 is not included since it contains a regex func-
tion that was not supported by -ontop- when this evaluation
was done. We also included in this table the query rewriting
time (SPARQL to SQL). Observe that the time required for this
step is independent of the database, and of the selectivity of
the query, and usually takes few milliseconds. It is not possi-
ble to give a precise general statement about the impact of the
query rewriting time in whole query execution time given that
BSBM queries have place holders that are filled in each execu-
tion, changing the answer given by the query. However, given
an instantiation of a query, we can give the percentage of the
query execution time taken by the query rewriting step. We run
an institution of the query mix in BSBM 200 (MySql), and we
observed that the query rewriting step takes around 20%- 40%
of the execution time. The queries had very high selectivity,
therefore the execution time is small. For instance, -ontop- re-
quires 4ms to rewrite Query 1, and 17ms to perform the whole
execution (including rewriting). The harder is the execution in
the database, the smaller is the impact of the query rewriting
step.

In Figures 16 and 17, first we note that the D2RQ server al-
ways ran out of memory, timed out in some queries or crashed.
This is why it doesn’t appear in our summary table. D2RQ’s
SPARQL-to-SQL technique is not well documented, however,
by monitoring the queries being sent by D2RQ to MySQL, it
appears that D2RQ doesn’t translate the SPARQL query into
a single SQL query, instead it computes multiple queries and
retrieves part of the data from the database. We conjecture that
D2RQ then uses this data to compute the results. Such approach
is, in general, limited in scalability and prone to large memory
consumption, being the last point the reason for the observed
behavior. Also, Virtuoso Views is not included in the FishMark
benchmark because it provided wrong results, we reported this
to the developers which confirmed the issue. Also, we did not
run -ontop- with DB2 for FishMark due to errors during data
loading.

In Figures 16 we also included the original BSBM SQL
queries. We run these queries directly over the database en-
gine, therefore the execution time includes neither the rewriting
time, nor the time to post-process the SQL result set to gener-
ate an RDF result set. The performance obtained by MySQL is
clearly much better than the one obtained by all the other Q&A
systems, although the gap gets smaller as the dataset increases.
It is worth noting that these queries are not SQL translation
of SPARQL queries, thus they are intrinsically simpler, for in-
stance, by not considering URIs.

Next, we can see is that for BSBM in almost every case,
the performance obtained with -ontop-’s queries executed by
MySQL or DB2 outperforms all other Q&A systems by a large
margin. The only cases in which this doesn’t hold are when

https://babbage.inf.unibz.it/trac/obdapublic/
wiki/BSBMFISH13aBench

the number of clients is less than 16 and the dataset is small
(BSBM 25). This can be explained as follows: -ontop-’s per-
formance can be divided in three parts, (i) the cost of generat-
ing the SQL query , (ii) the cost of execution over the RDBMs
and (iii) cost of fetching and transforming the SQL results into
RDF terms. When the queries are cached, (i) is absent, and if
the scenario includes little data (i.e., BSBM 25), the cost of (ii),
both for MySQL and DB2, is very low and hence (iii) domi-
nates. We attribute the performance difference to a poor im-
plementation of (iii) in -ontop-, and the fact triple stores do not
need to perform this step. However, when the evaluation con-
siders 16 parallel clients, executing -ontop-’s SQL queries with
MySQL or DB2 outperforms other systems by a large margin.
We attribute this to DB2’s and MySQL’s better handling of par-
allel execution (i.e., better transaction handling, table locking,
I/O, caching, etc.). When the datasets are larger, e.g., BSBM
100/200, -ontop- (i) stays the same. In these cases, (ii) domi-
nates (iii), since in both benchmarks queries return few results.
The conjunction of good planning, caching, and I/O mecha-
nisms provided by MySQL and DB2, and the efficient -ontop-’s
SQL, allows our system to outperform the rest already at 1 sin-
gle client for BSBM 100 and BSBM 200.

We can see the strong effect of SELF JOIN elimination by
Primary Keys. Consider the FishMark benchmark that has little
data, only 16M triples, but in which in almost all queries -ontop-
’s SQL executed over MySQL (we didn’t run DB2 in this case)
outperforms the rest almost in every case even from 1 single
client. In this setting, 1 client and little data, the cost of (ii) falls
in the cost of planning and executing JOINs and LEFT JOINs
by the DBMS or triple store. At the same time, in FishMark,
the original tables are structured in such a way that many of the
SPARQL JOINs can be simplified dramatically when expressed
as optimized SQL. For example, consider the FishMark query
in Figure 14a. This query expresses a total of 16 Join opera-
tions. When translated into SQL, -ontop- is able to generate the
query in Figure 14b.

A simple and flat SQL query (easy to execute) with a total
of 3 Joins. Note that the use of a large number of JOIN op-
erations is intrinsic to SPARQL since the RDF data model is
ternary. However, if the data is stored in a n-ary schema (as
usual in RDBMs), -ontop- can use semantic query optimization
w.r.t. primary keys to construct the optimal query over the n-
ary tables. Triple stores has no means to do this since data is
de-normalized once it is transformed into RDF.

9. Conclusion and Future Work

The main contribution of this paper is a formal approach for
SPARQL-to-SQL translation that generates efficient SQL by
adapting and combining standard techniques from logic pro-
gramming. In this context, we discussed several SQL features
that affects performance, and showed how to avoid them. In
addition, we presented a rule based formalization of R2RML
mappings that can be integrated into our technique to support
mappings to arbitrary database schemas.

To evaluate our approach, we provided compared the -ontop-
system with well known RDB2RDF systems and triple stores,

27

SELECT ?forder ?family ?genus ?species ?occ ?name ?gameref ?game
WHERE { ?ID fd:cComName ?name; fd:coC_Code ?ccode; fd:cSpecCode ?x.

?x fd:sGenus ?genus; fd:sSpecies ?species; fd:sGameFish ?game;
fd:sGameRef ?gameref; fd:sFamCode ?f .

?f fd:fFamily ?family; fd:fOrder ?forder .
?c fd:cSpecCode ?x; fd:cStatus ?occ; fd:cC_Code ?cf;

fd:cGame 1 . ?cf fd:cPAESE "Indonesia" . }

(a) FishMark query

SELECT V3.FamilyOrder AS forder, V3.Family AS family, V1.Genus AS genus, V1.Species AS species,
V4.Status AS occ, V1.ComName AS name, V1.GameRef AS gameref, V1.GameFish AS game

FROM species V1, comnames V2, families V3, country V4, countref V5
WHERE V1.SpecCode = V2.SpecCode AND V4.Game = 1 AND V5.PAESE = 'Indonesia' AND V4.C_Code = V5.C_Code

AND V1.Genus = V8.Genus

(b) SQL translation by -ontop-

Figure 14: Optimization by -ontop-

Rw Time (ms) -ontop--MySQL -ontop--DB2 OWLIM Stardog V. RDF V. Views

Q1 4 3,22k 1,28 k 1,43k 1,42 23 45
Q2 12 1,40k 928 276 790 123 315
Q3 15 1,92k 1,12k 111 543 155 341
Q4 12 1,53k 955 295 669 140 265
Q5 15 27 72 2 29 14 48
Q6 - - - - - - -
Q7 9 9,78k 1,59k 541 400 101 316
Q8 4 13,99k 1,68k 3,22k 648 96 180
Q9 15 13,62k 1,01k 3,7k 1,99k 59 188
Q10 5 20,22k 2,04k 3,9k 610 228 305
Q11 18 20,75k 2,04k 3,52k 1,89k 1,66k 1,13k
Q12 19 11,34k 1,64k 5,99k 1,4k 1,25k 1,19k
QueryMix - 44,19k 76,96k 2,91k 35,79k 9,21k 25,11k

Figure 15: Summary of results for BSBM-200 with 64 clients. Per query units are in queries per second, totals are in query mixes per hour

1 4 8 16 64

0

2

4

·104 FishMark

o-MySQL
o-DB2
OWLIM
Stardog
VirRDF

Figure 17: Query performance for FishMark. X axis = parallel clients, Y axis
= Query Mixes per Hour (QMpH, higher is better)

showing that using the techniques presented here allows -ontop-
to outperform all other systems.

One of the key benefits of our framework, is the possibility
of extending it in many directions. For example, manipulating
the Datalog programs to support inference for RDFS, OWL and
SWRL (OWL 2 QL inference is already supported in -ontop-),
as well as easy integration of more advanced semantic query

optimization. We will work in these directions in the near fu-
ture.

Acknowledgements

We thank the -ontop- development team (J. Hardi, T. Bagosi,
M. Slusnys) for the help with the experiments. This work was
supported by the EU FP7 project Optique (grant 318338).

28

1 4 8 16 64

0

2

4

6

·105 BSBM-25

1 4 8 16 64

0

1

2

·105 BSBM-100

1 4 8 16 64

0

0.5

1

1.5
·105 BSBM-200

o-MySQL o-DB2 OLIM Sdog VirRDF VirView bs-MySQL

Figure 16: Query performance for BSBM. X axis = parallel clients, Y axis = Query Mixes per Hour (QMpH, higher is better)

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL.
In Proceedings of the 7th International Conference on The Semantic Web,
ISWC ’08, pages 114–129, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] K. R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. J. ACM, 29:841–862, July 1982.

[4] Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark
van Harmelen, Rafael S. GonÃSalves, and Cristina Garilao. Fish-
Mark: A linked data application benchmark. In Proc. of the Joint
Workshop on Scalable and High-Performance Semantic Web Systems
(SSWS+HPCSW 2012), volume 943, pages 1–15. 2012.

[5] C. Baral, M. Gelfond, and A. Provetti. Representing actions: Laws, ob-
servations and hypotheses. Journal of Logic Programming, 1997.

[6] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. In-
ternational Journal On Semantic Web and Information Systems, 2009.

[7] Diego Calvanese, Davide Lanti, Martin Rezk, Mindaugas Slusnys, and
Guohui Xiao. The NPD benchmark for OBDA systems. In ORE, 2014.

[8] Upen S Chakravarthy, John Grant, and Jack Minker. Logic-based ap-
proach to semantic query optimization. ACM Transactions on Database
Systems, 15(2):162–207, 1990.

[9] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. Semantics preserv-
ing SPARQL-to-SQL translation. Data Knowl. Eng., 68(10):973–1000,
October 2009.

[10] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB
to RDF Mapping Language. http://www.w3.org/TR/r2rml/, September
2012.

[11] David J. DeWitt. The wisconsin benchmark: Past, present, and future. In
Jim Gray, editor, The Benchmark Handbook. Morgan Kaufmann.

[12] Brendan Elliott, En Cheng, Chimezie Thomas-Ogbuji, and Z. Meral Oz-
soyoglu. A complete translation from sparql into efficient sql. In Pro-
ceedings of the 2009 International Database Engineering & Applications
Symposium, IDEAS ’09, pages 31–42, New York, NY, USA, 2009. ACM.

[13] Orri Erling. Implementing a sparql compliant rdf triple store using
a sql-ordbms. Technical report, OpenLink Software, 2001. Avail-
able at http://www.openlinksw.com/dataspace/doc/dav/
wiki/Main/VOSRDFWP.

[14] Orri Erling. Virtuoso, a hybrid RDBMS/graph column store. IEEE Data
Eng. Bull., 35(1):3–8, 2012.

[15] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Proceeding of the Fifth Logic Programming Symposium,
pages 1070–1080, 1988.

[16] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. 3(2–3):158–182, 2005.

[17] Jonathan Jay King. Query Optimization by Semantic Reasoning. 1981.
[18] Alexander Leitsch. The resolution calculus. Springer-Verlag New York,

Inc., New York, NY, USA, 1997.
[19] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In

ICLP, pages 23–37, 1994.

[20] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic program-
ming. J. Log. Program., 11(3-4):217–242, 1991.

[21] John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2nd edition, 1993.

[22] J.W. Lloyd. Foundations of Logic Programming (Second Edition).
Springer-Verlag, 1987.

[23] Li Ma, Zhong Su, Yue Pan, Li Zhang, and Tao Liu. RStar: an RDF storage
and query system for enterprise resource management. In Proceedings
of the 2004 ACM CIKM International Conference on Information and
Knowledge Management, Washington, DC, USA, November 8-13, pages
484–491, 2004.

[24] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45,
September 2009.

[25] Hector Perez-Urbina, Edgar RodrÃguez-Diaz, Michael Grove, George
Konstantinidis, and Evren Sirin. Evaluation of query rewriting approaches
for OWL 2. In In Proc. of the Joint Workshop on Scalable and High-
Performance Semantic Web Systems, volume 943 of CEUR-WS, 2012.

[26] Axel Polleres. From SPARQL to rules (and back). In Proceedings of
the 16th international conference on World Wide Web, WWW ’07, pages
787–796, New York, NY, USA, 2007. ACM.

[27] Axel Polleres and Johannes Peter Wallner. On the relation between
SPARQL1.1 and Answer Set Programming. Journal of Applied Non-
Classical Logics, 23(1-2):159–212, 2013.

[28] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. Formalisation and
experiences of R2RML-based SPARQL to SQL query translation using
morph. In Proceedings of the 23rd International Conference on World
Wide Web, WWW ’14, pages 479–490, Republic and Canton of Geneva,
Switzerland, 2014. International World Wide Web Conferences Steering
Committee.

[29] T. C. Przymusinski. On the declarative semantics of deductive databases
and logic programs, pages 193–216. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1988.

[30] M Rodríguez-Muro. Tools and Techniques for Ontology Based Data Ac-
cess in Lightweight Description Logics. PhD thesis, Free Univ. of Bozen-
Bolzano, 2010.

[31] Mariano Rodriguez-Muro, Martín Rezk, Josef Hardi, Mindaugas Slusnys,
Timea Bagosi, and Diego Calvanese. Evaluating sparql-to-sql translation
in ontop. In ORE, pages 94–100, 2013.

[32] Juan F. Sequeda and Daniel P. Miranker. Ultrawrap: SPARQL execution
on relational data. Web Semantics: Science, Services and Agents on the
World Wide Web, 22(0):19 – 39, 2013.

[33] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems:
Volume II: The New Technologies. W. H. Freeman & Co., New York, NY,
USA, 1990.

[34] F. Zemke. Converting sparql to sql. Technical report, Oracle Corpora-
tion, 2006. Available at http://lists.w3.org/Archives/
Public/public-rdf-dawg/2006OctDec/att-0058/
sparql-to-sql.pdf.

29

Benchmark Size System Number of clients Loading
1 4 8 16 64 time

BSBM 25M onTop-MySQL 12,437 47,325 94,094 171,702 174,153 00:01:57
onTop-DB2 12,506 48,299 94,593 186,837 182,862 00:02:12
OWLIM 6,455 14,439 12,338 10,617 10,509 00:12:21
Stardog 15,751 59,969 99,471 119,390 116,726 00:02:54
Virtuoso RDF 9,823 36,112 57,966 63,253 53,124 00:18:41
Virtuoso Views 11,992 33,354 32,491 30,054 29,786 00:36:43

100M onTop-MySQL 8,771 37,923 73,920 90,587 89,095 00:11:33
onTop-DB2 7,873 36,070 76,767 117,564 97,366 00:15:20
OWLIM 3,238 6,173 4,907 4,384 4,329 00:49:45
Stardog 9.311 34.523 55,527 60,876 51,038 00:11:47
Virtuoso RDF 6,665 24,618 39,183 29,198 19,702 01:13:04
Virtuoso Views 8,449 23,347 29,098 29,093 29,245 02:01:05

200M onTop-MySQL 7,171 31,080 57,753 77,250 76,962 00:25:13
onTop-DB2 5,442 24,389 48,416 68,122 44,193 00:24:38
OWLIM 2,249 4,196 3,429 2,959 2,905 01:43:10
Stardog 6,719 24,769 36,222 39,842 35,790 00:22:59
Virtuoso RDF 4,970 17,060 23,997 14,499 9,213 02:21:46
Virtuoso Views 5,888 19,673 30,833 30,946 25,108 03:52:14

FishMark 16.5M onTop-MySQL 4,835 20,975 40,657 50,295 45,405 00:01:04
OWLIM 1,984 6,583 8,639 7,249 6,341 00:06:32
Stardog 3,409 3,637 4,514 4,611 5,222 00:02:34
Virtuoso RDF 2,973 11,986 20,603 19,214 15,085 00:12:21

Table 1: Result summary for all systems and datasets

Appendix A. Normalization of R2RML mappings

In the following we describe the normalization we apply to
R2RML mappings that guarantee that R2RML document in-
cludes only triple maps with one single object predicate map.
All these transformations are applied in the order listed here.

Appendix A.1. Expansion of rr:constants

Any shortcut for URI constants of the form
• rr:subject C
• rr:predicate C
• rr:object C

is replaced by
• rr:subjectMap [rr:constant C]
• rr:predicateMap [rr:constant C]
• rr:objectMap [rr:constant C]

Appendix A.2. Expansion of SQL shortcuts

We remove all shortcuts for SQL tables and replace them
with SQL queries that correspond to the effective SQL query de-
fined by that shortcuts as indicated in Section 5 of the R2RML
specification. For example, given the R2RML mapping:

_:m1 a rr:TripleMap;
rr:logicalTable [rr:tableName "stud"] ;
...

we produce

_:m1 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
...

Appendix A.3. Expansion of rr:class shortcuts
We remove all shortcuts that generate triples of the form s

rdf:type C and replace them with explicit predicate-object
maps. For example:

_:m1 a rr:TripleMap;
...
rr:subjectMap [rr:template ":stud/{id}" ;

rr:class C] ;
...

we rewrite it as:
_:m1 a rr:TripleMap;
...
rr:subjectMap [rr:template ":stud/{id}"]
rr:predicateObjectMap [
rr:predicateMap [rr:constant rdf:type];
rr:objectMap [rr:constant ex:Employee]
]

Appendix A.4. Expansion of predicate-object maps with mul-
tiple predicates/objects

We remove any predicate-object map m that has multiple
predicate or object maps and replace it with a set of predicate-
object maps that created by combining each predicate map in m
with every object map in m, as to generate the triples described
in Section 11.1 of the R2RML specification. For example, from
the following mapping,

_:m1 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
rr:subjectMap [rr:template ":stud/{id}"] ;
rr:predicateObjectMap [

rr:predicateMap [rr:constant :name] ;
rr:predicateMap [rr:constant :info] ;

rr:objectMap [rr:column "name"]].

30

we obtain

_:m1 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
rr:subjectMap [rr:template ":stud/{id}"] ;
rr:predicateObjectMap [

rr:predicateMap [rr:constant :name] ;
rr:objectMap [rr:column "name"]] ;

rr:predicateObjectMap [
rr:predicateMap [rr:constant :info]

rr:objectMap [rr:column "name"]] .

Appendix A.5. Expansion of referencing predicate object maps
We remove all shortcuts defined by referencing object maps

and replace them by a new triple map with a single predicate-
object map that generates triples as specified in Section 11.1 in
the R2RML specification. That is, the logical table is the joint
SQL query of the referencing map, the subject map is the sub-
ject map of the child, and in the predicate-object, the predicate
is the predicate map of the referencing object map and the ob-
ject is as specified the map of the parent. Section 11.1. For
example, given the following R2RML mapping:

_:m1 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
rr:subjectMap [rr:template ":stud/{id}"] ;
rr:predicateObjectMap [rr:predicate :takes ;
rr:objectMap [rr:parentTriplesMap _:m2 ;
rr:joinCondition [rr:child "ID"; rr:parent "ID"]].

_:m2 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM course"] ;
rr:subjectMap [rr:template ":course/{id}" ;

rr:class :Course] ;
...

we produce a reference-less version as follows:

_:m1 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
rr:subjectMap [rr:template ":stud/{id}"] ;

_:m2 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM course"] ;
rr:subjectMap [rr:template ":course/{id}" ;

rr:class :Course] ;
...

_:m3 a rr:TripleMap ;
rr:logicalTable [rr:sqlQuery "
SELECT * FROM (SELECT * from stud) AS child,

(SELECT * from course}) AS parent
WHERE child.ID=parent.ID"] ;

rr:subjectMap [rr:template ":stud/{child.id}"] ;
rr:predicateObjectMap [
rr:predicateMap [rr:constant rdf:takes];
rr:objectMap [rr:template ":course/{parent.id}"]]
.

Appendix A.6. Splitting of triple maps with multiple predicate-
object maps

Each triple map m that has n predicate-object maps where
n > 1 we split into n fresh triple maps. Each i fresh triple
map uses the logical table and subject map of the original triple
map m and contains exactly one predicate-object map, the i-th
predicate-object map found in m. For example, from the fol-
lowing triple map,

_:m1 a rr:TripleMap; # First triple map
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
rr:subjectMap [rr:template ":stud/{id}"] ;
rr:predicateObjectMap [

rr:predicateMap [rr:constant :name] ;
rr:objectMap [rr:column "name"]].

rr:predicateObjectMap [
rr:predicateMap [rr:constant :info]

rr:objectMap [rr:column "name"]] .

we obtain the following triple maps;
_:m1 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
rr:subjectMap [rr:template ":stud/{id}"] ;
rr:predicateObjectMap [

rr:predicateMap [rr:constant :name] ;
rr:objectMap [rr:column "name"]] .

_:m2 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM stud"] ;
rr:subjectMap [rr:template ":stud/{id}"] ;
rr:predicateObjectMap [

rr:predicateMap [rr:constant :info]
rr:objectMap [rr:column "name"]] .

Appendix B. Proofs

Theorem 1. Let Q be an SQL-compatible SPARQL query, ΠQ
the Datalog encoding of Q, and JansQ(~x)K the relational alge-
bra statement of ΠQ. Then it holds:

~t ∈ JansQ(~x)K∅ ↔ ΠQ |= ansQ(~t)

PROOF. From the definition of ΠQ it is clear that it is a stratified
program of the form:

ΠQ = Π0 . . .Πn

Therefore it has a unique Herbrand model, and moreover, such
model is the union of the unique models of each stratum Πi.
Recall that Π0 is a bottom part that does not contain negation
as failure (c.f. Section 3.1). The proof will be by induction
on the number of splits needed to calculate the model of ΠQ.
Therefore, it is enough to show that for every step k:

Note 1 (Inductive Claim:). For every triple or defined predi-
cate A such that for every ~t, Πk |= A(~t) iff ΠQ |= A(~t)—that
means that A must be entirely computed inside Πk– it holds
that:

Πk |= A(~t) if and only if ~t is a tuple in JA(~x)K
The additional restriction that the predicate A must be entirely
computed inside Πk is to handle LeftJoin. Recall that the Left-
Join predicate is a syntactic sugar for the set of rules in Fig-
ure B.18. Observe that these rules contain not -atoms. Here we
assume that we replace the syntactic sugar NOT by the original
not in filter atoms.

Therefore, the LeftJoin as a whole is defined in the union of
rules that belong to different stratums.

Observe that since the graph is finite, and the set of predicates
is finite, the grounding of the program will also be finite and
therefore we will eventually cover every possible ground atom
A(~t). Recall that we only allow functional terms that has nesting
depth of at most 2.

31

Base Case (Π0): Recall that Π0 is not -free and therefore it has
a unique least Herbrand model, M. This implies that Π0 |=
A(~t) if and only if A(~t) ∈ M. This model is computed via
a sequence of bottom-up derivation steps, which apply the
rules of Π0 to the facts in Π0 and then repeatedly to the
newly derived facts. Our proof will proceed by induction
on the number N of such steps.

1. N = 0 : Then A has to be a triple predicate. Then the
claim follows trivially from the definition of ΠQ, Π0,
and Definition 28.

2. N = k + 1 : Suppose that A was derived in the k + 1
step. It follows that it is a defined predicate ansP(~x).
Then P can be a Union, a Join, or a Filter.

• Suppose P is a Union. Then, it is defined by a
set of rules of the form:

ansUnion(~x1) : − ansP1 (~z1)
...

ansUnion(~xn) : − ansPn (~zn)

Recall that Union may add null constants to
some xi, and these are translated as AS state-
ments in the projections in the relational algebra
expression. Then, by Definition 28, it follows
that JansUnion(~x)K is defined as follows:

Π~xJansP1 (~z1)K ∪ · · · ∪ Π~xJansPn (~zn)K

By Inductive Hypothesis we know that (i =

1 . . . n)

~ci ∈ JansPi (~zi)K iff M |= ansPi (~ci)

It follows that

~c ∈ JansUnion(~zi)K iff M |= ansUnion(~c)

• Suppose that P has the form

Filter(ansP1 (~w), E(~w))

where ansP1 (~w) has been computed in k steps
and E is a filter condition. The proof remains the
same if we consider a triple atom instead. The
atom Filter(ansP1 (~w), E) represents the body

ansP1 (~w), E(~w)

By inductive hypothesis,

Π0 |= ansP1 (~t), E(~t) iff t ∈JansP1 (~w), E(~w)K

It follows that

Π0 |= ansFilter(~t) iff t ∈Π~x(JansFilter(~x)K)

• Now suppose that P has the form

Join(ansP1 (~w1), ansP2 (~w2), jn)

where ansP1 (~w1) and ansP2 (~w2) hav been com-
puted in k steps and jn is the join condition.
The proof remains the same if we consider a
triple atom instead, and follows applying induc-
tive hypothesis as above.

Inductive Case (Step k + 1): Notice that by Proposition 1 and
the definition of splitting set (c.f. Section 3.1) we can con-
clude that

• The strata Πk has a unique answer set Mk

• The set Uk = {lit(r) | head(r) ∈Mk} forms a splitting
set for ΠQ

• By Proposition 1, it follows that M is an answer set
of ΠQ iff

M = Mk ∪Mtop

where Mtop is an answer set of the partial evaluation
eUk (ΠQ \ bUk ,Mk).

Using the same proposition, it follows that Mtop can be
computed iteratively in the same way, that is, computing
the model of the positive part of eUk (ΠQ \bUk ,Mk), and the
continue splitting and computing the partial evaluations.
Let Me be the unique model of the positive part of eUk (ΠQ\
bUk ,Mk).

Suppose that ansP(~t) ∈Me and ansP is completely defined
in Me in the sense specified above.

Here we assume that we replace the syntactic sugar Left-
Join by the original set of rules. We have several cases:

• ansP defines a Join

• ansP defines an Union

• ansP defines an LeftJoin (Optional operator)

• ansP defined a Filter

We will prove the case where ansP defines a LeftJoin. The
rest of the case are analogous and simpler.

Since ansLe f tJoin(P1,P2) is a Datalog translation of the frag-
ment of a query of the form:

Le f tJoin(P1, P2, E)

we can conclude ΠQ contains rules of the form shown in
Figure B.18.

These rules intuitively represent: τ of the join (rule (1)),
and τ of the difference of P1, P2 (rules 2 and 3). Recall that
after the splitting process, the rules in (B.18) lose several
literals, since literals of the form A(~t) (including negative
ones) in Uk have been removed from the rules. For every
atoms A removed in the successive splittings of ΠQ, we
can use inductive hypotheses to conclude that:

Me |= A(~t)↔M |= A(~t)↔ ~t ∈ JA(~x)K
32

1 answerLeftJoin(P1 ,P2)(V) :- answerP1 (vars(P1)), answerP2 (vars(P2)), E(vars(P1 ∪ P2))
2 answerLeftJoin(P1 ,P2)(V[vars(P2) \ vars(P1) 7→ null]) :- answerP1 (vars(P1)), answerP2 (vars(P2)),not E(vars(P1 ∪ P2))
3 answerLeftJoin(P1 ,P2)(V[vars(P2) \ vars(P1) 7→ null]) :- answerP1 (vars(P1)),not answerLJoin(P1 ,P2)(vars(P1))
4 answerLJoin(P1 ,P2)(vars(P1)) :- answerP1 (vars(P1)), answerP2 (vars(P2))

Figure B.18: Translation SPARQL-Datalog first presented in [26] and extended in [27]

for positive atoms, and analogously

Me |= not A(~t)↔M |= not A(~t)↔ ~t < JA(~x)K

• Let body1
ansLe f tJoin(P1 ,P2)

be the body of the not -free rule
(1) defining answerLe f tJoin(P1,P2) above.

• Let body2
ansLe f tJoin(P1 ,P2)

be the positive part of the body
in rule (2) defining answerLe f tJoin(P1,P2) above.

• Let body3
ansLe f tJoin(P1 ,P2)

be the positive part of the body
in rule (3) defining answerLe f tJoin(P1,P2) above.

• Let body4
ansLe f tJoin(P1 ,P2)

be the positive part of the body
in rule (4) defining answerLJoin(P1,P2) above.

Thus from the previous facts, it follows that for every ~c
satisfying rule (1) encoding the join part of the left join,
there exist ~c1 ~c2 such that

Me |= ansLe f tJoin(P1,P2)(~c) iff Me |= body1
ansLe f tJoin(P1 ,P2)

(~c1 ~c2)

Then, from the definition of translation we know that:
Me |= ansLe f tJoin(P1,P2)(~c)
iff Me |= body1

ansLe f tJoin(P1 ,P2)
(~c1c2)

iff Me |= Join(P1(~c1), P2(~c2), E(c1c2))
iff ~c1c2 ∈ JP1(~x1)K 1E JP2(~x2)K
iff ~c1c2 ∈ JP1(~x1)K EJP2(~x2)K
iff ~c ∈ Π~x(Jbody1

ansLe f tJoin(P1 ,P2)
(~x1x2)K) iff

iff ~c ∈ JansLe f tJoin(P1,P2)(~x)K
And for every ~c satisfying either rule (2) encoding the dif-
ference part of the left join, there exist ~c1 such that
Me |= ansLe f tJoin(P1,P2)(~c)
iff Me |= body2

ansLe f tJoin(P1 ,P2)
(~c1) and ~c = ~c1 ~null

iff c1 ∈ JP1(~x1)K and there is no c2 such that coincides with
~c1 in the join positions and Me |= ansP1 (~c2), ansP2 (~c2) and
therefore Me |= answerLJoin(P1,P2)(c1). iff ~c1 ∈ JP1(~x1)K \E
JP2(~x2)KK
iff ~c ∈ Π~xJP1(~x1)K EJP2(~x2)K
iff ~c ∈ JansLe f tJoin(P1,P2)(~x)K
And for every ~c satisfying either rule (3) encoding the
difference part of the left join, there exist ~c1 such that
Me |= ansLe f tJoin(P1,P2)(~c)
iff Me |= body3

ansLe f tJoin(P1 ,P2)
(~c1) and ~c = ~c1 ~null

iff c1 ∈ JP1(~x1)K and there is a c2 such that coincides
with ~c1 in the join positions and c2 ∈ JP2(~x2)K but
Me 6|= E(c1, c2)
iff ~c1 ∈ JP1(~x1)K \E JP2(~x2)KK
iff ~c ∈ Π~xJP1(~x1)K EJP2(~x2)K

iff ~c ∈ JansLe f tJoin(P1,P2)(~x)K

This concludes the proof for the Left Join case, and the
proof this theorem. 2

Lemma 1. Let M be a R2RML mapping. Let G be a RDF
graph defined by M. Then

(s, p, o) ∈ G iff Πm |= triple(tr(s), tr(p), tr(o))

PROOF. Since the definition of ρ(m) changes depending on o,
we need to consider each case in turn. Suppose that o is an
object which is not a class. The case where it is a class is anal-
ogous. By definition we know that (s, p, o) ∈ G if and only if
there is a mapping M with

1. a triple map node n;

2. a subject map node s hanging from m;

3. a property map node p and an object map node o hanging
from the PropertyObjectMap of m;

4. and a logic table lt from where s, p, o are extracted.

From the previous facts it follows that ΠM contains:

triple(tr(s), tr(p), tr(o)) :- translated_logic_table

where translated_logic_table is the Datalog translation of lt.
For the sake of simplicity assume that lt is a table T with
columns c1 . . . cn. Then Πm has the following rule:

triple(tr(xs), tr(xp), tr(xo)) :- T (~x)

where xs, xp, xo correspond to the columns in T as specified in
m. We know that there is a row in T where s, p, o are projected
from it. It immediately follows that

ΠM |= triple(tr(s), tr(p), tr(o))

2

Appendix C. Datalog Normalization

Before performing the translation into Datalog, we need to
deal with a number of issues that arise from the different nature
of the formalisms at hand. For instance, Datalog is position-
based (uses variables) while relational algebra and SQL are
name-based (use column names). To cope with these issues
while keeping the representation simple, we apply the follow-
ing syntactic transformations to the program in this specific or-
der:

33

• Constants: For every atom of the form triple(t1, t2, t3) in
ΠQ where ti is a constant symbol, add a new boolean atom
of the form vi = ti to the rule, and replace ti by the fresh
variable vi in the triple atom. For instance:

triple(x, a, :Student)
is replaced by

triple(x, y, z), y = a, z = :Student

This set of atoms will be denoted as f c, and the whole set
is replaced by a single Filter atom. In our example above,
this would be:

Filter(triple(x, y, z), f c)
where f c = y = :a, z = :S tudent.

• Shared variables: For every rule r, and every variable
x such that the variable occurs in two different positions
(in the same or different atoms in r), replace the vari-
ables with two new fresh variables x1, x2, and add them
to the body of the query in the form x1 = x2, e.g.,
ans1(x) :- ans2(x, y), ans3(x, z) becomes:
ans1(x1) :- ans2(x1, y), ans3(x2, z), x1 = x2

These sets of join conditions together with any other
boolean atom in the rule will be denoted jn. If
there are several atoms in the body of r, the atoms
will be renamed to a single Join atom, for instance:
Join(ans2(x, y), ans3(x, z), jn).

• Variable Names: Recall that ΠQ can be seen as a tree
where the root is ans1(~x) and the leaves are either triple
atoms or boolean expressions. Then we:

1. Enumerate the triple atoms in the leaves from left
to right: 1 . . . n.

2. For each of these triple leaves T , enumerated as j,
and each variable x in the position i = 1, 2, 3 replace
x by T j.s (if i = 1) or T j.p (if i = 2) or T j.o (if i = 3).

3. Spread this change to the boolean expressions and
the inner nodes of the tree.

In Figure C.19 we show the Datalog program from Exam-
ple 5 after the transformation explained above.

Example 13. Let ΠQ be the Datalog program presented in Ex-
ample 5. Then Jans1(~x)K is as follows:

Πas1 ljn(Πas2 1jn1 (Πas4σfc1 (triple),Πas5σfc2 (triple)),
Πas3 1jn2 (Πas6σfc3 (triple),
Πas7 1jn3 (Πas8σfc4 (triple),Πas9σfc5 (triple))))

where

• as1 = [T2.s,T2.o,T3.o,T5.s,T5.o]

• as2 = [T2.s,T2.o]

• as3 = [T3.s,T3.o,T4.s,T5.o]

• as4 = [s AS T1.s, p AS
T1.p, o AS T1.o]

• as5 = [s AS T2.s, p AS
T2.p, o AS T2.o]

• as6 = [s AS T3.s, p AS
T3.p, o AS T3.o]

• as7 = [T4.s,T5.o,T4.o]

• as8 = [s AS T4.s, p AS
T4.p, o AS T4.o]

• as9 = [s AS T5.s, p AS
T5.p, o AS T5.o]

34

• ljn = [T2.s = T3.s]
• jn1 = [T1.s = T2.s]
• jn2 = [T3.o = T4.o]
• jn3 = [T4.s = T5.s]
• fc1 = [T1.p =

rd f :type,T1.o = :Student]

• fc2 = [T2.p = :hasName]

• fc3 = [T3.p =

:hasEnrolment]

• fc4 = [T4.p = :hasYear]

• fc5 = [T5.p = :hasGrade]

Observe that there is a very close relation between the ans
predicates and the asi statements, as well as Join, LeftJoin, and
Filter conditions in both Datalog and SQL. 2

35

ans1(T2.s, T2.o, T3.o, T5.s, T5.o) :- LeftJoin(ans2(T2.s, T2.o),
ans3(T3.s, T3.o, T4.s, T5.o), T2.s = T3.s)

ans2(T2.s, T2.o) :- Join(ans4(T1.s), ans5(T2.s, T2.o), T1.s = T2.s)
ans3(T3.s, T3.o, T4.s, T5.o) :- Join(ans6(T3.s, T3.o), ans7(T4.s, T5.o, T4.o), T3.o = T4.o)
ans4(T1.s) :- Filter(triple(T1.s, T1.p, T1.o), T1.p = a, T1.o = Student)
ans5(T2.s, T2.o) :- Filter(triple(T2.s, T2.p, T2.o), T2.p = hasNAme)
ans6(T3.s, T3.o) :- Filter(triple(T3.s, T3.p, T3.o), T3.p = hasEnrolment)
ans7(T4.s, T5.o, T4.o) :- Join(ans14(T4.s, T4.o), ans15(T5.s, T5.o), T4.s = T5.s)
ans14(T4.s, T4.o) :- Filter(triple(T4.s, T4.p, T4.o), T4.p = hasYear)
ans15(T5.s, T5.o) :- Filter(triple(T5.s, T5.p, T5.o), T5.p = hasGrade) 2

Figure C.19: Modified ΠQ.

36

Appendix B

Answering SPARQL Queries over Databases
under OWL 2 QL Entailment Regime

This appendix reports the paper:

Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, and Michael Zakharyaschev:
Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime. In Proc. of the
13th Int. Semantic Web Conference (ISWC), 2014.

63

Answering SPARQL Queries over Databases under
OWL 2 QL Entailment Regime

Roman Kontchakov1, Martin Rezk2, Mariano Rodríguez-Muro3, Guohui Xiao2, and
Michael Zakharyaschev1

1 Department of Computer Science and Information Systems,
Birkbeck, University of London, U.K.

2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
3 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

Abstract. We present an extension of the ontology-based data access platform
Ontop that supports answering SPARQL queries under the OWL 2 QL direct
semantics entailment regime for data instances stored in relational databases.
On the theoretical side, we show how any input SPARQL query, OWL 2 QL
ontology and R2RML mappings can be rewritten to an equivalent SQL query
solely over the data. On the practical side, we present initial experimental re-
sults demonstrating that by applying the Ontop technologies—the tree-witness
query rewriting, T -mappings compiling R2RML mappings with ontology hier-
archies, and T -mapping optimisations using SQL expressivity and database in-
tegrity constraints—the system produces scalable SQL queries.

1 Introduction

Ontology-based data access and management (OBDA) is a popular paradigm of organ-
ising access to various types of data sources that has been developed since the mid
2000s [11,17,24]. In a nutshell, OBDA separates the user from the data sources (rela-
tional databases, triple stores, etc.) by means of an ontology which provides the user
with a convenient query vocabulary, hides the structure of the data sources, and can en-
rich incomplete data with background knowledge. About a dozen OBDA systems have
been implemented in both academia and industry; e.g., [27,30,24,4,23,15,12,8,20,22].
Most of them support conjunctive queries and the OWL 2 QL profile of OWL 2 as the
ontology language (or its generalisations to existential datalog rules). Thus, the OBDA
platform Ontop [29] was designed to query data instances stored in relational databases,
with the vocabularies of the data and OWL 2 QL ontologies linked by means of global-
as-view (GAV) mappings. Given a conjunctive query in the vocabulary of such an on-
tology, Ontop rewrites it to an SQL query in the vocabulary of the data, optimises the
rewriting and delegates its evaluation to the database system.

One of the main aims behind the newly designed query language SPARQL 1.1—
a W3C recommendation since 2013—has been to support various entailment regimes,
which can be regarded as variants of OBDA. Thus, the OWL 2 direct semantics en-
tailment regime allows SPARQL queries over OWL 2 DL ontologies and RDF graphs
(which can be thought of as 3-column database tables). SPARQL queries are in many
aspects more expressive than conjunctive queries as they offer more complex query

2 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

constructs and can retrieve not only domain elements but also class and property names
using second-order variables. (Note, however, that SPARQL 1.1 does not cover all con-
junctive queries.) OWL 2 DL is also vastly superior to OWL 2 QL, but this makes query
answering under the OWL 2 direct semantics entailment regime intractable (CONP-
hard for data complexity). For example, the query evaluation algorithm of [19] calls an
OWL 2 DL reasoner for each possible assignment to the variables in a given query, and
therefore cannot cope with large data instances.

In this paper, we investigate answering SPARQL queries under a less expressive
entailment regime, which corresponds to OWL 2 QL, assuming that data is stored in
relational databases. It is to be noted that the W3C specification1 of SPARQL 1.1 defines
entailment regimes for the profiles of OWL 2 by restricting the general definition to the
profile constructs that can be used in the queries. However, in the case of OWL 2 QL,
this generic approach leads to a sub-optimal, almost trivial query language, which is
essentially subsumed by the OWL 2 RL entailment regime.

The first aim of this paper is to give an optimal definition of the OWL 2 QL direct
semantics entailment regime and prove that—similarly to OBDA with OWL 2 QL and
conjunctive queries—answering SPARQL queries under this regime is reducible to an-
swering queries under simple entailment. More precisely, in Theorem 4 we construct a
rewriting ·† of any given SPARQL query and ontology under the OWL 2 QL entailment
regime to a SPARQL query that can be evaluated on any dataset directly.

In a typical Ontop scenario, data is stored in a relational database whose schema is
linked to the vocabulary of the given OWL 2 QL ontology via a GAV mapping in the
language R2RML. The mapping allows one to transform the relational data instance
into an RDF representation, called the virtual RDF graph (which is not materialised in
our scenario). The rewriting ·† constructs a SPARQL query over this virtual graph.

Our second aim is to show how such a SPARQL query can be translated to an equiv-
alent SQL query over a relational representation of the virtual RDF graph as a 3-column
table (translation τ in Theorem 7). The third aim is to show that the resulting SQL query
can be unfolded, using a given R2RML mappingM, to an SQL query over the original
database (trM in Theorem 12), which is evaluated by the database system.

SPARQL query
& ontology SPARQL query

virtual RDF graphentailment
regime

simple entailment

SQL query

triple-database
evaluation

SQL query

database
evaluation

† τ trM

mappingM≈
Unfortunately, each of these three transformations may involve an exponential blowup.
We tackle this problem in Ontop using the following optimisation techniques. (i) The
mapping is compiled with the ontology into a T -mapping [29] and optimised by database
dependencies (e.g., primary, candidate and foreign keys) and SQL disjunctions. (ii) The
SPARQL-to-SQL translation is optimised using null join elimination (Theorem 8). (iii)
The unfolding is optimised by eliminating joins with mismatching R2RML IRI tem-
plates, de-IRIing the join conditions (Section 3.3) and using database dependencies.

Our contributions (Theorems 4, 7, 8 and 12 and optimisations in Section 3.3) make
Ontop the first system to support the W3C recommendations OWL 2 QL, R2RML,
SPARQL and the OWL 2 QL direct semantics entailment regime; its architecture is out-

1 http://www.w3.org/TR/sparql11-entailment

3

lined in Section 4. We evaluate the performance of Ontop using the LUBM Bench-
mark [16] extended with queries containing class and property variables, and com-
pare it with two other systems that support the OWL 2 entailment regime by calling
OWL DL reasoners (Section 5). Our experiments show that Ontop outperforms the
reasoner-based systems for most of the queries over small datasets; over larger datasets
the difference becomes dramatic, with Ontop demonstrating a solid performance even
on 69 million triples in LUBM500. Finally, we note that, although Ontop was designed
to work with existing relational databases, it is also applicable in the context of RDF
triple stores, in which case approaches such as the one from [3] can be used to generate
suitable relational schemas. Omitted proofs and evaluation details can be found in the
full version at http://www.dcs.bbk.ac.uk/~michael/ISWC-14-v2.pdf.

2 SPARQL Queries under OWL 2 QL Entailment Regime

SPARQL is a W3C standard language designed to query RDF graphs. Its vocabulary
contains four pairwise disjoint and countably infinite sets of symbols: I for IRIs, B for
blank nodes, L for RDF literals, and V for variables. The elements of C = I ∪ B ∪ L
are called RDF terms. A triple pattern is an element of (C∪V)× (I∪V)× (C∪V). A
basic graph pattern (BGP) is a finite set of triple patterns. Finally, a graph pattern, P ,
is an expression defined by the grammar

P ::= BGP | FILTER(P, F) | BIND(P, v, c) | UNION(P1, P2) |
JOIN(P1, P2) | OPT(P1, P2, F),

where F , a filter, is a formula constructed from atoms of the form bound(v), (v = c),
(v = v′), for v, v′ ∈ V, c ∈ C, and possibly other built-in predicates using the logical
connectives ∧ and ¬. The set of variables in P is denoted by var(P).

A SPARQL query is a graph pattern P with a solution modifier, which specifies
the answer variables—the variables in P whose values we are interested in—and the
form of the output (we ignore other solution modifiers for simplicity). The values to
variables are given by solution mappings, which are partial maps s : V → C with
(possibly empty) domain dom(s). In this paper, we use the set-based (rather than bag-
based, as in the specification) semantics for SPARQL. For sets S1 and S2 of solution
mappings, a filter F , a variable v ∈ V and a term c ∈ C, let

– FILTER(S, F) = {s ∈ S | F s = >};
– BIND(S, v, c) = {s⊕ {v 7→ c} | s ∈ S} (provided that v /∈ dom(s), for s ∈ S);
– UNION(S1, S2) = {s | s ∈ S1 or s ∈ S2};
– JOIN(S1, S2) = {s1 ⊕ s2 | s1 ∈ S1 and s2 ∈ S2 are compatible};
– OPT(S1, S2, F) = FILTER(JOIN(S1, S2), F) ∪ {s1 ∈ S1 | for all s2 ∈ S2,

either s1, s2 are incompatible or F s1⊕s2 6= >}.

Here, s1 and s2 are compatible if s1(v) = s2(v), for any v ∈ dom(s1) ∩ dom(s2), in
which case s1 ⊕ s2 is a solution mapping with s1 ⊕ s2 : v 7→ s1(v), for v ∈ dom(s1),
s1⊕s2 : v 7→ s2(v), for v ∈ dom(s2), and domain dom(s1)∪dom(s2). The truth-value
F s ∈ {>,⊥, ε} of a filter F under a solution mapping s is defined inductively:

4 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

– (bound(v))s is > if v ∈ dom(s) and ⊥ otherwise;
– (v = c)s = ε if v /∈ dom(s); otherwise, (v = c)s is the classical truth-value of the

predicate s(v) = c; similarly, (v = v′)s = ε if either v or v′ /∈ dom(s); otherwise,
(v = v′)s is the classical truth-value of the predicate s(v) = s(v′);

– (¬F)s =
{
ε, if F s = ε,
¬F s, otherwise,

and (F1 ∧F2)
s =




⊥, if F s1 = ⊥ or F s2 = ⊥,
>, if F s1 = F s2 = >,
ε, otherwise.

Finally, given an RDF graph G, the answer to a graph pattern P over G is the set JP KG
of solution mappings defined by induction using the operations above and starting from
the following base case: for a basic graph pattern B,

JBKG = {s : var(B)→ C | s(B) ⊆ G}, (1)

where s(B) is the set of triples resulting from substituting each variable u inB by s(u).
This semantics is known as simple entailment.

Remark 1. The condition ‘F s1⊕s2 is not true’ in the definition of OPT is different from
‘F s1⊕s2 has an effective Boolean value of false’ given by the W3C specification:2 the
effective Boolean value can be undefined (type error) if a variable in F is not bound by
s1 ⊕ s2. As we shall see in Section 3.1, our reading corresponds to LEFT JOIN in SQL.
(Note also that the informal explanation of OPT in the W3C specification is inconsistent
with the definition of DIFF; see the full version for details.)

Under the OWL 2 QL direct semantics entailment regime, one can query an RDF
graph G that consist of two parts: an extensional sub-graph A representing the data as
OWL 2 QL class and property assertions, and the intensional sub-graph T representing
the background knowledge as OWL 2 QL class and property axioms. We write (T ,A)
in place of G to emphasise the partitioning. To illustrate, we give a simple example.

Example 2. Consider the following two axioms from the LUBM ontology (T ,A) (see
Section 5), which are given here in the functional-style syntax (FSS):

SubClassOf(ub:UGStudent, ub:Student), SubClassOf(ub:GradStudent, ub:Student).

Under the entailment regime, we can write a query that retrieves all named subclasses
of students in (T ,A) and all instances of each of these subclasses (cf. q′9 in Section 5):

SELECT ?x ?C WHERE { ?C rdfs:subClassOf ub:Student. ?x rdf:type ?C. }.

Here ?C ranges over the class names (IRIs) in (T ,A) and ?x over the IRIs of individ-
uals. If, for example, A consists of the two assertions on the left-hand side, then the
answer to the query over (T ,A) is on the right-hand side:

A
ClassAssertion(ub:UGStudent, ub:jim)
ClassAssertion(ub:Student, ub:bob)

?x ?C
ub:jim ub:UGStudent
ub:jim ub:Student
ub:bob ub:Student

2 http://www.w3.org/TR/sparql11-query/#sparqlAlgebra

5

To formally define SPARQL queries that can be used under the OWL 2 QL direct
semantics entailment regime, we assume that the set I of IRIs is partitioned into disjoint
and countably infinite sets of class names IC , object property names IR and individual
names II . Similarly, the variables V are also assumed to be a disjoint union of countably
infinite sets VC , VR, VI . Now, we define an OWL 2 QL BGP as a finite set of triple
patterns representing OWL 2 QL axiom and assertion templates in the FSS such as:3

SubClassOf(SubC, SuperC), DisjointClasses(SubC1, . . . , SubCn),
ObjectPropertyDomain(OP, SuperC), ObjectPropertyRange(OP, SuperC),
SubObjectPropertyOf(OP,OP), DisjointObjectProperties(OP1, . . . ,OPn),
ClassAssertion(SuperC, I), ObjectPropertyAssertion(OP, I, I),

where I ∈ II ∪ VI and OP, SubC and SuperC are defined by the following grammar
with C ∈ IC ∪ VC and R ∈ IR ∪ VR:

OP ::= R | ObjectInverseOf(R),

SubC ::= C | ObjectSomeValuesFrom(OP, owl:Thing),

SuperC ::= C | ObjectIntersectionOf(SuperC1, . . . , SuperCn) |
ObjectSomeValuesFrom(OP, SuperC).

OWL 2 QL graph patterns are constructed from OWL 2 QL BGPs using the SPARQL
operators. Finally, an OWL 2 QL query is a pair (P, V), where P is an OWL 2 QL graph
pattern and V ⊆ var(P). To define the answer to such a query (P, V) over an RDF
graph (T ,A), we fix a finite vocabulary IT ,A ⊆ I that includes all names (IRIs) in T
and A as well as the required finite part of the OWL 2 RDF-based vocabulary (e.g.,
owl:Thing but not the infinite number of the rdf:_n). To ensure finiteness of the answers
and proper typing of variables, in the following definition we only consider solution
mappings s : var(P)→ IT ,A such that s−1(Iα) ⊆ Vα, for α ∈ {C,R, I}. For each
BGP B, we define the answer JBKT ,A to B over (T ,A) by taking

JBKT ,A = {s : var(B)→ IT ,A | (T ,A) |= s(B)},
where |= is the entailment relation given by the OWL 2 direct semantics. Starting from
the JBKT ,A and applying the SPARQL operators in P , we compute the set JP KT ,A of
solution mappings. The answer to (P, V) over (T ,A) is the restriction JP KT ,A|V of
the solution mappings in JP KT ,A to the variables in V .

Example 3. Suppose T contains

SubClassOf(:A,ObjectSomeValuesFrom(:P, owl:Thing)),
SubObjectPropertyOf(:P, :R), SubObjectPropertyOf(:P,ObjectInverseOf(:S)).

Consider the following OWL 2 QL BGP B:

ClassAssertion(ObjectSomeValuesFrom(:R,ObjectSomeValuesFrom(:S,
ObjectSomeValuesFrom(:T, owl:Thing))), ?x).

3 The official specification of legal queries under the OWL 2 QL entailment regime only allows
ClassAssertion(C, I) rather than ClassAssertion(SuperC, I), which makes the OWL 2 QL en-
tailment regime trivial and essentially subsumed by the OWL 2 RL entailment regime.

6 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

Assuming that A = {ClassAssertion(:A, :a),ObjectPropertyAssertion(:T, :a, :b)}, it is
not hard to see that JBKT ,A = {?x 7→ :a}. Indeed, by the first assertion of A and the
first two axioms of T , any model of (T ,A) contains a domain element w (not neces-
sarily among the individuals in A) such that ObjectPropertyAssertion(:R, :a, w) holds.
In addition, the third axiom of T implies ObjectPropertyAssertion(:S, w, :a), which to-
gether with the second assertion of A mean that {?x 7→ :a} is an answer.

The following theorem shows that answering OWL 2 QL queries under the direct
semantics entailment regime can be reduced to answering OWL 2 QL queries under
simple entailment, which are evaluated only on the extensional part of the RDF graph:

Theorem 4. Given any intensional graph T and OWL 2 QL query (P, V), one can con-
struct an OWL 2 QL query (P †, V) such that, for any extensional graphA (in some fixed
finite vocabulary), JP KT ,A|V = JP †KA|V .

Proof sketch. By the definition of the entailment regime, it suffices to construct B†, for
any BGP B; the rewriting P † is obtained then by replacing each BGP B in P with
B†. First, we instantiate the class and property variables in B by all possible class and
property names in the given vocabulary and add the respective BIND operations. In each
of the resulting BGPs, we remove the class and property axioms if they are entailed by
T ; otherwise we replace the BGP with an empty one. The obtained BGPs are (SPARQL
representations of) conjunctive queries (with non-distinguished variables in complex
concepts SuperC of the assertions ClassAssertion(SuperC, I)). The second step is to
rewrite these conjunctive queries together with T into unions of conjunctive queries
(BGPs) that can be evaluated over any extensional graph A [5,21]. (We emphasise that
the SPARQL algebra operations, including difference and OPT, are applied to BGPs
and do not interact with the two steps of our rewriting.) q

We illustrate the proof of Theorem 4 using the queries from Examples 2 and 3.

Example 5. The class variable ?C in the query from Example 2 can be instantiated,
using BIND, by all possible values from IC ∩ IT ,A, which gives the rewriting

SELECT ?x ?C WHERE {
{ ?x rdf:type ub:Student. BIND(ub:Student as ?C) } UNION
{ ?x rdf:type ub:GradStudent. BIND(ub:GradStudent as ?C) } UNION
{ ?x rdf:type ub:UGStudent. BIND(ub:UGStudent as ?C) } }.

The query from Example 3 is equivalent to a (tree-shaped) conjunctive query with three
non-distinguished and one answer variable, which can be rewritten to

SELECT ?x WHERE { { ?x :R ?y. ?y :S ?z. ?z :T ?u. } UNION
{ ?x rdf:type :A. ?x :T ?u. } }.

3 Translating SPARQL under Simple Entailment to SQL

A number of translations of SPARQL queries (under simple entailment) to SQL queries
have already been suggested in the literature; see, e.g., [9,13,7,32,27]. However, none

7

of them is suitable for our aims because they do not take into account the three-valued
logic used in the OPTIONAL and BOUND constructs of the current SPARQL 1.1 (the se-
mantics of OPTIONAL was not compositional in SPARQL 1.0). Note also that SPARQL
has been translated to Datalog [25,2,26].

We begin by recapping the basics of relational algebra and SQL (see e.g., [1]). Let
U be a finite (possibly empty) set of attributes. A tuple over U is a map t : U → ∆,
where∆ is the underlying domain, which always contains a distinguished element null.
A (|U |-ary) relation over U is a finite set of tuples over U (again, we use the set-based
rather than bag-based semantics). A filter F over U is a formula constructed from atoms
isNull(U ′), (u = c) and (u = u′), where U ′ ⊆ U , u, u′ ∈ U and c ∈ ∆, using the
connectives ∧ and ¬. Let F be a filter with variables U and let t be a tuple over U . The
truth-value F t ∈ {>,⊥, ε} of F over t is defined inductively:

– (isNull(U ′))t is > if t(u) is null, for all u ∈ U ′, and ⊥ otherwise;
– (u = c)t = ε if t(u) is null; otherwise, (u = c)t is the classical truth-value of

the predicate t(u) = c; similarly, (u = u′)t = ε if either t(u) or t(u′) is null;
otherwise, (u = u′)t is the classical truth-value of the predicate t(u) = t(u′);

– (¬F)t =
{
ε, if F t = ε,

¬F t, otherwise,
and (F1 ∧ F2)

t =




⊥, if F t1 = ⊥ or F t2 = ⊥,
>, if F t1 = F t2 = >,
ε, otherwise.

(Note that ¬ and ∧ are interpreted in the same three-valued logic as in SPARQL.) We
use standard relational algebra operations such as union, difference, projection, selec-
tion, renaming and natural (inner) join. Let Ri be a relation over Ui, i = 1, 2.

– If U1 = U2 then the standard R1 ∪R2 and R1 \R2 are relations over U1.
– If U ⊆ U1 then πUR1 = R1|U is a relation over U .
– If F is a filter over U1 then σFR1 = {t ∈ R1 | F t = >} is a relation over U1.
– If v /∈ U1 and u ∈ U1 then ρv/uR1 =

{
tv/u | t ∈ R1

}
, where tv/u : v 7→ t(u) and

tv/u : u
′ 7→ t(u′), for u′ ∈ U1 \ {u}, is a relation over (U1 \ {u}) ∪ {v}.

– R1 1 R2 = {t1 ⊕ t2 | t1 ∈ R1 and t2 ∈ R2 are compatible} is a relation over
U1∪U2. Here, t1 and t2 are compatible if t1(u) = t2(u) 6= null, for all u ∈ U1∩U2,
in which case a tuple t1⊕ t2 over U1 ∪U2 is defined by taking t1⊕ t2 : u 7→ t1(u),
for u ∈ U1, and t1 ⊕ t2 : u 7→ t2(u), for u ∈ U2 (note that if u is null in either of
the tuples then they are incompatible).

To bridge the gap between partial functions (solution mappings) in SPARQL and total
mappings (on attributes) in SQL, we require one more operation (expressible in SQL):

– If U ∩ U1 = ∅ then the padding µUR1 is R1 1 nullU , where nullU is the relation
consisting of a single tuple t over U with t : u 7→ null, for all u ∈ U .

By an SQL query, Q, we understand any expression constructed from relation symbols
(each over a fixed set of attributes) and filters using the relational algebra operations
given above (and complying with all restrictions on the structure). Suppose Q is an
SQL query and D a data instance which, for any relation symbol in the schema under
consideration, gives a concrete relation over the corresponding set of attributes. The

8 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

answer to Q over D is a relation ‖Q‖D defined inductively in the obvious way starting
from the base case: for a relation symbol Q, ‖Q‖D is the corresponding relation in D.

We now define a translation, τ , which, given a graph pattern P , returns an SQL
query τ (P) with the same answers as P . More formally, for a set of variables V , let
extV be a function transforming any solution mapping s with dom(s) ⊆ V to a tuple
over V by padding it with nulls:

extV (s) = {v 7→ s(v) | v ∈ dom(s)} ∪ {v 7→ null | v ∈ V \ dom(s)}.

The relational answer to P over G is ‖P‖G = {extvar(P)(s) | s ∈ JP KG}. The SQL
query τ (P) will be such that, for any RDF graph G, the relational answer to P over G
coincides with the answer to τ (P) over triple(G), the database instance storing G as a
ternary relation triple with the attributes subj, pred, obj. First, we define the translation
of a SPARQL filter F by taking τ (F) to be the SQL filter obtained by replacing each
bound(v) with ¬isNull(v) (other built-in predicates can be handled similarly).

Proposition 6. Let F be a SPARQL filter and let V be the set of variables in F . Then
F s = (τ (F))extV (s), for any solution mapping s with dom(s) ⊆ V .

The definition of τ proceeds by induction on the construction of P . Note that we can
always assume that graph patterns under simple entailment do not contain blank nodes
because they can be replaced by fresh variables. It follows that a BGP {tp1, . . . , tpn} is
equivalent to JOIN({tp1}, JOIN({tp2}, . . .)). So, for the basis of induction we set

τ ({〈s, p, o〉}) =





π∅σ(subj=s)∧(pred=p)∧(obj=o) triple, if s, p, o ∈ I ∪ L,
πsρs/subj σ(pred=p)∧(obj=o) triple, if s ∈ V and p, o ∈ I ∪ L,
πs,oρs/subj ρo/obj σpred=p triple, if s, o ∈ V, s 6= o, p ∈ I ∪ L,
πsρs/subj σ(pred=p)∧(subj=obj) triple, if s, o ∈ V, s = o, p ∈ I ∪ L,
. . .

(the remaining cases are similar). Now, if P1 and P2 are graph patterns and F1 and F
are filters containing only variables in var(P1) and var(P1)∪var(P2), respectively, then
we set Ui = var(Pi), i = 1, 2, and

τ (FILTER(P1, F1)) = στ (F1)τ (P1),

τ (BIND(P1, v, c)) = τ (P1) 1 {v 7→ c},
τ (UNION(P1, P2)) = µU2\U1

τ (P1) ∪ µU1\U2
τ (P2),

τ (JOIN(P1, P2)) =
⋃

V1,V2⊆U1∩U2

V1∩V2=∅

µV1∪V2

[
(πU1\V1

σisNull(V1)τ (P1))1(πU2\V2
σisNull(V2)τ (P2))

]
,

τ (OPT(P1, P2, F)) = στ (F)(τ (JOIN(P1, P2))) ∪
µU2\U1

(
τ (P1) \ πU1

στ (F)(τ (JOIN(P1, P2)))
)
.

It is readily seen that any τ (P) is a valid SQL query and defines a relation over var(P).

Theorem 7. For any RDF graphG and any graph pattern P , ‖P‖G = ‖τ (P)‖triple(G).

9

Proof. The proof is by induction on the structure of P . Here we only consider the
induction step for P = JOIN(P1, P2). Let Ui = var(Pi), i = 1, 2, and U = U1 ∩ U2.

If t ∈ ‖JOIN(P1, P2)‖G then there is a solution mapping s ∈ JJOIN(P1, P2)KG
with extU1∪U2(s) = t, and so there are si ∈ JPiKG such that s1 and s2 are compatible
and s1 ⊕ s2 = s. Since, extUi

(si) ∈ ‖Pi‖G, by IH, extUi
(si) ∈ ‖τ (Pi)‖triple(G). Let

V = dom(s1) ∩ dom(s2) and Vi = U \ dom(si). Then V1, V2 and V are disjoint and
partition U . By definition, extUi

(si) : v 7→ null, for each v ∈ Vi, and therefore extUi
(si)

is in ‖σisNull(Vi)τ (Pi)‖triple(G). Let ti = extUi\Vi
(si) andQi = πUi\Vi

(σisNull(Vi)τ (Pi)).
We have ti ∈ ‖Qi‖triple(G), and since s1 and s2 are compatible and V are the common
non-null attributes of t1 and t2, we obtain t1 ⊕ t2 ∈ ‖Q1 1 Q2‖triple(G). As t extends
t1 ⊕ t2 to V1 ∪ V2 by nulls, we have t ∈ ‖τ (JOIN(P1, P2))‖triple(G).

If t ∈ ‖τ (JOIN(P1, P2))‖triple(G) then there are disjoint V1, V2 ⊆ U and compatible
tuples t1 and t2 such that ti ∈ ‖πUi\Vi

(σisNull(Vi)τ (Pi))‖triple(G) and t extends t1⊕t2 to
V1∪V2 by nulls. Let si = {v 7→ t(v) | v ∈ Ui and t(v) is not null}. Then s1 and s2 are
compatible and extUi(si) ∈ ‖τ (Pi)‖triple(G). By IH, extUi(si) ∈ ‖Pi‖G and si ∈ JPiKG.
So, s1 ⊕ s2 ∈ JJOIN(P1, P2)KG and extU1∪U2

(s1 ⊕ s2) = t ∈ ‖JOIN(P1, P2)‖G. q

3.1 Optimising SPARQL JOIN and OPT

By definition, τ (JOIN(P1, P2)) is a union of exponentially many natural joins (1).
Observe, however, that for any BGP B = {tp1, . . . , tpn}, none of the attributes in the
τ (tpi) can be null. So, we can drastically simplify the definition of τ (B) by taking

τ ({tp1, . . . , tpn}) = τ (tp1) 1 · · · 1 τ (tpn).

Moreover, this observation can be generalised. First, we identify the variables in graph
patterns that are not necessarily bound in solution mappings:

ν(B) = ∅, B is a BGP,
ν(FILTER(P1, F)) = ν(P1) \ {v | bound(v) is a conjunct of F},
ν(BIND(P1, v, c)) = ν(P1),

ν(UNION(P1, P2)) = (var(P1) \ var(P2)) ∪ (var(P2) \ var(P1)) ∪ ν(P1) ∪ ν(P2),

ν(JOIN(P1, P2)) = ν(P1) ∪ ν(P2),

ν(OPT(P1, P2, F)) = ν(P1) ∪ var(P2).

Thus, if a variable v in P does not belong to ν(P), then v ∈ dom(s), for any solution
mapping s ∈ JP KG and RDF graph G (but not the other way round). Now, we observe
that the union in the definition of τ (JOIN(P1, P2)) can be taken over those subsets of
var(P1) ∩ var(P2) that only contain variables from ν(P1) ∪ ν(P2). This gives us:

Theorem 8. If var(P1) ∩ var(P2) ∩ (ν(P1) ∪ ν(P2)) = ∅ then we can define

τ (JOIN(P1, P2)) = τ (P1) 1 τ (P2), τ (OPT(P1, P2, F)) = τ (P1) τ (F)τ (P2),

where R1 FR2 = σF (R1 1 R2)∪µU2\U1
(R1\πU1

(σF (R1 1 R2))), for Ri over Ui.

(Note that the relational operation F corresponds to LEFT JOIN in SQL with the
condition F placed in its ON clause.)

10 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

Example 9. Consider the following BGP B taken from the official SPARQL specifica-
tion (‘find the names of people who do not know anyone’):

FILTER(OPT({ ?x foaf:givenName ?n }, { ?x foaf:knows ?w }, >),¬bound(?w)).

By Theorem 8, τ (B) is defined as σisNull(w)(πx,nQ1 πx,wQ2), where Q1 and Q2

are σpred=foaf:givenNameρx/subjρn/obj triple and σpred=foaf:knowsρx/subjρw/obj triple, respec-
tively (we note in passing that the projection on x is equivalent to πxQ1 \ πxQ2).

3.2 R2RML Mappings

The SQL translation of a SPARQL query constructed above has to be evaluated over
the ternary relation triple(G) representing the virtual RDF graph G. Our aim now is to
transform it to an SQL query over the actual database, which is related toG by means of
an R2RML mapping [10]. A variant of such a transformation has been suggested in [27].
Here we develop the idea first presented in [28]. We begin with a simple example.

Example 10. The following R2RML mapping (in the Turtle syntax) populates an object
property ub:UGDegreeFrom from a relational table students, whose attributes id and
degreeuniid identify graduate students and their universities:

_:m1 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM students WHERE stype=1"];
rr:subjectMap [rr:template "/GradStudent{id}"] ;
rr:predicateObjectMap [rr:predicate ub:UGDegreeFrom ;

rr:objectMap [rr:template "/Uni{degreeuniid}"]]

More specifically, for each tuple in the query, an R2RML processor generates an RDF
triple with the predicate ub:UGDegreeFrom and the subject and object constructed from
attributes id and degreeuniid, respectively, using IRI templates.

Our aim now is as follows: given an R2RML mappingM, we are going to define
an SQL query trM(triple) that constructs the relational representation triple(GD,M) of
the virtual RDF graph GD,M obtained byM from any given data instance D. Without
loss of generality and to simplify presentation, we assume that each triple map has

– one logical table (rr:sqlQuery),
– one subject map (rr:subjectMap), which does not have resource typing (rr:class),
– and one predicate-object map with one rr:predicateMap and one rr:objectMap.

This normal form can be achieved by introducing predicate-object maps with rdf:type
and splitting any triple map into a number of triple maps with the same logical ta-
ble and subject. We also assume that triple maps contain no referencing object maps
(rr:parentTriplesMap, etc.) since they can be eliminated using joint SQL queries [10].
Finally, we assume that the term maps (i.e., subject, predicate and object maps) contain
no constant shortcuts and are of the form [rr:column v], [rr:constant c] or [rr:template s].

Given a triple map m with a logical table (SQL query) R, we construct a selec-
tion σ¬isNull(v1) · · ·σ¬isNull(vk)R, where v1, . . . , vk are the referenced columns of m
(attributes of R in the term maps in m)—this is done to exclude tuples that contain
null [10]. To construct trm, the selection filter is prefixed with projection πsubj,pred,obj

11

and, for each of the three term maps, either with renaming (e.g., with ρobj/v if the object
map is of the form [rr:column v]) or with value creation (if the term map is of the form
[rr:constant c] or [rr:template s]; in the latter case, we use the built-in string concatena-
tion function). For instance, the mapping _:m1 from Example 10 is converted to the
SQL query

SELECT (’/GradStudent’ id) AS subj, ’ub:UGDegreeFrom’ AS pred,
(’/Uni’ degreeuniid) AS obj FROM students

WHERE (id IS NOT NULL) AND (degreeuniid IS NOT NULL) AND (stype=1).

Given an R2RML mappingM, we set trM(triple) =
⋃
m∈M trm.

Proposition 11. For any R2RML mappingM and data instanceD, t ∈ ‖trM(triple)‖D
if and only if t ∈ triple(GD,M).

Finally, given a graph pattern P and an R2RML mappingM, we define trM(τ (P))
to be the result of replacing every occurrence of the relation triple in the query τ (P),
constructed in Section 3, with trM(triple). By Theorem 7 and Proposition 11, we ob-
tain:

Theorem 12. For any graph pattern P , R2RML mapping M and data instance D,
‖P‖GD,M = ‖trM(τ (P))‖D.

3.3 Optimising SQL Translation

The straightforward application of trM to τ (P) can result in a very complex SQL
query. We now show that such queries can be optimised by the following techniques:

– choosing matching trm from trM(triple), for each occurrence of triple in τ (P);
– using the distributivity of 1 over ∪ and removing sub-queries with incompatible

IRI templates and de-IRIing join conditions;
– functional dependencies (e.g., primary keys) for self-join elimination [6,18,29,30].

To illustrate, suppose we are given a mapping M containing _:m1 from Example 10
and the following triple maps (which are a simplified version of those in Section 5):

_:m2 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM students WHERE stype=0"];
rr:subjectMap [rr:template "/UGStudent{id}"; rr:class ub:Student].

_:m3 a rr:TripleMap;
rr:logicalTable [rr:sqlQuery "SELECT * FROM students WHERE stype=1"];
rr:subjectMap [rr:template "/GradStudent{id}"; rr:class ub:Student].

which generate undergraduate and graduate students (both are instances of ub:Student,
but their IRIs are constructed using different templates [16]). Consider the following
query (a fragment of qobg

2 from Section 5):

SELECT ?x ?y WHERE { ?x rdf:type ub:Student. ?x ub:UGDegreeFrom ?y }.

The translation τ of its BGP (after the SPARQL JOIN optimisation of Section 3.1) is

(πxρx/subjσ(pred=rdf:type)∧(obj=ub:Student) triple) 1
(πx,yρx/subjρy/objσpred=ub:UGDegreeFrom triple)

12 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

First, since triple always occurs in the scope of some selection operation σF , we can
choose only those elements in

⋃
m∈M trm that have matching values of pred and/or

obj. In our example, the first occurrence of triple is replaced by tr_:m2 ∪ tr_:m3, and the
second one by tr_:m1. This results in the natural join of the following union, denoted A:

(SELECT DISTINCT ’/UGStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=0))

UNION (SELECT DISTINCT ’/GradStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=1))

and of the following query, denoted B:
SELECT DISTINCT ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE (id IS NOT NULL) AND (degreeuniid IS NOT NULL) AND (stype=1)

Second, observe that the IRI template in B is compatible only with the second compo-
nent of A. Moreover, since the two compatible templates coincide, we can de-IRI the
join, namely, replace the join over the constructed strings (A.x = B.x) by the join over
the numerical attributes (A.id = B.id), which results in a more efficient query:

SELECT DISTINCT A.x, B.y FROM
(SELECT id, ’/GradStudent’ id AS x FROM students
WHERE (id IS NOT NULL) AND (stype=1)) A

JOIN
(SELECT id, ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE(id IS NOT NULL)AND(degreeuniid IS NOT NULL)AND(stype=1))B

ON A.id = B.id
Finally, by using self-join elimination and the fact that id and stype are the composite
primary key in students, we obtain the query (without DISTINCT as x is unique)

SELECT ’/GradStudent’ id AS x, ’/Uni’ degreeuniid AS y FROM students
WHERE (degreeuniid IS NOT NULL) AND (stype=1)

4 Putting it all Together

The techniques introduced above suggest the following architecture to support answer-
ing SPARQL queries under the OWL 2 QL entailment regime with data instances stored
in a database. Suppose we are given an ontology with an intensional part T and an ex-
tensional part stored in a database,D, over a schemaΣ. Suppose also that the languages
ofΣ and T are connected by an R2RML mappingM. The process of answering a given
OWL 2 QL query (P, V) involves two stages, off-line and on-line.

OFFLINE ONLINE

OWL 2 QL
reasoner

ontology T
(intensional part)

T -mapping
optimiser

R2RML
mappingM

DB integrity constraints Σ

classified ontology

T -mappingM′

OWL 2 QL
query (P, V)

OWL 2 QL query (P †, V)
over H-complete RDF graph

under simple entailment

entailment regime
rewriter

SQL query

SPARQL to SQL
translator

The off-line stage takes T ,M and Σ and proceeds via the following steps:
Ê An OWL 2 QL reasoner is used to obtain a complete class / property hierarchy in T .

13

Ë The compositionMT ofM with the class and property hierarchy in T is taken as
an initial T -mapping. Recall [29] that a mappingM′ is a T -mapping overΣ if, for any
data instanceD satisfyingΣ, the virtual (not materialised) RDF graphGD,M′ obtained
by applyingM′ toD contains all class and property assertionsαwith (T , GD,M′) |= α.
As a result,GD,M′ is complete with respect to the class and property hierarchy in T (or
H-complete), which allows us to avoid reasoning about class and property inclusions (in
particular, inferences that involve property domains and ranges) at the query rewriting
step Í and drastically simplify rewritings (see [29] for details).
Ì The initial T -mapping MT is then optimised by (i) eliminating redundant triple
maps detected by query containment with inclusion dependencies in Σ, (ii) eliminating
redundant joins in logical tables using the functional dependencies inΣ, and (iii) merg-
ing sets of triple maps by means of interval expressions or disjunctions in logical tables
(see [29] for details). LetM′ be the resulting T -mapping over Σ.
The on-line stage takes an OWL 2 QL query (P, V) as an input and proceeds as follows:
Í The graph pattern P and T are rewritten to the OWL 2 QL graph pattern P † over the
H-complete virtual RDF graph GD,M′ under simple entailment by applying the clas-
sified ontology of step Ê to instantiate class and property variables and then using a
query rewriting algorithm (e.g., the tree-witness rewriter of [29]); see Theorem 4.
Î The graph pattern P † is transformed to the SQL query τ (P †) over the 3-column
representation triple of the RDF graph (Theorem 7). Next, the query τ (P †) is unfolded
into the SQL query trM′(τ (P †)) over the original database D (Theorem 12). The un-
folded query is optimised using the techniques similar to the ones employed in step Ì.
Ï The optimised query is executed by the database.
As follows from Theorems 4, 7 and 12, the resulting query gives us all correct answers
to the original OWL 2 QL query (P, V) over T and D with the R2RML mappingM.

5 Evaluation

The architecture described above has been implemented in the open-source OBDA sys-
tem Ontop4. We evaluated its performance using the OWL 2 QL version of the Lehigh
University Benchmark LUBM [16]. The ontology contains 43 classes, 32 object and
data properties and 243 axioms. The benchmark also includes a data generator and a
set of 14 queries q1–q14. We added 7 queries with second-order variables ranging over
class and property names: q′4, q

′′
4 , q
′
9, q
′′
9 derived from q4 and q9, and qobg

2 , qobg
4 , qobg

10 taken
from [19]. The LUBM data generator produces an OWL file with class and property as-
sertions. To store the assertions in a database, we created a database schema with 11
relations and an R2RML mapping with 89 predicate-object maps. For instance, the in-
formation about undergraduate and graduate students (id, name, etc.) from Example 10
is collected in the relation students, where the attribute stype distinguishes between the
types of students (stype is known as a discriminant column in databases); more details
including primary and foreign keys and indexes are provided in the full version.

We experimented with the data instances LUBMn, n = 1, 9, 20, 50, 100, 200, 500
(where n specifies the number of universities; LUBM1 and LUBM9 were used in [19]).

4 http://ontop.inf.unibz.it

14 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

Q LUBM1 LUBM9 LUBM100 LUBM200 LUBM500

O OBH OBP P O OBH P O P O O

q1 2 8 29 1 3 97 1 3 1 3 2
q2 2 25 11 137 19 3 2 531 256 16 30 593 36 88
q3 1 6 86 9 2 78 158 2 2 087 63 12
q4 13 7 19 14 15 44 164 27 2 093 24 22
q5 16 12 4 451 10 22 98 158 32 2 182 28 23
q6 455 27 32 21 5 076 411 317 58 968 10 781 123 578 434 349
q7 5 21 34 005 10 6 429 157 8 2 171 8 9
q8 726 195 95 875 80 760 917 192 796 2 131 820 855
q9 60 972 168 978 78 668 189 126 857 7 466 12 125 15 227 44 598
q10 2 6 126 9 3 97 158 2 2 134 3 2
q11 4 5 58 10 6 43 160 11 2 093 18 44
q12 3 4 19 15 4 70 236 3 2 114 5 5
q13 6 4 67 8 7 40 157 14 2 657 38 58
q14 91 20 24 15 1 168 329 287 13 524 4 457 29 512 92 376
q′4 93 58 190 46 99 98 767 92 4 422 95 107
q′′4 108 21 35 63 122 72 719 115 9 179 108 127
q′9 257 716 91 855 174 4 686 40 575 1 385 54 092 19 945 115 110 295 228
q′′9 557 951 65 916 102 6 093 178 401 1 214 67 123 19 705 151 376 356 176
qobg
2 150 30 57 141 29 9 992 520 348 39 477 5 411 79 351 206 061
qobg
4 6 7 241 25 31 40 273 7 3 969 7 494
qobg
10 641 760 31 269 253 6 998 149 191 2 258 163 308 17 929 174 362 459 669

start up 3.1s 13.6s 7.7s 3.6s 3.1s 80m33s 18s 3.1s 3m23s 3.1s 3.1s
data load 10s n/a n/a n/a 15s n/a n/a 1m56s n/a 3m35s 10m17s

Table 1. Start up time, data loading time (in s) and query execution time (in ms): O is Ontop ,
OBH and OBP are OWL-BGP with Hermit and Pellet, respectively, and P is standalone Pellet.

Here we only show the results for n = 1, 9, 100, 200, 500 containing 103k, 1.2M, 14M,
28M and 69M triples, respectively; the complete table can be found in the full version.
All the materials required for the experiments are available online5. We compared On-
top with two other systems, OWL-BGP r123 [19] and Pellet 2.3.1 [31] (Stardog and
OWLIM are incomplete for the OWL 2 QL entailment regime). OWL-BGP requires an
OWL 2 reasoner as a backend; as in [19], we employed HermiT 1.3.8 [14] and Pel-
let 2.3.1. The hardware was an HP Proliant Linux server with 144 cores @3.47GHz,
106GB of RAM and a 1TB 15k RPM HD. Each system used a single core and was
given 20 GB of Java 7 heap memory. Ontop used MySQL 5.6 database engine.

The evaluation results are given in Table 1. OWL-BGP and Pellet used significantly
more time to start up (last but one row) because they do not rely on query rewriting and
require costly pre-computations. OWL-BGP failed to start on LUBM9 with Pellet and
on LUBM20 with HermiT; Pellet ran out of memory after 10hrs loading LUBM200. For
Ontop , the start up is the off-line stage described in Section 4; it does not include the
time of loading the data into MySQL, which is specified in the last row of Table 1 (note
that the data is loaded only once, not every time Ontop starts; moreover, this could be
improved with CSV loading and delayed indexing rather than SQL dumps we used).

On queries q1–q14, Ontop generally outperforms OWL-BGP and Pellet. Due to the
optimisations, the SQL queries generated by Ontop are very simple, and MySQL is
able to execute them efficiently. This is also the case for large datasets, where Ontop is
able to maintain almost constant times for many of the queries. Notable exceptions are
q6, q8 and q14 that return a very large number (hundreds of thousands) of results (low

5 https://github.com/ontop/iswc2014-benchmark

15

selectivity). A closer inspection reveals that execution time is mostly spent on fetching
the results from disk. On the queries with second-order variables, the picture is mixed.
While indeed these queries are not the strongest point of Ontop at the moment, we see
that in general the performance is good. Although Pellet outperforms Ontop on small
datasets, only Ontop is able to provide answers for very large datasets. For second-
order queries with high selectivity (e.g., q′4 and q′′4) and large datasets, the performance
of Ontop is very good while the other systems fail to return answers.

6 Conclusions

In this paper, we gave both a theoretical background and a practical implementation
of a procedure for answering SPARQL 1.1 queries under the OWL 2 QL direct seman-
tics entailment regime in the scenario where data instances are stored in a relational
database whose schema is connected to the language of the given OWL 2 QL ontology
via an R2RML mapping. Our main contributions can be summarised as follows:

– We defined an entailment regime for SPARQL 1.1 corresponding to the OWL 2 QL
profile of OWL 2 (which was specifically designed for ontology-based data access).

– We proved that answering SPARQL queries under this regime is reducible to an-
swering SPARQL queries under simple entailment (where no reasoning is involved).

– We showed how to transform such SPARQL queries to equivalent SQL queries over
an RDF representation of the data, and then unfold them, using R2RML mappings,
into SQL queries over the original relational data.

– We developed optimisation techniques to substantially reduce the size and improve
the quality of the resulting SQL queries.

– We implemented these rewriting and optimisation techniques in the OBDA system
Ontop . Our initial experiments showed that Ontop generally outperforms reasoner-
based systems, especially on large data instances.

Some aspects of SPARQL 1.1 (such as RDF types, property paths, aggregates) were not
discussed here and are left for future work.
Acknowledgements. Our work was supported by EU project Optique. We thank S. Ko-
mla-Ebri for help with the experiments, and I. Kollia and B. Glimm for discussions.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Proc. of ISWC. LNCS,

vol. 5318, pp. 114–129. Springer (2008)
3. Bornea, M., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bhat-

tacharjee, B.: Building an efficient RDF store over a relational database. In: Proc. of SIG-
MOD 2013, pp. 121–132. ACM (2013)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-based data access.
Semantic Web 2(1), 43–53 (2011)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

16 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

6. Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query optimiza-
tion. ACM Transactions on Database Systems 15(2), 162–207 (1990)

7. Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data
Knowl. Eng. 68(10), 973–1000 (2009)

8. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL. In: Proc.
of CADE-23. LNCS, vol. 6803, pp. 192–206. Springer (2011)

9. Cyganiak, R.: A relational algebra for SPARQL. Tech. Rep. HPL-2005-170, HP Labs (2005)
10. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language (September

2012), http://www.w3.org/TR/r2rml
11. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scalable

grounded conjunctive query evaluation over large and expressive knowledge bases. In: Proc.
of ISWC. LNCS, vol. 5318, pp. 403–418. Springer (2008)

12. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-SHIQ plus
rules. In: Proc. of AAAI. AAAI Press (2012)

13. Elliott, B., Cheng, E., Thomas-Ogbuji, C., Özsoyoglu, Z.M.: A complete translation from
SPARQL into efficient SQL. In: Proc. of IDEAS. pp. 31–42. ACM (2009)

14. Glimm, B., Horrocks, I., Motik, B., Stoilos, G.: Optimising ontology classification. In: Proc.
of ISWC, part I. LNCS, vol. 6496, pp. 225–240. Springer (2010)

15. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization. In: Proc.
of ICDE. pp. 2–13. IEEE Computer Society (2011)

16. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. of
Web Semantics 3(2–3), 158–182 (2005)

17. Heymans, S. et al.: Ontology reasoning with large data repositories. In: Ontology Manage-
ment, Semantic Web, Semantic Web Services, and Business Applications. Springer (2008)

18. King, J.J.: Query Optimization by Semantic Reasoning. Ph.D. thesis, Stanford, USA (1981)
19. Kollia, I., Glimm, B.: Optimizing SPARQL query answering over OWL ontologies. J. of

Artificial Intelligence Research 48, 253–303 (2013)
20. König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: On the exploration of the query

rewriting space with existential rules. In: Proc. of RR. LNCS. pp. 123–137. Springer (2013)
21. Kontchakov, R., Rodríguez-Muro, M., Zakharyaschev, M.: Ontology-based data access with

databases: A shortcourse. In:ReasoningWeb.LNCS,vol. 8067,pp.194–229. Springer (2013)
22. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA: Taming role

hierarchies using filters. In: Proc. of ISWC. LNCS, vol. 8218, pp. 314–330. Springer (2013)
23. Pérez-Urbina, H., Rodríguez-Díaz, E., Grove, M., Konstantinidis, G., Sirin, E.: Evaluation

of query rewriting approaches for OWL 2. In: SSWS+HPCSW. CEUR-WS, vol. 943 (2012)
24. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking

data to ontologies. J. on Data Semantics X, 133–173 (2008)
25. Polleres, A.: From SPARQL to rules (and back). In: Proc. WWW. pp. 787–796. ACM (2007)
26. Polleres, A., Wallner, J.P.: On the relation between SPARQL 1.1 and Answer Set Program-

ming. J. of Applied Non-Classical Logics 23(1–2), 159–212 (2013)
27. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based

SPARQL to SQL query translation using Morph. In: Proc. of WWW. pp. 479–490 (2014)
28. Rodríguez-Muro, M., Hardi, J., Calvanese, D.: Quest: Efficient SPARQL-to-SQL for RDF

and OWL. In: Proc. of the ISWC 2012 P&D Track. vol. 914. CEUR-WS.org (2012)
29. Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access:

Ontop of databases. In: Proc. of ISWC. LNCS, vol. 8218, pp. 558–573. Springer (2013)
30. Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. J. of Web

Semantics 22, 19–39 (2013)
31. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

Reasoner. J. of Web Semantics 5(2), 51–53 (2007)
32. Zemke, F.: Converting SPARQL to SQL. Tech. rep., Oracle Corp. (2006)

17

A On the Semantics of SPARQL

Remark 1. The condition ‘F s1⊕s2 is not true’ in our definition of OPT is slightly dif-
ferent from ‘F s1⊕s2 has an effective Boolean value of false’ given by the W3C specifi-
cation6. The two definitions do not necessarily coincide because the effective Boolean
value can be undefined (type error) if, for example, a variable in F is not bound by
s1 ⊕ s2. As we see from Section 3.1, our reading corresponds to LEFT JOIN in SQL.

We also find the informal explanation of the semantics for OPT in the W3C recom-
mendation inconsistent with the definition of DIFF, which forms the second component
of the union in the definition of OPT. It suggests that DIFF(S1, S2, F) is equivalent to

DIFF′(S1, S2, F) = {s1 ∈ S1 | s1 and s2 are incompatible, for all s2 ∈ S2}
∪ {s1 ∈ S1 | there is s2 ∈ S2 compatible with s1 such that F s1⊕s2 = ⊥}.

Observe that there may be s2, s′2 ∈ S2 that are both compatible with s1, F s1⊕s2 = >
and F s1⊕s

′
2 = ⊥, in which case s1 ∈ DIFF′(S1, S2, F) \ DIFF(S1, S2, F).

B Proof of Theorem 1

Theorem 4. Given any intensional graph T and OWL 2 QL query (P, V), one can
construct an OWL 2 QL query (P †, V) such that, for any extensional graph A (in some
fixed finite vocabulary),

JP KT ,A|V = JP †KA|V .

Proof. By the definition of the entailment regime, it suffices to construct a rewriting
B†, for any basic graph pattern B, such that JBKT ,A = JB†KA. A rewriting P † of P
is obtained by replacing every BGP B in it with B†.

Take any BGP B that occurs in P . Let ?c1, . . . , ?cm be all class variables in B, and
let ?r1, . . . , ?rn be all property variables in B. For any m-tuple C = (C1, . . . , Cm) of
class names and n-tuple R = (R1, . . . , Rn) of property names in the given vocabu-
lary, we take the result B′C,R of replacing every ?ci in B with Ci and every ?rj in B
with Rj . By definition, B′C,R contains no class or property variables and contains only
OWL 2 QL class and property axioms (rather than templates) and assertions. For any
class or property axiom in B′C,R, we check whether it is entailed by (logically follows
from) T . If at least one of the axioms is not entailed by T , we setB′′C,R to be the empty
BGP; otherwise, let B′′C,R be the result of removing all class or property axioms from
B′C,R.

The constructed BGP B′′C,R contains only class and property assertions and can be
regarded as (a SPARQL representations of) a conjunctive query. As is well-known [29],
we can rewrite this query and T into a union of conjunctive queries over A, which can
be represented as a union B†C,R of BGPs. Now, we take B† to be the union (UNION) of

B†C,R[?c1 7→ C1, . . . , ?cm 7→ Cm, ?r1 7→ R1, . . .?rn 7→ Rn],

6 http://www.w3.org/TR/sparql11-query/#sparqlAlgebra

18 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

for all possible m-tuples C of class names and n-tuples R of property names in the
given vocabulary such that B′′C,R is not empty (the empty union is, by definition, the
empty BGP). Here

B[?v1 7→ V1, . . . , ?vk 7→ Vk] = BIND(. . .BIND(B, ?v1, V1), . . . , ?vk, Vk).

It follows from the construction that JBKT ,A = JB†KA. q

We emphasise that JP †KA is computed only on the extensional part of the RDF
graph and under simple entailment.

C Proof of Proposition 6 and Theorem 7

Proposition 6. Let V be a set of variables and F a SPARQL filter expression with vari-
ables in V . For each solution mapping swith dom(s) ⊆ V , we haveF s = (τ (F))extV (s).

Proof. The proof is based on the observation that extV (s) : v 7→ null just in case v /∈
dom(s), for each v ∈ V . Thus, the claim holds for F = bound(v). Also, due to this
observation, the clauses in the definition of v = c and v = v′ and the truth tables for ¬
and ∧ coincide for SPARQL and SQL filter expressions. q

Theorem 7. For any RDF graph G and any graph pattern P ,

‖P‖G = ‖τ (P)‖triple(G).

Proof. The proof is by induction on the structure of P .
For the basis of induction, let P be a triple pattern of the form 〈s, p, o〉. Since each

of the components of the triple pattern is either a variable in V or an RDF term in I∪ L,
there are 15 possible cases (recall that we have no blank nodes):

s, p, o ∈ I ∪ L
s ∈ V, p, o ∈ I ∪ L p ∈ V, s, o ∈ I ∪ L o ∈ V, s, p ∈ I ∪ L

s, p ∈ V, s 6= p, o ∈ I ∪ L s, o ∈ V, s 6= o, p ∈ I ∪ L p, o ∈ V, p 6= o, s ∈ I ∪ L
s, p ∈ V, s = p, o ∈ I ∪ L s, o ∈ V, s = o, p ∈ I ∪ L p, o ∈ V, p = o, s ∈ I ∪ L

s, p, o ∈ V, s 6= p, p 6= o, o 6= s
s, p, o ∈ V, s = p 6= o s, p, o ∈ V, p = o 6= s s, p, o ∈ V, o = s 6= p

s, p, o ∈ V, s = p = o
We consider just one case with s, p ∈ V, s 6= p and o ∈ I ∪ L and leave all other cases
to the reader. By definition, we have τ (〈s, p, o〉) = πs,pρs/subjρp/predσobj=o triple and
var(〈s, p, o〉) = {s, p}. Then the following are equivalent:

– ‖〈s, p, o〉‖G contains tuple {s 7→ a, p 7→ b};
– J〈s, p, o〉KG contains solution mapping {s 7→ a, p 7→ b};
– G contains triple (a, b, o);
– triple(G) contains tuple {subj 7→ a, pred 7→ b, obj 7→ o};
– ‖πs,pρs/subjρp/predσobj=o triple‖triple(G) contains tuple {s 7→ a, p 7→ b}.

For the induction step, we consider the five cases of SPARQL algebra operations.

P = FILTER(P1, F). Denote U = var(P) (all variables of F are in U).

19

(⊆) Let t ∈ ‖FILTER(P1, F)‖G. Then there is s ∈ JFILTER(P1, F)KG such that
extU (s) = t. By definition, we have s ∈ JP1KG and F s = >. Then t ∈ ‖P1‖G,
whence, by the induction hypothesis, t ∈ ‖τ (P1)‖triple(G) and, by Proposi-
tion 6, (τ (F))t = >. Thus, t ∈ ‖στ (F)τ (P1)‖triple(G), which coincides with
‖τ (FILTER(P1, F))‖triple(G).

(⊆) Let t ∈ ‖τ (FILTER(P1, F))‖triple(G). By definition, t ∈ ‖τ (P1)‖triple(G) and
(τ (F))t = >. By the induction hypothesis, t ∈ ‖P1‖G. Then there is a solution
mapping s such that t = extU (s) and s ∈ JP1KG. By Proposition 6, F s = >
and thus, we obtain s ∈ JFILTER(P1, F)KG and t ∈ ‖FILTER(P1, F)‖G.

P = BIND(P1, v, c). (Recall that v /∈ var(P1).)

(⊆) Let t ∈ ‖BIND(P1, v, c)‖G. Then there is s ∈ JBIND(P1, v, c)KG such that
extU (s) = t. By definition, we have s′ ∈ JP1KG for s′ that coincides with s on
dom(s)\{v} and is undefined on v. Then s′ ∈ ‖P1‖G, whence, by the induction
hypothesis, s′ ∈ ‖τ (P1)‖triple(G). Thus, t ∈ ‖τ (P1)×{v 7→ c}‖triple(G), which
coincides with ‖τ (BIND(P1, v, c))‖triple(G).

(⊆) Let t ∈ ‖τ (BIND(P1, v, c))‖triple(G). By definition, t(v) = c and the restriction
t′ of t to var(P) \ {v} is in ‖τ (P1)‖triple(G). By the induction hypothesis, t′ ∈
‖P1‖G. So, there is a solution mapping s with t′ = extU (s) and s ∈ JP1KG.
Thus, t ∈ JBIND(P1, v, c)KG.

P = UNION(P1, P2). Denote Ui = var(Pi), for i = 1, 2.

(⊆) Let t ∈ ‖UNION(P1, P2)‖G. Then there is s ∈ JUNION(P1, P2)KG such that
t = extU1∪U2

(s). By definition, we have either s ∈ JP1KG or s ∈ JP2KG and
so, either extU1(s) ∈ ‖P1‖G or extU2(s) ∈ ‖P2‖G. By the induction hypoth-
esis, either extU1(s) ∈ ‖τ (P1)‖triple(G) or extU2(s) ∈ ‖τ (P2)‖triple(G), which
implies extU1∪U2

(s) = t ∈ ‖τ (UNION(P1, P2))‖triple(G).

(⊇) Let t ∈ ‖τ (UNION(P1, P2))‖triple(G). Let s be such that t = extU1∪U2(s). By
definition, either extU1

(s) ∈ ‖τ (P1)‖triple(G) or extU2
(s) ∈ ‖τ (P2)‖triple(G).

By the induction hypothesis, either extU1
(s) ∈ ‖P1‖G or extU2

(s) ∈ ‖P2‖G,
which implies s ∈ JP1KG or s ∈ JP2KG. Thus, s ∈ JUNION(P1, P2)KG and
thus, t ∈ ‖UNION(P1, P2)‖G.

P = JOIN(P1, P2). Let Ui = var(Pi), i = 1, 2, and U = U1 ∩ U2.

(⊆) If t ∈ ‖JOIN(P1, P2)‖G then there is a solution mapping s ∈ JJOIN(P1, P2)KG
with extU1∪U2(s) = t, and so there are compatible s1 and s2 with s1 ⊕ s2 = s
and si ∈ JPiKG, for i = 1, 2. By definition, extUi(si) ∈ ‖Pi‖G, i = 1, 2,
from which, by the induction hypothesis, extUi

(si) ∈ ‖τ (Pi)‖triple(G). Let
V = dom(s1) ∩ dom(s2) and Vi = U \ dom(si), for i = 1, 2. Then V1, V2
and V are disjoint and partition U . By definition, extUi

(si) : v 7→ null, for each
v ∈ Vi and i = 1, 2, and therefore, extUi(si) is in ‖σisNull(Vi)τ (Pi)‖triple(G).
Thus, extUi\Vi

(si) ∈ ‖πUi\Vi
(σisNull(Vi)τ (Pi))‖triple(G). Since s1 and s2 are

compatible and V are the common non-null attributes of extU1\V1
(s1) and

20 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

extU2\V2
(s2), we obtain

extU1\V1
(s1)⊕ extU2\V2

(s2) ∈∥∥((πU1\V1
(σisNull(V1)τ (P1))

)
1
(
πU2\V2

(σisNull(V2)τ (P2))
))∥∥

triple(G)
.

As t extends this tuple to V1 ∪ V2 by nulls, t ∈ ‖τ (JOIN(P1, P2))‖triple(G).

(⊇) If t ∈ ‖τ (JOIN(P1, P2))‖triple(G) then there are disjoint V1, V2 ⊆ U1 ∩ U2 and
tuples t1 and t2 with ti ∈ ‖πUi\Vi

σisNull(Vi)τ (Pi)‖triple(G) such that t1 and t2
are compatible and t extends t1⊕t2 to V1∪V2 by nulls. We then define solution
mappings si by taking si = {v 7→ t(v) | v ∈ Ui and t(v) is not null}, i = 1, 2.
It follows that s1 and s2 are compatible and extUi(si) ∈ ‖τ (Pi)‖triple(G), i =
1, 2. By induction hypothesis, extUi

(si) ∈ ‖Pi‖G and si ∈ JPiKG, from which
s1 ⊕ s2 ∈ JJOIN(P1, P2)KG and extU1∪U2

(s1 ⊕ s2) = t ∈ ‖JOIN(P1, P2)‖G.

P = OPT(P1, P2, F). Denote Ui = var(Pi), i = 1, 2, and U = U1 ∩ U2. Recall that
we assumed that the variables of F are in U1 ∪ U2.
(⊆) Let t ∈ ‖OPT(P1, P2, F)‖G. Then there is s ∈ JOPT(P1, P2, F)KG such that

extU1∪U2(s) = t. By definition, either s ∈ JFILTER(JOIN(P1, P2), F)KG or
s ∈ JP1KG and, for all s2 ∈ JP2KG, either s and s2 are incompatible or
F s⊕s2 6= >. In the former case, we have t ∈ ‖FILTER(JOIN(P1, P2), F)‖G
and, by the induction hypothesis, t ∈ ‖τ (FILTER(JOIN(P1, P2), F))‖triple(G).
In the latter case, extU1

(s) ∈ ‖P1‖G and there is no solution mapping s2
such that extU2

(s2) ∈ ‖P2‖G, s and s2 are compatible and F s⊕s2 = >.
By induction hypothesis and Proposition 6, extU1(s) ∈ ‖τ (P1)‖triple(G) and
there is no s2 such that extU2(s2) ∈ ‖τ (P2)‖triple(G), s and s2 are compat-
ible and (τ (F))extU1∪U2

(s⊕s2) = >. It follows that there is no s2 such that
extU1∪U2

(s⊕s2) ∈ ‖τ (JOIN(P1, P2))‖triple(G) and (τ (F))extU1∪U2
(s⊕s2) = >,

that is no s2 with extU1∪U2(s ⊕ s2) ∈ ‖στ (F)τ (JOIN(P1, P2))‖triple(G). This
means that

extU1(s) ∈ ‖τ (P1)‖triple(G) \ ‖πU1στ (F)τ (JOIN(P1, P2))‖triple(G).

Therefore, in either case, extU1∪U2
(s) = t ∈ ‖τ (OPT(P1, P2, F))‖triple(G).

(⊆) Let t ∈ ‖τ (OPT(P1, P2, F))‖triple(G). If t ∈ ‖στ (F)τ (JOIN(P1, P2))‖triple(G)

then, by the induction hypothesis, t ∈ ‖τ (FILTER(JOIN(P1, P2), F))‖triple(G)

and so, t ∈ ‖FILTER(JOIN(P1, P2), F)‖G ⊆ ‖OPT(P1, P2, F)‖G. Otherwise,
there is some t′ ∈ ‖τ (P1)‖triple(G)\‖πU1τ (FILTER(JOIN(P1, P2), F))‖triple(G)

such that t extends t′ by nulls; in particular, all non-null components in t are
in U1. By the induction hypothesis, t′ ∈ ‖P1‖G. Thus, there is s ∈ JP1KG
such that t = extU1∪U2

(s). On the other hand, by the induction hypothesis
and Proposition 6, there is s2 ∈ JP2KG such that s and s2 are compatible
and F s⊕s2 = >. It follows then that s ∈ JOPT(P1, P2, F)KG and therefore,
t = extU1∪U2(s) ∈ ‖OPT(P1, P2, F)‖G.

This completes the proof of Theorem 7. q

21

Example 9. Consider the following query taken from the official SPARQL document7

(‘find the names of people who do not know anyone’):

SELECT ?name WHERE {
?x foaf:givenName ?name.
OPTIONAL { ?x foaf:knows ?who }.
FILTER (!BOUND (?who))

},

which is represented by the following graph pattern

FILTER(OPT({ ?x foaf:givenName ?name }, { ?x foaf:knows ?who }, >),
¬bound(?who)). (2)

For the translation of the OPT operator, we first require to translate

JOIN({ ?x foaf:givenName ?name }, { ?x foaf:knows ?who }),

which results in the following relational expression (we remove trivial projections and
filters):

πx,nameσpred=foaf:givenNameρx/subjρname/obj triple 1

πx,whoσpred=foaf:knowsρx/subjρwho/obj triple ∪
µx(πnameσisNull(x)πx,nameσpred=foaf:givenNameρx/subjρname/obj triple 1

πx,whoσpred=foaf:knowsρx/subjρwho/obj triple) ∪
µx(πx,nameσpred=foaf:givenNameρx/subjρname/obj triple 1

πwhoσisNull(x)πx,whoσpred=foaf:knowsρx/subjρwho/obj triple).

Since triple contains no nulls, the above relational expression is clearly equivalent to
(cf. Theorem 8):

Q = πx,nameσpred=foaf:givenNameρx/subjρname/obj triple 1

πx,whoσpred=foaf:knowsρx/subjρwho/obj triple

Then OPT({ ?x foaf:givenName ?name }, { ?x foaf:knows ?who }, >) is translated into
the following relational expression:

Q ∪ µwho(πx,nameσpred=foaf:givenNameρx/subjρname/obj triple \ πx,nameQ).

It can be verified (cf. Theorem 8) that this expression is in fact equivalent to

πx,nameσpred=foaf:givenNameρx/subjρname/obj triple

πx,whoσpred=foaf:knowsρx/subjρwho/obj triple.

7 http://www.w3.org/TR/sparql-features

22 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

Finally, the filter expression in graph pattern (2) is translated into ¬¬isNull(who), that
is isNull(who), and the graph pattern itself to

σisNull(who)
(
πx,nameσpred=foaf:givenNameρx/subjρname/obj triple

πx,whoσpred=foaf:knowsρx/subjρwho/obj triple
)
.

whose projection onto {x} can also be expressed as follows:

πxρx/subjσpred=foaf:givenName triple \ πxρx/subjσpred=foaf:knows triple

(informally, find those individuals who do not know anyone).

D Proof of Theorem 8

We begin by formalising the intuition behind the definition of ν:

Proposition 13. Let P be a graph pattern. Then, for any RDF graph G and any solu-
tion mapping s ∈ JP KG, we have var(P) \ ν(P) ⊆ dom(s).

Proof. The proof is by induction on the structure of P . The basis of induction is imme-
diate: all variables in any BGP P are in the domain of any s ∈ JP KG. For the induction
step, we consider the cases of SPARQL algebra operations:

P = FILTER(P1, F). If s ∈ JFILTER(P1, F)KG then s ∈ JP1KG and so, by the induc-
tion hypothesis, var(P1) \ ν(P1) ⊆ dom(s), from which the claim follows.

P = BIND(P1, v, c). If s ∈ JBIND(P1, v, c)KG then v ∈ dom(s) and the restriction s′

of s onto dom(s)\{v} is in JP1KG. By the induction hypothesis, var(P1)\ν(P1) ⊆
dom(s′), whence the claim: (var(P1) ∪ {v}) \ ν(P1) ⊆ dom(s′) ∪ {v} = dom(s).

P = UNION(P1, P2). If s ∈ JUNION(P1, P2)KG then either s ∈ JPiKG, for i = 1 or
i = 2. By the induction hypothesis, var(Pi) \ ν(Pi) ⊆ dom(s), for i = 1 or i = 2.
Let v ∈ var(P1) but v /∈ (var(P1)\var(P2))∪(var(P2)\var(P1))∪ν(P1)∪ν(P2).
It follows that v ∈ var(P2) but v /∈ ν(P1) and v /∈ ν(P2). So, v ∈ var(Pi) \ ν(Pi),
for both i = 1 and i = 2. By the mirror image argument, if v ∈ var(P2) then
v ∈ var(Pi) \ ν(Pi), for both i = 1 and i = 2. Thus, v ∈ dom(s).

P = JOIN(P1, P2). If s ∈ JJOIN(P1, P2)KG then there are s1 ∈ JP1KG and s2 ∈ JP2KG
such that s1 and s2 are compatible and s = s1 ⊕ s2. By the induction hypothesis,
var(Pi) \ ν(Pi) ⊆ dom(si). Let v ∈ var(Pi), for either i = 1 or i = 2 but
v /∈ ν(P1) ∪ ν(P2). Clearly, v ∈ dom(si) and so, in either case v ∈ dom(s).

P = OPT(P1, P2, F). If s ∈ JOPT(P1, P2, F)KG then either there is s1 ∈ JP1KG and
s2 ∈ JP2KG such that s1 and s2 are compatible, s = s1 ⊕ s2 and F s = > or
s ∈ JP1KG and, for all s2 ∈ JP2KG either s and s2 are incompatible or F s⊕s2 6= >.
Let v ∈ var(P1) but v /∈ ν(P1)∪ var(P2). By the induction hypothesis, for the two
options above, we have v ∈ dom(s1) ⊆ dom(s) and v ∈ dom(s), respectively. The
choice v ∈ var(P2) but v /∈ ν(P1) ∪ var(P2) is impossible.

This completes the proof of Proposition 13. q

23

Theorem 8. If var(P1) ∩ var(P2) ∩ (ν(P1) ∪ ν(P2)) = ∅ then we can define

τ (JOIN(P1, P2)) = τ (P1) 1 τ (P2),

τ (OPT(P1, P2, F)) = τ (P1) τ (F)τ (P2),

where R1 FR2 = σF (R1 1 R2) ∪ µU2\U1
(R1 \ πU1

(σF (R1 1 R2))), for relations
R1 and R2 over U1 and U2, respectively.

Proof. We clearly have ‖τ (P1) 1 τ (P2)‖triple(G) ⊆ ‖τ (JOIN(P1, P2))‖triple(G) be-
cause τ (P1) 1 τ (P2) is a component of the union in the definition of τ (JOIN(P1, P2)),
with V1 = V2 = ∅. For the converse inclusion, consider a component of the union in
the definition of τ (JOIN(P1, P2)):

((
πU1\V1

(σisNull(V1)τ (P1))
)
1
(
πU2\V2

(σisNull(V2)τ (P2))
))
.

By Proposition 13 and Theorem 7, if V1 ∩ ν(P1) 6= ∅ then P1 contains a variable that is
always bound and so, ‖σisNull(V1)τ (P1)‖triple(G) = ∅, for any RDF graph G. Therefore,
in this case the component is empty and can be removed from the union. If the condition
in the theorem is satisfied then only V1 = ∅ and V2 = ∅ will give rise to a possibly non-
empty component. Thus, ‖τ (JOIN(P1, P2))‖triple(G) ⊆ ‖τ (P1) 1 τ (P2)‖triple(G).

The claim for OPT(P1, P2, F) is then immediate from the claim for JOIN(P1, P2)
and the definition of the left join relational operation. q

E Proof of Proposition 11 and Theorem 12

Proposition 11. For any R2RML mappingM and data instanceD, t ∈ ‖trM(triple)‖D
if and only if t ∈ triple(GD,M).

Proof. (⇒) Let t ∈ ‖trM(triple)‖D then there is m inM such that t ∈ ‖trm‖D. That
is, the logical table ofmmatches the selection of trm (minus the ¬isNull(vi) operators)
and the term maps (subject, predicate and object) of m match the subj, pred, and obj
projections of trm. It follows that, by the procedure described in [10, Section 11], t is
part of the generated triples of m and, therefore, belongs to triple(GD,M).

(⇐) If a triple t is produced by M, then there is triple map m with a predicate
object map po that produces it by the procedure in [10, Section 11]. If this is the case,
the logical table of m returns a tuple s, for which the values of the referenced columns
in the term maps of m are not null and that generates t. By construction, m gives rise to
trm in trM(triple) whose selection is the logical table of m and its projection matches
the term maps of m. Thus, s produces t in ‖trm‖D and so, in ‖trM(triple)‖D.

Theorem 12. For any graph pattern P , R2RML mappingM and data instance D,

‖P‖GD,M = ‖trM(τ (P))‖D.

Proof. Follows from Theorem 7 and Proposition 11. q

24 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

Q
L

U
B

M
1

L
U

B
M

9
L

U
B

M
2
0

L
U

B
M

5
0

L
U

B
M

1
0
0

L
U

B
M

2
0
0

L
U

B
M

5
0
0

O
O

B
H

O
B
P

P
O

O
B
H

P
O

P
O

P
O

P
O

O

q
1

2
8

29
1

3
97

1
3

2
3

1
3

1
3

2
q
2

2
25

11
13

7
19

3
2

53
1

25
6

5
63

3
12

11
31

2
16

30
59

3
36

88
q
3

1
6

86
9

2
78

15
8

2
34

5
3

93
2

2
2

08
7

63
12

q
4

13
7

19
14

15
44

16
4

15
34

7
22

94
3

27
2

09
3

24
22

q
5

16
12

4
45

1
10

22
98

15
8

16
34

3
21

94
5

32
2

18
2

28
23

q
6

45
5

27
32

21
5

07
6

41
1

31
7

11
61

0
73

0
28

67
4

4
32

1
58

96
8

10
78

1
12

3
57

8
43

4
34

9
q
7

5
21

34
00

5
10

6
42

9
15

7
6

34
3

32
93

9
8

2
17

1
8

9
q
8

72
6

19
5

95
87

5
80

76
0

91
7

19
2

74
8

37
4

75
5

97
4

79
6

2
13

1
82

0
85

5
q
9

60
97

2
16

8
97

8
78

66
8

18
9

12
6

85
7

1
59

4
5

09
3

3
73

4
5

17
5

7
46

6
12

12
5

15
22

7
44

59
8

q
1
0

2
6

12
6

9
3

97
15

8
2

34
4

2
93

0
2

2
13

4
3

2
q
1
1

4
5

58
10

6
43

16
0

6
34

9
8

93
9

11
2

09
3

18
44

q
1
2

3
4

19
15

4
70

23
6

4
56

7
4

93
7

3
2

11
4

5
5

q
1
3

6
4

67
8

7
40

15
7

9
34

8
11

93
5

14
2

65
7

38
58

q
1
4

91
20

24
15

1
16

8
32

9
28

7
2

78
2

69
4

6
44

4
1

86
6

13
52

4
4

45
7

29
51

2
92

37
6

q
′ 4

93
58

19
0

46
99

98
76

7
98

71
5

91
2

67
2

92
4

42
2

95
10

7
q
′′ 4

10
8

21
35

63
12

2
72

71
9

11
7

3
39

4
14

0
3

99
4

11
5

9
17

9
10

8
12

7
q
′ 9

25
7

71
6

91
85

5
17

4
4

68
6

40
57

5
1

38
5

11
65

9
3

41
5

26
41

8
8

93
2

54
09

2
19

94
5

11
5

11
0

29
5

22
8

q
′′ 9

55
7

95
1

65
91

6
10

2
6

09
3

17
8

40
1

1
21

4
14

93
4

3
03

8
34

17
8

9
29

6
67

12
3

19
70

5
15

1
37

6
35

6
17

6
q

ob
g

2
15

0
30

57
14

1
29

9
99

2
52

0
34

8
8

23
2

93
9

19
48

6
2

60
7

39
47

7
5

41
1

79
35

1
20

6
06

1
q

ob
g

4
6

7
24

1
25

31
40

27
3

29
73

5
32

1
69

9
7

3
96

9
7

49
4

q
ob

g
1
0

64
1

76
0

31
26

9
25

3
6

99
8

14
9

19
1

2
25

8
17

10
6

5
44

0
43

00
6

8
64

2
16

3
30

8
17

92
9

17
4

36
2

45
9

66
9

st
ar

tu
p

tim
e

3.
1s

13
.6

s
7.

7s
3.

6s
3.

1s
80

m
33

s
18

s
3.

1s
39

.8
s

3.
1s

1m
38

s
3.

1s
3m

23
s

3.
1s

3.
1s

lo
ad

in
g

tim
e

10
s

n/
a

n/
a

n/
a

15
s

n/
a

n/
a

26
s

n/
a

1m
3s

n/
a

1m
56

s
n/

a
3m

35
s

10
m

17
s

Ta
bl

e
2.

St
ar

tu
p

tim
e,

da
ta

lo
ad

in
g

tim
e

(i
n

s)
an

d
qu

er
y

ex
ec

ut
io

n
tim

e
(i

n
m

s)
fo

rL
U

B
M

in
O

nt
op

(O
),

O
W

L
-B

G
P

+H
er

m
it

(O
B
H

),
O

W
L

-B
G

P
+P

el
le

t
(O

B
P

)a
nd

Pe
lle

t(
P)

;O
W

L
-B

G
P

+P
el

le
tt

im
es

ou
to

n
L

U
B

M
9
,O

W
L

-B
G

P
+H

er
m

it
on

L
U

B
M

2
0

an
d

Pe
lle

to
n

L
U

B
M

2
0
0
.

25

F SQL Schema for LUBM

We evaluated the performance of Ontop using the OWL 2 QL version of the Lehigh
University Benchmark LUBM [16]. We experimented with the data instances LUBMn,
for n = 1, 9, 20, 50, 100, 200, 500 (where n specifies the number of universities; note
that LUBM1 and LUBM9 were used for experiments in [19]). The results of the exper-
iments are shown in Table 2.

The LUBM data generator creates an OWL file with class and property assertions.
As Ontop has been designed to work with relational databases, we had to store the class
and property assertions in a database. The simplest solution to this issue would to use
a generic schema, as usually done when storing triples in RDBMS backends. The two
most common examples of this are (a) a schema with a single relation containing three
attributes: subj, pred, obj, or (b) a schema with one unary relation for each class and one
binary relation for each property. Such generic schemas, however, do not allow for ef-
ficient SQL translations in Ontop (or any other SPARQL-to-SQL system) because, for
example, they require multiple and expensive (self)-join operations (if multiple prop-
erties are needed for an individual) and cause exponential blowup (due to class and
property hierarchies).

In order to obtain efficient SQL queries, it is necessary that the schema follows
standard best practices in the DB schema design, for example, normalisation. Usually,
a normalised schema is obtained through a top-down approach that starts with the de-
sign of a conceptual model and follows by a translation of the conceptual model into
a relational model. In the case of LUBM, we were not able to do so because the data
generator was fixed. Instead, we studied the specification of the generator, extracted a
model out of it, and created a schema based on that model. In particular, we identified
disjoint classes (such as ub:UndergraduateStudent and ub:GraduateStudent) and func-
tional properties (such as ub:name). When creating the schema we used the following
principles:

– Classes on the top levels of hierarchies (e.g., ub:Student) have their own relations
(e.g., students).

– The class membership in hierarchies is encoded using discriminating attributes
(e.g., instances of ub:UndergraduateStudent and ub:GraduateStudent are also stored
in the relation students for their superclass ub:Student, but are distinguished by the
value of the discriminating attribute stype).

– Each functional property is included in the relation for its domain (e.g., property
ub:name is the attribute name in students).

– Each 1-to-N and N-to-N property together with its attributes has a separate relation
(e.g., relation takescourses represents ub:takesCourse).

The resulting schema consists of eleven relations:

– coauthors (data about the authors of a publication),
– courses (data about courses and the teachers assigned to those courses),
– departments (university departments),
– heads (heads of departments),
– publications (publications and the main author of a publication),

26 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

– ra (research assistants),
– researchgroups (research groups),
– students (data about students including their degrees and supervisors),
– ta (data about teaching assistants and courses they teach),
– takescourses (data about students and courses they take),
– teachers (data about teachers and their departments).

Instead of storing complete URIs, which were generated automatically by the LUBM
data generator following a certain pattern, we store their components separately. For
example, URIs of instances of ub:GraduateStudent are of the form

http://www.Department12.University54.edu/GraduateStudent22

where 54 refers to the university, 12 to the department in the university, and 22 to the
graduate student in that department. We extracted those IDs (54, 12, 22 for this instance)
and stored them in the respective attributes of the relations in the database (uniid, depid,
id of the relation students, respectively). The obtained attributes together with the class
names uniquely identify individuals, and so they form primary keys of the respective
relations (e.g., attributes depid, uniid, stype, id constitute the primary key for relation
students;8 note that the discriminating attribute stype encodes the class name). Foreign
keys are defined when the relation contained attributes that referred to the IDs of entities
stored in a different relation.

In addition to the indexes that are defined by default on primary keys, we added
indexes on attributes that would likely participate in join operations between relations.
These were, mostly, the attributes that store IDs of entities from different relations. In
total, we defined 39 additional indexes out of which 7 are composite. Note that in DB
tuning, it usual that indexes are defined with respect to query workload. Since we did not
proceed in this way, there are indexes that could be added to obtain a better performance
for some of the queries we evaluated, and some indexes that could be removed since
they are not relevant for the workload of the evaluation.

Finally, R2RML mappings were defined so that the (virtual) RDF graph entailed
by the mappings would consist of all the triples that were initially used to populate the
database.

To illustrate our rationale in more detail, we consider the case of ub:Student and its
two disjoint subclasses, ub:GraduateStudent and ub:UndergraduateStudent. The class
ub:Student is what is known as an abstract class in ER modelling, that is, a class that has
no instances; only ub:GraduateStudent and ub:UndergraduateStudent have instances.
In addition, each ub:Student instance has exactly one value for the properties ub:name,
ub:telephone ub:degreeFrom, ub:emailAddress and ub:advisor (note that these proper-
ties are identified as functional on the basis of the specification of the data generator
rather than the ontology). So, we defined the relation students shown in Fig. 1. Indexes
in this relation include the (composite) index of the primary key (depid, uniid, stype,
id) as well as indexes on the attributes degreeuniid, advisortype, advisorid. In addition,
it contains a composite foreign key on the pair depid, uniid referring the attributes id,
universityid in the relation departments.

8 In the simplified example in Section 3.3 we do not have depid and uniid.

27

CREATE TABLE ‘students‘ (
‘depid‘ smallint(6) NOT NULL,
‘uniid‘ smallint(6) NOT NULL,
‘stype‘ tinyint(4) NOT NULL,
‘id‘ smallint(6) NOT NULL,
‘name‘ varchar(45) DEFAULT NULL,
‘degreeuniid‘ smallint(6) DEFAULT NULL,
‘email‘ varchar(255) DEFAULT NULL,
‘phone‘ varchar(255) DEFAULT NULL,
‘advisortype‘ tinyint(4) DEFAULT NULL,
‘advisorid‘ smallint(6) DEFAULT NULL,
PRIMARY KEY (‘depid‘,‘uniid‘,‘stype‘,‘id‘),
INDEX ‘idx_stud_1‘ (‘degreeuniid‘),
INDEX ‘idx_stud_2‘ (‘advisortype‘),
INDEX ‘idx_stud_3‘ (‘advisorid‘),
CONSTRAINT ‘fk_students_1‘ FOREIGN KEY (‘depid‘, ‘uniid‘)

REFERENCES ‘departments‘ (‘departmentid‘,‘universityid‘)
);

Fig. 1. Relations for the subclasses ub:UndergraduateStudent and ub:GraduateStudent of ub:Student.

The relation students is mapped to the LUBM classes and properties using R2RML
triple maps such as the one presented in Fig. 2. The mapping generates all triples in
which the subject is a URI of an undergraduate student (indicated by the value 0 of the
discriminating attribute stype).

28 R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev

@prefix rr: <http://www.w3.org/ns/r2rml#> .
@prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#> .

[a rr:TriplesMap ;
rr:logicalTable [a rr:R2RMLView ;

rr:sqlQuery "select * from students where stype=0"
] ;

rr:subjectMap [a rr:SubjectMap, rr:TermMap ;
rr:class ub:UndergraduateStudent ;
rr:template

"http://www.Department{depid}.University{uniid}.edu/UndergraduateStudent{id}" ;
rr:termType rr:IRI
] ;

rr:predicateObjectMap [a rr:PredicateObjectMap ;
rr:predicate ub:telephone ;
rr:objectMap [a rr:ObjectMap, rr:TermMap ;

rr:column "phone" ;
rr:termType rr:Literal
]

] ;
rr:predicateObjectMap [a rr:PredicateObjectMap ;

rr:predicate ub:memberOf ;
rr:objectMap [a rr:TermMap, rr:ObjectMap ;

rr:template
"http://www.Department{depid}.University{uniid}.edu" ;

rr:termType rr:IRI
]

] ;
rr:predicateObjectMap [a rr:PredicateObjectMap ;

rr:predicate ub:emailAddress ;
rr:objectMap [a rr:TermMap, rr:ObjectMap ;

rr:column "email" ;
rr:termType rr:Literal
]

]
] .

Fig. 2. R2RML mapping for instances of ub:UndergraduateStudent.

	1 Introduction
	2 Foundational Results on OBDA
	2.1 Efficient SPARQL-to-SQL with R2RML Mappings
	2.1.1 Experiments

	2.2 Answering SPARQL Queries over Databases under OWL2QL Entailment Regime
	2.2.1 Evaluation

	3 Implementation Development
	3.1 Integration with the Optique Platform
	3.1.1 Integration of the Optique R2RML API
	3.1.2 SQL Support in the Mapping Language
	3.1.3 SQL Multi-schema Support
	3.1.4 SPARQL Support Extension
	3.1.5 Sesame API Upgrade

	3.2 Novel Reasoning Functionalities
	3.2.1 Efficient TBox Reasoning via DAG Manipulation
	3.2.2 Consistency Checking
	3.2.3 Checking for Empty Classes and Properties

	3.3 Extending Ontop with Spatial Features
	3.3.1 Supported Spatial Features
	3.3.2 Future work

	3.4 Releases
	3.4.1 Maven
	3.4.2 Released Versions

	Bibliography
	A Efficient SPARQL-to-SQL with R2RML Mappings (JWS Paper)
	B Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime (ISWC 2014 Paper)

